

201 North Washington Square | Suite 910 Lansing, Michigan 48933 Telephone 517 / 482-6237 | Fax 517 / 482-6937 | www.varnumlaw.com

Timothy J. Lundgren

Direct 616 / 336-6750 tjlundgren@varnumlaw.com

August 21, 2019

Ms. Barbara Kunkel Executive Secretary Michigan Public Service Commission 7109 W. Saginaw Highway P.O. Box 30221 Lansing, MI 48909

Re: MPSC Case No. U-20471

Dear Ms. Kunkel:

Attached for electronic filing in the above-referenced matter, please find the Direct Testimony, Exhibits, and Proof of Service on behalf of The City of Ann Arbor, Michigan. Thank you for your assistance in this matter.

Very truly yours,

Timothy J. Lundgren

TJL/sej Enclosures c. ALJ All parties of record.

1

15251097_1.docx

STATE OF MICHIGAN

BEFORE THE MICHIGAN PUBLIC SERVICE COMMISSION

In the matter of the Application of) DTE ELECTRIC COMPANY for) approval of its Integrated Resource Plan) pursuant to MCL 460.6t, and for other relief.)

Case No. U-20471

DIRECT TESTIMONY

OF

MISSY STULTS

ON BEHALF OF

THE CITY OF ANN ARBOR, MICHIGAN

Q. Please state your name and business address.

A. My name is Dr. Missy Stults and I am the Sustainability and Innovations Manager for the
 City of Ann Arbor. My business address is 301 E. Huron Street, Ann Arbor, Michigan,
 48104.

Q. Please describe your educational background and professional experience.

A. I hold a dual doctoral degree in the area of urban resilience from the University of Michigan. This degree is from Urban and Regional Planning and from the former School of Natural Resources and the Environment, now known as the School for the Environment and Sustainability (SEAS). I also hold a Master's degree in Climate and Society from Columbia University and a Bachelor's degree in Marine Biology and Environmental Sciences from the University of New England.

Professionally, I have spent the last 15 years working directly with local and regional governments, as well as indigenous populations to advance their climate and sustainability priorities. This has included work in nonprofits, for-profits, academic institutions, philanthropic organizations, and local government. In this work, I have focused on translating complex scientific information into useful, usable, and understandable pieces of knowledge that can inform decision-making across scales (i.e., local, regional, state-wide) and sectors (i.e., built, natural, social, cultural, economic). I have been the City of Ann Arbor's head of Sustainability and Innovations for just over a year but have worked on sustainability and climate-related activities in Ann Arbor since moving to the city in 2012. My résumé, attached as Exhibit AA-1, provides additional

information about my academic and professional background.

Q. On whose behalf are you submitting your testimony in this proceeding?

- A. My testimony is on behalf of The City of Ann Arbor, Michigan ("Ann Arbor" or "City").
- Q. Have you previously testified before this Commission or as an expert in other proceedings?
- A. No.

Q. What is the purpose of your testimony?

- A. The purpose of my testimony is to share the City of Ann Arbor's deep concerns related to DTE Electric Company's ("DTEE's") proposed Integrated Resource Plan ("IRP"). More specifically, the City is very concerned about three core elements of the proposed IRP:
 - DTEE's significant underinvestment in renewable energy as part of its core fuel mix, and DTEE's heavy reliance on voluntary renewable energy programs. These two parts of the proposed IRP significantly and negatively impact the City's ability to meet established climate and sustainability goals;
 - The charges and rates, and the deep energy injustice associated with DTEE's Voluntary Green Pricing ("VGP") and MI Green Power programs. More specifically, the City believes that these programs and DTEE's over-reliance on voluntary programs perpetuate energy injustices and inequalities throughout DTEE's service territory, especially as it relates to who is able or not able to access clean energy programs. The City also disagrees with the calculation used

by DTEE to establish the rates for the VGP programs; and

• DTEE's notable lack of investment in grid resilience—especially with respect to microgrids and battery technologies. As the impacts of climate change become more pronounced, it is imperative that DTEE invest in strategies that will enhance the resilience of the overall electric grid. The IRP notably fails to prioritize resilience and promote resilience-enhancing strategies.

Overall, the City believes DTEE's current IRP will prevent the City from meeting its sustainability and climate-related goals, while exacerbating energy injustices in the DTEE service territory. This perpetuates a situation where those with wealth will be able to invest in clean energy sources (at prices we believe do not reflect the true cost of owning and operating renewable energies) while our poorer—and largely minority—populations will be unable to access these programs. It is for these core reasons—to advocate for and to provide testimony to support the necessary changes in the proposed IRP—that the City of Ann Arbor has intervened in this case.

Q. Are you sponsoring any exhibits?

- A. Yes, I am sponsoring the following exhibits:
 - Exhibit AA-1 (MS-1): Curriculum Vitae of Missy Stults.
 - Exhibit AA-2 (MS-2): Resolution Committing the City of Ann Arbor to Using 100% Clean and Renewable Energy for City Operations.
 - Exhibit AA-3 (MS-3): Great Lakes Integrated Sciences + Assessments ("GLISA"), Historical Climatology: Ann Arbor, Michigan.

 Exhibit AA-4 (MS-4): GLISA, Annual Report to NOAA Climate Program Office, Climate and Societal Interactions, Regional Integrated Sciences and Assessments: Historic and Projected Changes in Climate for the Great Lakes Region and Ann Arbor.

Q. Were these exhibits prepared by you or under your supervision?

- A. Yes.
- Q. Have you reviewed the DTEE Proposed Course of Action ("PCA)"?
- A. Yes.
- Q. Do you believe that it meets the statutory standard of being the "most reasonable and prudent" alternative.
- A. No.

Q. Please explain why not.

- A. Six reasons led me to this determination:
 - 1. A mismatch in projected renewable energy generation and demand. First, based on my review of DTEE's filing and my knowledge of City discussions with DTEE regarding future renewable energy generation to meet the City's clean energy goals, DTEE has significantly underestimated the demand for renewable energy—especially for solar. The City of Ann Arbor is currently in discussion with DTEE about a new solar installation that would add 20 to 26 MW onto the grid. This installation was

intentionally sized to offset a large portion of the current energy demand for municipal (City only) operations. This installation is not sized to offset communitywide energy usage, including usage from residents and businesses. The installation also does not support other municipalities—including the Cities of Dearborn, Detroit, Farmington Hills, Ferndale, Hamtramck, Hazel Park, Pleasant Ridge, Rockwood, Royal Oak, Southgate, Ypsilanti, Westland and Washtenaw County—that all have climate and sustainability goals similar to the City of Ann Arbor's (please see Exhibit AA-2 for the City of Ann Arbor's goal), and are interested in renewable energy installations to advance their goals. Per the testimony of Witness Schroeder, DTEE is aware of these goals. See Direct Testimony of Terri L. Schroeder, p. 16.

Despite this knowledge, DTEE's IRP inexplicably anticipates only 11 MW of additional solar coming on line between 2020 and 2024. Given the growing demand for renewable energy, the climate crisis we are in (see following point), and DTEE's professed environmental and sustainability goals (see page 3 of the IRP Executive Summary), it would be prudent for DTEE to invest far more in local renewable energy generation, especially solar, and to integrate this renewable energy into core operations rather than to rely so heavily upon voluntary programs.

DTEE states in its IRP filing that it will bring 500 MW of solar online between 2025 and 2030 and 2,000 MW by 2040. These projections and timelines are either contradictory or unrealistic. If DTEE is only prepared to invest in 11 MW of solar in the next five years, it is not realistic to believe it is prepared to make a 4500% increase in solar investments in the five years after that. If the projections of 500 MW by 2030 and 2,000 MW by 2040 are genuine, then the projection of only 11 MW by 2024 is far too low. Moreover, in conversations we have had with Terri Schroeder and other members of the DTEE renewable energy team, we learned that the process to get new generation into the MISO system is taking years. Therefore, DTEE should start the process of integration into the MISO system as soon as possible, so as to ensure these assets come online in as timely a manner as possible.

2. The science of climate change. Based on the science, the projections around climate change are stark, with every new report demonstrating how little time remains to meaningfully reduce emissions, and how urgent the situation is.¹ DTEE espouses a vision of becoming a sustainable corporation but its investments do not mirror that reality. As an illustration, in the next five years, DTEE is projecting adding 704 MW of renewable energy (11 MW of solar and 693 MW of wind). In the voluntary green pricing program, DTEE is projecting 715 MW of new renewables coming online between 2020 and 2024. If DTEE were truly dedicated to addressing the climate crisis, the core fuel mix powering the utility could and would be dominated by renewables, and the majority of its new renewable generation would not come through voluntary programs. Similarly, given the climate crisis and the impacts that communities around the nation are already experiencing (see Exhibit AA-3 for examples of historic and current climate impacts affecting Ann Arbor, for instance),

¹ For an example, see the Intergovernmental Panel on Climate Change, *Special Report: Warming of 1.5°C*. Available at http://www.ippc.ch/sr15/.

the City believes the only reasonable and prudent course of action would be to stop investing in new fossil fuel-based generation immediately. Instead, DTEE proposes to bring online a combined heat and power system in Dearborn, in addition to its new combined cycle gas system (the Blue Water Energy Center).

3. Increasing natural disasters and disinvestment in resilience. As stated above, the science of climate change is clear. Moreover, the impacts of climate change are not a future concern—they are already here (refer to Exhibits AA-3 and AA-4 for more details). For example, Ann Arbor has experienced a 44% increase in total annual precipitation over the last 30 years, and a 41% increase in the number of heavy precipitation events, including a 37% increase in the amount of precipitation falling during heavy rainfall events over the same time period. The City and its residents are already experiencing power outages from extreme storms, heavy winds, and ice storms,² and studies from Climate Central and the Union of Concerned Scientists show that these impacts are only going to get more intense and frequent in a climate-altered future.³ Therefore, to the City of Ann Arbor, the only prudent course of action is to get to net zero greenhouse gas emissions immediately while also doing everything possible to prepare for the impacts associated with a changing climate, some of which are already here and others of which are projected to take place

² Some examples of recent news coverage of such events can be found here: <u>https://www.mlive.com/news/ann-arbor/2019/07/thousands-without-power-after-storm-strikes-washtenaw-</u> <u>county.html; https://energynews.us/2019/08/13/midwest/climate-change-brings-urgency-to-debate-over-detroits-</u> <u>grid-resilience/; and https://www.wemu.org/post/power-outages-continue-ann-arbor-after-high-winds-thursday.</u>

³ See, <u>https://www.ourenergypolicy.org/wp-content/uploads/2014/04/climate-central.pdf;</u> and <u>https://www.ucsusa.org/sites/default/files/legacy/assets/documents/Power-Failure-How-Climate-Change-Puts-Our-Electricity-at-Risk-and-What-We-Can-Do.pdf.</u>

regardless of how much we reduce greenhouse gas emissions.

More explicitly, changing precipitation patterns, increases in heat, and more intense convective weather (e.g., thunderstorms, hail storms, tornadoes) are already wreaking havoc on local communities.⁴ These impacts are particularly acute when it comes to emergency responders and the public health system.⁵ In the case of emergency responders, more extreme weather is both increasing demand for emergency services while also placing emergency facilities at greater risk from impacts such as power outages.⁶ And increasing heat, extreme weather, and flooding is leading to increased demand for public health services to address issues such as heat stress, water-borne illnesses, shifting disease vectors, vehicular accidents, and more.⁷

Given that Ann Arbor is already beginning to experience most of these impacts, the City of Ann Arbor was disappointed not to see a concerted investment in resilience in DTEE's IRP. More specifically, we expected more investment in the overall

⁴ See <u>https://nca2018.globalchange.gov/; https://unhabitat.org/urban-themes/climate-change/;</u> and <u>https://link.springer.com/article/10.1007/s11027-012-9423-1</u>

⁵ See <u>https://www.iaem.org/portals/25/documents/IAEM-USA-Position-Statement-Critical-Role-of-EM-in-Climate-Change-Planning-22July2015.pdf;</u> and https://www.iaem.org/portals/25/documents/IAEM-USA-Position-Statement-Critical-Role-of-EM-in-Climate-Change-Planning-22July2015.pdf.

⁶ See <u>https://www.neha.org/eh-topics/climate-change-0/emergency-response-and-climate-change;</u> <u>https://www.sciencedirect.com/science/article/pii/S2212096316300869;</u> and <u>https://www.yaleclimateconnections.org/2018/07/climate-change-adds-stress-for-first-responders/</u>.

⁷ <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069477/;</u> <u>https://www.apha.org/topics-and-issues/climate-change;</u> and <u>https://blogs.scientificamerican.com/observations/climate-change-is-a-public-health-emergency/</u>.

resilience of the grid, including through techniques such as solar and storage,⁸ especially at locations that provide emergency services (e.g., police stations, fire stations, EMS stations, disaster response centers) and critical services (e.g., water treatment plants, wastewater treatment plants, hospitals, schools, daycares). We also expected investments in microgrids (a small network of electricity users that have a local source of supply that can function independently should the centralized electricity grid be disrupted) and battery storage at institutions where vulnerable residents reside, such as at affordable housing sites, senior centers, and prisons. Microgrids can help reduce demand on centralized systems, while ensuring that, during a disaster, residents are still receiving power. The omission of serious investments in solar, storage and microgrids within DTEE's IRP are fundamental oversights that are not prudent, given current weather and climatic conditions, let alone projected future conditions.

4. Price of Solar. The modeling conducted by DTEE for its IRP has only a few scenarios that include a price on carbon. For those that did include this input, the prices used ranged from \$0/ton to \$10/ton (in 2040). First, given the very clear impact that greenhouse gas emissions have on society, every model run should have included, at a minimum, a social cost of carbon. Secondly, the value for the price on carbon (or the social cost of carbon) was far too low and not commensurate with the numbers used by the U.S. Environmental Protection Agency ("U.S. EPA"). The

 ⁸ https://www.nrel.gov/docs/fy18osti/70679.pdf;
 https://sfenvironment.org/solar-energy-storage-forresiliency;

 resiliency;
 and
 http://solarmarketpathways.org/wpcontent/uploads/2018/03/Solar_and_Storage_for_Energy_and_Resiliency_Final_Update.pdf.

values generated by the U.S. EPA are provided below and can be found on their website: <u>https://19january2017snapshot.epa.gov/climatechange/social-cost</u>-carbon .html.⁹

Per the U.S. EPA, "a social cost of carbon is a measure, in dollars, of the long-term damage done by a ton of carbon dioxide (CO_2) emissions in a given year. This dollar figure also represents the value of damages avoided for a small emission reduction (i.e., the benefit of a CO_2 reduction)." See, U.S. EPA website: The Social Cost of Carbon: Estimating the benefits of reducing greenhouse gas emissions..¹⁰

As denoted in the following table, the values used in DTEE's IRP modeling are, we believe, significantly lower than the true cost of carbon. The U.S. EPA estimates that in the year 2025, the possible social costs of carbon range from \$14/ton to \$138/ton; with a median of \$76/ton. That's a significant difference from the modeling estimations used by DTEE. Because of that, DTEE both drastically devalues the importance of renewables and efficiency in its models, and drastically inflates the value of fossil fuel energy. In summary, by not using an appropriate dollar value to denote the social cost of carbon when applied to modeling and by not considering the social cost of carbon in every modeling scenario, DTEE is using faulty equations to calculate its PCA and making a policy decision, whether directly or indirectly, to pass the social cost of carbon on to the public. Specifically, there already are and will

⁹ <u>https://19january2017snapshot.epa.gov/climatechange/social-cost-carbon_.html</u>. Accessed 08-20-2019.

¹⁰ Id.

continue to be significant costs associated with not reducing greenhouse gas emissions.¹¹ By not integrating those costs holistically into its modeling, DTEE is asking someone else to take responsibility for the costs associated with emissions from its activities. This is an extremely imprudent course of action.

	Discount Rate and Statistic				
Year	5% Average	3% Average	2.5% Average	High Impact (95th pct at 3%)	
2015	\$11	\$36	\$56	\$105	
2020	\$12	\$42	\$62	\$123	
2025	\$14	\$46	\$68	\$138	
2030	\$16	\$50	\$73	\$152	
2035	\$18	\$55	\$78	\$168	
2040	\$21	\$60	\$84	\$183	
2045	\$23	\$64	\$89	\$197	
2050	\$26	\$69	\$95	\$212	

°The SC-CO₂ values are dollar-year and emissions-year specific.

Figure 1: Social Cost of CO2, 2015-2050 (in 2007 dollars per metric tons of CO2). Source: <u>Technical Support Document</u>: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 (May 2013, Revised August 2016)

5. The dearth of details regarding DTEE's long-term fuel mix and overall plans directly and adversely impacts the City's ability to plan and meet our goals. By only focusing on energy generation over the next five years, DTEE has left the City of Ann Arbor with great uncertainty about what future energy supply will look like.

¹¹ See, <u>https://www.edf.org/true-cost-carbon-pollution</u>.

This directly and adversely influences our ability to meet our climate and energyrelated goals. The City has short-term and long-term goals and the long-term goals are directly tied to the energy mix that DTEE uses. If DTEE is not going to be investing heavily in renewable energy and rapidly closing fossil fuel generating facilities, then customers such as the City need to know immediately so we can find alternative ways to meet our climate and sustainability goals. The City understands there is inherent uncertainty in planning for the future, but because it is impossible for individual customers to make climate-friendly decisions without this information, DTEE is unnecessarily preventing customers from engaging in the planning that is essential to meet goals. DTEE may believe it prudent not to commit to future fuel sources. However, it is absolutely necessary for DTEE customers to know DTEE's long-term plans. Not providing this information is irresponsible and imprudent. DTEE's choice not to focus on the long-term assets it will be using to generate energy simply takes the uncertainty away from DTEE and places is solely on the backs of consumers.

6. Strategies proposed continue to perpetuate energy injustices. DTEE's IRP application and PCA have a dearth of programs and offerings targeted at low-income populations. Worse, the plan actually exacerbates inequalities in our energy system by primarily focusing on voluntary renewable energy programs that are priced so high they are effectively inaccessible to low-income residents as well as to small and local businesses. By placing a heavy emphasis on voluntary programs, the utility is making renewable energy a privileged resource—one that only the affluent can afford.

Instead, DTEE needs to integrate far more renewable energy into its core portfolio so that every resident and business within DTEE's service territory, regardless of age, means, race, gender, zip code, etc., gets equitable access to the cleanest and most sustainable sources of energy. DTEE must make this a specific goal, and must intentionally focus on ensuring all consumers have access to clean and renewable energy, regardless of means. If DTEE does not, it will be responsible for exacerbating energy injustices in its service territory, which is not a reasonable, prudent, nor a just, path.

In closing, the City does not believe that DTEE's IRP is a reasonable and prudent strategy. The City cannot support a strategy that does not place renewables at the core of DTEE's generation portfolio but instead focuses and relies heavily on voluntary programs. The City cannot support a strategy that continues to invest in fossil fuels— including bringing new fossil fuel power generation facilities online. The City cannot support a strategy that does not invest in the resilience of our electricity grid, especially at critical facilities, emergency response facilities, and at locations where vulnerable residents reside. And we cannot support a strategy that exacerbates energy inequalities in DTEE's service territory. The Merriam-Webster Dictionary defines prudence as "marked by wisdom or judiciousness" also "shrewd in the management of practical affairs."¹² What could be wiser or more judicious than heeding science; working to protect the health, welfare, and safety of our residents; and ensuring that our resources are managed

¹² <u>https://www.merriam-webster.com/dictionary/prudent?src=search-dict-box</u>. Accessed 08-20-2019.

to protect the long-term viability and resilience of our region? I do not believe that DTEE's PCA does these things, for the reasons I have discussed above.

Q. Please elaborate on the City's clean energy goals

- A. The City has established multiple clean and renewable energy goals, three of which are most influenced by DTEE's IRP and PCA:
 - **1.** Powering all city operations with 100% clean and renewable energy by the year 2035 or before (Exhibit AA-2; MS-2).
 - **2.** Reducing community-wide greenhouse gas emissions 90% by 2050 (with an interim goal of a 25% reduction by 2025).
 - 3. Generating 24 MW of local renewable energy in the city by the year 2025.

Q. To what extent have these goals been communicated to DTEE?

- A. City staff have had multiple meetings with DTEE in which these goals have been articulated. This included meetings during the creation and adoption of the City's 2012 Climate Action Plan as well as post-plan discussions on how to implement identified strategies. Since joining the City, I have personally been involved in the following discussions with DTEE personnel in which the City's goal were explicitly discussed:
 - 12/7/2018 with Paul Cramer and Dave Harwood
 - 2/11/2019 with Dave Harwood and Terri Schroeder
 - 2/22/2019 with Dave Harwood and Bruce Peterson
 - 4/12/2019 with Dave Harwood, Bruce Peterson, and Terri Schroeder
 - 5/20/2019 with Kelly Johnson, Eden Starbuck

• 7/30/2019 with Kelly Johnson, Eden Starbuck, Terri Schroeder, Brian Calka

Q. Have these conversations been satisfactory?

A. Yes and no. Yes when considering our smaller, short-term goal of powering municipal operations with 100% clean and renewable energy. But when the conversation turns to our community-facing goals, the conversations have been largely unsatisfactory. Moreover, our conversations with DTEE have been outside of the IRP process, as we do not see the strategies identified within the IRP as being appropriate to meeting our clean energy goals. Put more starkly, we cannot meet our climate, sustainability, or equity goals by relying solely on what DTEE has put in its IRP. The City must either work on separate programmatic offerings with DTEE, find alternative providers, or explore yet-to-be-determined solutions if we are going to meet our climate and sustainability goals, because DTEE's IRP, as proposed, is insufficient.

Q. Are the City of Ann Arbor's needs reflected in DTEE's IRP?

A. No. DTEE's electricity portfolio is not transitioning to renewables rapidly enough to ensure the City can meet our clean energy goals (see Exhibit AA-2), nor is it commensurate with the science around climate change. The lack of investment in battery storage is impeding our ability to obtain redundancy during power outages, especially for our emergency responders. The lack of investment in community solar, microgrids, community aggregation, and onsite distributed generation is negatively influencing our ability to meet our goals of 24 MW of local renewable energy generation (see Exhibit AA-2). Moreover, DTEE's proposed investment in new fossil fuel-based sources will further inhibit the City's ability to meet our medium and long-term renewable goals.

In addition, DTEE's proposed IRP also does not offer a way for municipalities to aggregate the clean energy demand in our communities and leverage that to invest in new, clean energy technologies. Instead, the IRP leaves municipalities and their residents and businesses with a piecemeal, voluntary approach whereby each municipality would have to unilaterally convince every resident and every business within its boundaries to pay a premium and sign-up for DTEE's centralized—and high-priced—voluntary renewable energy programs in order to meet the clean energy goals of the municipality. This is simply unrealistic.

Q. Do you have any thoughts on the fuel mix proposed in DTEE's IRP?

A. Yes. We believe the fuel mix is not representative of what a utility serious about climate change would propose. For example, DTEE's PCA of 11 MW of solar is drastically inadequate, and the continued investment in fossil fuels is both inappropriate and in direct conflict with DTEE's stated environmental goals. The City of Ann Arbor alone is looking at installing 1 MW of rooftop solar capacity as well as a large solar installation that has the potential to bring online an additional 20–26 MW of new solar. And these installations don't even address our goals related to community solar and achieving a 90% reduction in communitywide greenhouse gas emissions by 2050 (if not before) (see Exhibit AA-2; MS-2). While the City applauds DTEE's investment in wind, we know that certain parts of our state simply do not have the viable wind resources needed to make this technology work. These regions do, however, have access to the sun. That is

why DTEE's IRP should include serious investments in both wind and solar, including integrating these renewable fuel sources into the utility's core fuel mix. The IRP also should provide support for distributed generation that can take demand off the centralized system and, when paired with batteries, serve as a source of grid resilience. Overall, the fuel mix in the proposed IRP is in direct conflict with DTEE's stated sustainability goals (e.g., Page 3 of DTE's IRP) and is a direct impediment to the City of Ann Arbor's ability to meet our climate and sustainability goals.

Q. Do you have other concerns about DTEE's renewable generation offerings?

A. Yes. I am extremely concerned about the pricing structure for DTEE's voluntary programs—especially its voluntary green pricing program. As structured, because of its price, the VGP program and MI Green Power are and will continue to be exclusionary, thereby raising significant social justice concerns related to fairness, access, and affordability. This is particularly concerning at a time when the cost of renewable energy generation has fallen to the point where it is generally as low if not lower than fossil fuel-based generation. Therefore, the City strongly objects to DTEE's continuing to charge a premium for cheaper, healthier, and more sustainable energy resources. Moreover, by charging this premium, the utility is directly impeding the ability of low-income households to participate in renewable energy programs.

Q. Do you find that the voluntary programs offered by DTEE are adequate to meeting the City's needs?

A. No. As stated previously, the City fundamentally believes that focusing on voluntary programs obfuscates DTEE's responsibility to change its core energy mix. It continues to

place the burden of switching to renewable energy on the backs of concerned citizens, all while giving the utility cover to claim it is in the environmental vanguard. Voluntary programs are not going to move the needle fast enough to significantly reduce greenhouse gas emissions and mitigate climate change. While it is fine to offer voluntary programs, DTEE needs to be serious about transitioning its core fuel mix to renewables and about ensuring that all customers, by default, are getting their energy from renewable sources.

Q. Do you have any other concerns to share about the VGP program or other voluntary programs offered in DTEE's IRP?

A. Yes. It is unclear to the City why DTEE's core fuel generation mix, as outlined in the IRP, continues to be fossil fuel-based, especially in the context of the utility's espoused climate and sustainability values. The renewable programs DTEE offers continue to be largely in the voluntary market and are only modestly moving DTEE's core generation mix to one that is cleaner. If DTEE is serious about meeting its established climate and energy goals, it must fundamentally transform its generation mix—not rely heavily on voluntary, customer-driven programs.

Q. Do you have any concerns about the modeling conducted by DTEE as part of this IRP?

A. I do. The fact that not every model included a social cost of carbon, and that those models that did include one used an extremely low value, is very problematic. Secondly, my review of the models found no emphasis on resilience—meaning that technologies or approaches that ensure a community can quickly recover (and advance) from a natural disaster were not valued in the model runs. This was most starkly evident in the lack of consideration for solar and storage, microgrids, and resilience hubs. Finally, the lack of details about energy generation from 2025 to 2040 makes it incredibly hard for the City and our constituents to make long-term plans about our renewable energy future and associated investments.

In addition, the math behind DTEE's commitment to achieving 50% clean energy by 2030 is erroneous. From a review of how DTEE claims to meet the 50% figure, half (25% of original demand) is actually from energy reduction and half (25% of original demand) is from renewable energy generation. In fact, the 25% from energy reduction actually reduces the size of the overall "generation" pie, meaning that DTEE needs to generate less energy to meet the remaining demand (equivalent to 75% of original demand). Using the figures from 2018 as an example, DTEE noted that total generation was 11,772 MW. If that figure is reduced by 25% (2,943 MW) through energy waste reduction and demand response, that leaves 8,829 MW of load needed. The utility has committed to 2,943 MW (25% of original load) of renewable energy. But 2,943 MW is only 33% of 8,829 MW—not 50%. Thus, to truly power operations with 50% clean energy, DTEE would have to generate 4,415 MW of renewable energy as part of its core operations. However, nothing in the proposed IRP indicates that DTEE is truly committed to this magnitude of renewable energy investments.

Q. Do you have any concluding remarks?

Yes. The City of Ann Arbor believes that there is no greater issue facing society than the climate crisis. Because of that, the City argues that it is absolutely critical that DTEE do everything in its power to ensure the energy it produces is derived from clean, renewable, and reliable energy sources. By integrating a social cost of carbon into its modeling, DTEE would have a more holistic sense of the true costs for its investments.

While the City of Ann Arbor is the formal intervenor in this case, we also want to articulate that we have consulted many other municipalities in the DTEE service territory who share our concern about this IRP and DTEE's slow move toward a more sustainable energy portfolio. We all stand ready to work with our utility on a meaningful and substantial investment in clean and renewable energy, one that is grounded in equity. We do not believe this IRP is that plan nor the most reasonable and prudent course of action.

Does this conclude your direct testimony?

A. Yes. However, I reserve the right to incorporate new information that may subsequently become available through outstanding discovery or otherwise in rebuttal testimony.

STATE OF MICHIGAN

BEFORE THE MICHIGAN PUBLIC SERVICE COMMISSION

In the matter of the Application of) DTE ELECTRIC COMPANY for) approval of its Integrated Resource Plan) pursuant to MCL 460.6t, and for other relief.)

Case No. U-20471

EXHIBITS

OF

MISSY STULTS

ON BEHALF OF

THE CITY OF ANN ARBOR, MICHIGAN

MELISSA A. STULTS

2320 Walter Drive • Ann Arbor, MI 48103 • (917) 291-0023 • <u>missy.stults@gmail.com</u>

Education	 University of Michigan (Ann Arbor, MI) Ph.D., Urban and Regional Planning and Natural Resources and Environment, September 2016 Dissertation: Assessing Local Climate Adaptation Planning and Action in the United States 				
	Columbia University (New York, NY) M.A., Climate and Society, August 2005				
	University of New England (Biddeford, ME) B.S., Marine Biology, May 2004 B.S., Environmental Science, May 2004 Summa Cum Laude with Highest Departmental Distinction				
Research Interests	Urban resilience; Climate change and hazard mitigation; Urban adaptation; Regional adaptation; Equity-based adaptation planning and action; Tribal adaptation, Sustainability and climate action in practice; Integrating climate mitigation and adaptation; Moving from planning to implementation; Measuring resilience; the Climate Mitigation-Adaptation-Equity nexus.				
	Peer-Reviewed				
Publications	Moss, R.H., Avery, S., Baja, K Stults, M. 2019. Evaluating Knowledge to Support Climate Action: A Framework for Sustained Assessment. Weather, Climate, and Society. DOI: 10.1175/WCAS-D-18-0134.1				
	Lemos, M.C., Arnott, J., Ardoin, N Stults, M . 2018. To co-produce or not to co-produce. <i>Nature</i> Sustainability 1, 722-724				
	 Woodruff, S.C., Meerow, S., Stults, M., and Wilkins, C. 2018. Adaptation to Resilience Planning: Alternative Pathways to Prepare for Climate Change. Journal of Planning Education and Research. 1- 12 				
	Stults, M. and Larsen, L. 2018. Tackling uncertainty in U.S. local climate adaptation planning.				
	 Stults, M. 2017. Integrating climate change into hazard mitigation planning: Opportunities and examples in practice. <i>Climate Risk Management</i>. <u>https://doi.org/10.1016/j.crm.2017.06.004</u> Stults, M. and Woodruff, S.C. 2016. Looking under the hood of local adaptation plans: shedding 				
	light on the actions prioritized to build local resilience to climate change. <i>Mitigation and</i> Adaptation Strategies for Global Change https://doi.org/10.1007/s11027-016-9725-9				
	Woodruff, S.C. and Stults, M. 2016. Planning to be Prepared: Assessing the Content and Quality of U.S. Local Climate Adaptation Plans. <i>Nature Climate Change</i> 1-13				
	Woodruff, S.C., and Stults, M. 2016. Numerous strategies but limited implementation guidance in US local adaptation plans. <i>Nature Climate Change</i> 6, 796, 802				
	Meerow, S., Newell, J., and Stults, M . 2016. Defining Urban Resilience: A Review. Landscape and Urban Planning, 147: 38, 40				
	Meerow, S. and Stults, M . 2016. Comparing conceptualizations of urban climate resilience in theory and practice. Sustainability, 2(7), 701				
	Nordgren, J., Stults, M. , and Meerow, S. 2016. Supporting Local Climate Change Adaptation: Where we are and where we need to go. <i>Emirrormantal Science and Palicy</i> .				
	 Stults, M. and Nordgren, J. (2015). Introduction – Special Edition on Climate Change Adaptation. Michigan Journal of Sustainability 3: 1.4 				
	 Biagini, B., Bierbaum, R., Stults, M., & Dobardzic, S. (2014). A typology of adaptation actions : A global look at climate adaptation actions financed through the Global Environment Facility. <i>Global Environmental Change</i>, 25, 97–108. 				
	Peterson, A.S., Hals, H., Rot, B., Bell, J., Miller, I, Parks, J. and Stults, M. (2014). Climate Change and the Jamestown S'Klallam Tribe: A Customized Approach to Climate Vulnerability and Adaptation Planning. <i>Michigan Journal of Sustainability</i> . 2: 1-16.				
	 Biagnii, D., Bierbaum, K., Stufts, M., & Dobardzic, S. (2014). A typology of adaptation actions : A global look at climate adaptation actions financed through the Global Environment Facility <i>Global Environmental Change</i>, 25, 97–108. Peterson, A.S., Hals, H., Rot, B., Bell, J., Miller, I, Parks, J. and Stults, M. (2014). Climate Change and the Jamestown S'Klallam Tribe: A Customized Approach to Climate Vulnerability and Adaptation Planning. <i>Michigan Journal of Sustainability</i>. 2: 1-16. 				

- Bierbaum, R.M. and Stults, M. (2013). Adaptation to Climate Change: Context Matters. *Michigan Journal of Sustainability*. 1: 1-16.
- Bierbaum, R.M., Smith, J.B., Lee, A., Blair, M., Carter, L., Chapin III, S., Fleming, P., Ruffo, S., Stults, M., McNeeley, S., Wasley, E., and Verduzco, L. (2013). A Comprehensive Review of Climate Adaptation in the United States: More Than Before, but Less Than Needed. *Journal of Mitigation and Adaptation Strategies for Global Change*. 18(3): 361-406.
- Rosenzweig, C. Major, D.C., Demong, K., Horton, R., Stanton, C., & Stults, M. (2006). Managing climate change risks in New York City's water system: assessment and adaptation planning. *Mitigation and Adaptation Strategies for Global Change*, 12(8): 1391-1409.
- Downie, D., Brash K., and **Stults, M.** (2006). "The Global Roundtable on Climate Change," *World Resources Review*, 18(4): 627-643.

Book Chapters

- **Stults, M.** and Vogel, J.M. (2015). Reducing Vulnerability to Flooding in Grand Rapids, Michigan. In Bullock, J.A., Haddow, G. D., Haddow, K.S., Coppola, D.P. (eds.), *Living with Climate Change: How Communities Are Surviving and Thriving in a Changing Climate*. Auerbach Publications, 286p.
- Stults, M., Nordgren, J.R., Meerow, S., Ongun, M., Jacobson, R., Hamilton, C. (2015). Assessing the Climate Adaptation Resource and Service Landscape. In Bullock, J.A., Haddow, G. D., Haddow, K.S., Coppola, D.P. (eds.), *Living with Climate Change: How Communities Are Surviving and Thriving in a Changing Climate*. Auerbach Publications, 286p.
- Bierbaum, R.M., Smith, J.B., Lee, A., Blair, M., Carter, L., Chapin III, S., Fleming, P., Ruffo, S., Stults, M., McNeeley, S., Wasley, E., and Verduzco, L. (2014). Adaptation Chapter of the 2013 U.S. National Climate Assessment. Washington D.C., U.S. Global Change Research Program.
- Seijas, N., Torriente, S.M., Hefty, N.L., and Stults, M. (2011). Preparing for Climate Change While Advancing Local Sustainability: A Closer Look at Miami-Dade County, Florida, USA, in "Resilient Cities: Cities and Adaptation to Climate Change – Proceedings of the Global Forum 2010". Ott-Zimmerman, K. (ed.). Springer. Local Sustainability, Volume 1. 573 pgs.
- The World Bank Group, (2011). Guide to Climate Change Adaptation in Cities. Contributing Author to Chapters 3: Framing Adaptation in Cities; 4: Developing a Roadmap for Adaptation; and 7: Financing Adaptation in Cities. International Bank for Reconstruction and Development/World Bank. 100pgs.
- Rosenzweig, C., Major, D.C., and **Stults, M.** (2006). "New York. Managing flood risks: Staten Island's Bluebelt Programme." In the Greater London Authority's *Adapting to climate change: Lessons for London*. London, UK: Greater London Authority.

Policy Reports

Stults, M. and Meerow, S. 2016. <u>Professional Societies and Climate Change</u>. A report for The Kresge Foundation

Climate Adaptation: The State of Practice in U.S. Communities. 2016.

- <u>Climate Change Vulnerability Assessment and Adaptation Plan: 1854 Ceded Territory</u> Including the Bois Forte, Fond du Lac, and Grand Portage Reservations. 2016.
- Ewing-Thiel, J., Lundgren, K., Hewitt, K., and **Stults, M.** (2014). <u>New York State Climate Smart</u> <u>Communities Climate Smart Communities Certification Manual Version 2.0</u>.
- Jamestown S'Klallam Tribe. (2013). Jamestown S'Klallam Tribe Climate Vulnerability Assessment and Adaptation Plan.
- City of Lewes, DE. (2011). <u>Hazard Mitigation and Climate Adaptation Plan for the City of Lewes,</u> <u>Delaware</u>.
- State of Massachusetts. (2011). <u>Massachusetts Climate Adaptation Report</u>. Co-Author of the Local Economy and Government Chapter.
- Stults, M. and Pagach, J. (2011). <u>Preparing for Climate Change in Groton, Connecticut: A Model</u> <u>Process for Communities in the Northeast</u>. CT DEP.

Haverford Township (2009). Township of Haverford Climate Action Plan.

Recent | ACADEMIC PRESENTATIONS

Academic Stults, M. Fostering Resilience, *Energia Executive Training Program, Long Island*. January 2018.

- and Stults, M. Working Towards a More Resilient Nation. *Emerging Researchers Series, Ann Arbor, MI.* January 2018.
- Professional Presentations
 - Stults, M. Urban Adaptation to Climate Change. *Climate Adaptation Seminar*, University of Michigan. December 2017.
 - Stults, M. Local Climate Adaptation in the U.S., National Academies Panel on Resilience, remote presentation. December 2017.
 - Stults, M. Resilience What Does it Mean and Why Should You Care, Ford Motor Company, Dearborn, MI. November 2017.
 - Stults, M. The Resilience Landscape, *Michigan's Future Environmental Leaders*, Ann Arbor, MI. October 2017.
 - Stults, M. Creating Powerful Plans: Making Sure Plans Get Implemented, Government of the U.S. Virgin Islands, St. Thomas. February 2017.
 - Stults, M. Planning for Climate Change: Marrying Hazard Mitigation and Climate Adaptation, *CivicSpark, remote presentation.* February 2017.
 - Stults, M. Urban Adaptation to Climate Change. *Climate Adaptation Seminar, University of Michigan.* December 2016.
 - Stults, M. Urban Adaptation: Theory and Practice. Faculty Seminar: University of Arizona. Tucson, AZ. November 2016.
 - Stults, M. Needs and Opportunities for Advancing Urban Adaptation. *Climate Seminar: University of Arizona*. Tucson, AZ. November 2016.
 - Stults, M. Dissertation Defense. The University of Michigan. Ann Arbor, MI. August 23rd, 2016.
 - Stults, M. Climate Adaptation at the Local Level. *Climate Adaptation Seminar*, University of Michigan. Ann Arbor, MI. December 9th, 2015.
 - Stults, M. Key Adaptation Terms. Climate Adaptation Seminar, The University of Michigan. Ann Arbor, MI. October 29th, 2016.
 - Stults, M. Greenhouse Gas Inventory Strategies. Public Policy Practicum, University of Michigan. Ann Arbor, MI. January 30th, 2015.
 - Stults, M. Climate Action in the U.S. Climate Adaptation Seminar, University of Michigan. Ann Arbor, MI. December 3rd, 2014.
 - Stults, M. Climate Adaptation and Local Sustainability Initiatives in the U.S. Sustainable Infrastructure Course, University of Michigan. Ann Arbor, MI. November 24th, 2014.
 - Stults, M. Agenda 21 and Local Climate Action. Urban Planning Lunch and Learn, University of Michigan. Ann Arbor, MI. October 29th, 2014.

CONFERENCE PRESENTATIONS

- Stults, M. Many Paths to Rome: The Disciplinary and Undisciplined Skills Adaptation Practitioners Can't (Shouldn't) Live Without. *National Adaptation Forum*. St. Paul, MN. May 2017.
- Stults, M. Resilience Ecosystem. National Adaptation Forum. St. Paul, MN. May 2017.
- Stults, M. Persistent Adaptation. National Adaptation Forum. St. Paul, MN. May 2017.
- Stults, M. Emerging Opportunities in Urban Resilience. *Great Lakes Adaptation Forum*. Ann Arbor, MI. October 6th, 2016.
- Stults, M. Hazagation: Integrating Climate Change into Hazard Mitigation Planning. *California Adaptation Forum*. Sacramento, CA. September 8th, 2016.
- Stults, M. The U.S. Local Climate Adaptation Landscape. Resilient Cities Congress. Bonn, Germany. July 6th, 2016.
- Stults, M. Resilient and Sustainable Communities. ASPA Annual Conference. Grand Rapids, MI. November 10th, 2015.
- Stults, M. and Woodruff, S. Planning for Climate Change: An Evaluation of Local Adaptation Plans in the U.S. Association of College Schools of Planning Annual Conference. Houston, TX. October 23rd, 2015.
- Stults, M. The Broad View Building Resilience to Climate Change. National Adaptation Forum. St. Louis, MO. May 14th, 2015.
- Stults, M. What Communities Across the U.S. Are Doing to Prepare for Climate Change. National

	 Adaptation Forum. St. Louis, MO. May 13th, 2015. Stults, M. Hazagation: Simultaneously planning for climate change and hazard mitigation. New Partners for Smart Growth Conference. Portland, OR. February 13th, 2015. Also session organizer.
	OTHER PRESENTATIONS
	Stults, M. Understanding urban resilience. The Kresge Foundation Environment Department Staff Training. Troy, MI. August 28th, 2016.
	Stults, M. Understanding the urban climate adaptation landscape. <i>City of Aspen Climate Action Planning Meeting</i> . Aspen, CO. May 24th, 2016.
	Stults, M. Climate Mitigation and Greenhouse Gas Inventorying Strategies. Public Policy Practicum, University of Michigan. Ann Arbor, MI. January 30th, 2015.
	Stults, M. A Snapshot of Local Adaptation Across the U.S. Ann Arbor Sustainability Forum. Ann Arbor, MI. March 12th, 2014.
	Stults, M. Snapshot of Local Adaptation Efforts in the U.S. ICLEI-USA and ICLEI-Japan International Exchange. San Diego, CA. January 27th-28th, 2014.
	Stults, M. Local Efforts to Prepare for Climate Change. Ann Arbor Climate Adaptation Workshop. Ann Arbor, MI. September 24th, 2013.
Sample	2019. National Science Foundation. \$50,000.
Grants,	2019. National League of Cities. \$10,000.
and Awards	2018. National Oceanic and Atmospheric Administration Sectoral Applications Research program. \$174,000.
	2018. National Oceanic and Atmospheric Administration Sectoral Applications Research program.
	2018. Resources Legacy Fund. \$25,000.
	2018. City of Indianapolis Sustainability and Resilient Action Plan Grant. \$500,000.
	2018. Urban Sustainability Directors Network. \$90,000.
	2018. City of New Bedford Vulnerability Assessment and Resilience Plan. \$36,000.
	2018. Water Resources Foundation. \$100,000. 2018. Les du Elembeau Heyerd Mitigation Plan Undete. \$40,057
	2018. Lac du Flambeau Hazard Miligation Plan Opdate. \$49,957.
	2017. The Kresge Foundation – Sustained Assessment, \$49,985.
	2017. The City of New Bedford, MA. \$26,000.
	2017. The Kresge Foundation. \$5,000.
	2017. The Climate Resilience Fund. \$25,000.
	2017. Resources Legacy Fund. \$25,000.
	2017. Upper Snake River Tribes Foundation. \$104,933.
	2017. Urban Sustainability Directors Network. \$62,133.
	2016-2017. The Climate Resilience Fund. \$11,250.
	2010-2017. The Kresge Foundation. 2015-2017. 1854 Treaty Authority \$46.800
	2016. The Kresge Foundation, \$23,375.
	2015-2016. City of San Antonio and Kim Lundgren Associates, Inc. \$10,625.
	2015-2016. The Kresge Foundation. \$20,000.
	2014-2015. National Oceanic and Atmospheric Administration. \$125,000.
	2013-2016. National Science Foundation Graduate Research Fellowship Program. \$100,000
	2014-2016. Dow Sustainability Doctoral Fellowship Program. \$50,000.
	2015. Dow Awards for Interdisciplinary Sustainability Seed Grant (Co-Pi). \$5,000.
	2014-2015. ADt Associates. \$25,800.
	2010-2012. The Home Depert Foundation. \$74,580.
	2010-2012. The Finite Depot Foundation. \$250,000.
	2010-2011. Sea Grant. \$52,500.

Professional | City of Ann Arbor, Michigan

Sustainability and Innovations Manager, July 2018 – present

Resilience Experience

/ Applied

- Led 5 professional staff, 1 temporary staff, and 3-5 interns towards achievement of a series of climate and sustainability goals.
- Responsible for fundraising, budget management, administration, policy development, report writing, public presentations, and overall administration for the Office of Sustainability and Innovations.
- Developing resilience hubs methodologies and working with the S.E. portion of the community to operationalize the first hub.
- Working on solar installations throughout the community, including on city facilities, city property, and supporting community aggregation.
- Responsible for coordinating internally on issues related to sustainability such as waste reduction, water quality, stormwater, environmental protection, renewable energy, energy efficiency, public safety, emergency preparedness, and resilience.
- Coordinate, collaborate, and orchestrate partnerships with community groups, neighborhood associations, the University of Michigan, Washtenaw County, our utilities, the state, and others to advance local and regional climate and sustainability initiatives.

Science to Action Community

Network Manager, January 2017 – Present

- Helping to implement and eventually support a reconstituted Sustained Assessment Advisory Committee outside of the federal government.
- Founder and manager of a network of networks, composed of over 80 nonprofits, academic institutions, professional societies, for-profits, and former federal employees, focused on saving and advancing evidence-based decision-making as it pertains to climate action, environmental protection, and the production and use of science.
- Responsible for network fundraising, coordination, training, and recruitment, as well as: developing a weekly newsletter; facilitating committee meetings; helping align members with strategic opportunities; providing support in drafting proposals; and amplifying the work of member organizations.

Stults Consulting

Resilience and Climate Adaptation Consultant to The Kresge Foundation, September 2013 – July 2018

- Co-organized a meeting of 60 adaptation influencers to discuss needed steps to rapidly scale up and transform adaptation action.
- Assisted a Foundation with designing and implementing evaluations of select grantees.
- Led development of a climate curriculum for the Foundation's partners, grantees, staff, and the public.
- Co-developed strategy for implementing findings of a Foundation commissioned report on the State of Climate Adaptation Field of Practice.
- Researched opportunities for scaling up urban-focused professional society engagement on climate change mitigation, adaptation, and social equity.
- Led a research team in identifying and profiling over 3,500 types of adaptation resources and services provided by 85 adaptation-related organizations.
- Created, administered, and analyzed a survey of 200 local governments, in partnership with ICLEI-Local Governments for Sustainability, The National League of Cities, and the Urban Sustainability Directors Network, that assessed the types of climate adaptation services and resources being using and needed to prepare for climate change.
- Organized convening of 55 local, nonprofit, philanthropic, federal, and private sector stakeholders to discus the current and future state of the local climate adaptation service-provider landscape.

Resilience and Climate Adaptation Consultant to the Huron River Watershed Council, January 2017 – July 2018

- Lead developer of a climate and socio-economic vulnerability assessment tool and template for Great Lakes communities.
- Expanded the template to communities in the Mid-Atlantic.
- Led network organizer and trainer for municipalities interested in using the template.

Resilience and Sustainability Consultant to Kim Lundgren Associates, Inc. October 2016 – July 2018

- Manager of the Indianapolis Sustainability and Resilience Action Plan. Which includes overseeing 19 staff, ensuring the completion of a vulnerability assessment, greenhouse gas inventory, public engagement plan, marketing plan, waste minimization study, and the creation of an overarching sustainability plan for the city that is grounded in equity.
- Led community engagement in the City of New Bedford to develop a local climate vulnerability assessment and resilience plan.
- Strategic advisor to Columbia, MS on their sustainability and resilience planning efforts.
- Co-developed a sustainability planning process that culminated in a community-wide sustainability plan for the City of San Antonio. Included conducting research on promising sustainability and climate practices for inclusion in plan and evaluating sustainability activities based on community-established priorities.

• Designer of sustainability-focused public participation techniques.

Resilience and Climate Adaptation Consultant to the City of Aspen, CO, October 2015 – July 2018

• Provided strategic guidance to the City of Aspen's Sustainability Director in the creation of a climate adaptation planning process.

• Created, organized, and supported adaptation-focused stakeholder engagement efforts. Resilience and Climate Adaptation Consultant to Adaptation International, September 2012 – July 2018

- Project Manager working in tandem with the *Upper Snake River Tribe Foundation* to develop a regional climate adaptation plan. Includes intensive and extensive stakeholder engagement, research, partner facilitation, and general project management.
- Led engagement specialist for the Lac du Flambeau climate adaptation planning process.
- Advisor on a project to update the Lac du Flambeau multi-hazard mitigation plan.
- Led team of climate and social scientists along with local stakeholders from *Miami, OK* in project using existing weather thresholds to model future climate impacts.
- Led team of climate and social scientists, GIS experts, and stakeholders in the *1854 Ceded Territory* (including three Bands of Chippewa) in the development of an award winning climate change vulnerability assessment and climate adaptation plan.
- Assisted the Jamestown S'Klallam Tribe in developing a climate adaptation strategy.
- Developed a series of vulnerability worksheets and associated processes to help stakeholders in the *North Olympic Peninsula Resource Conservation and Development District* conduct a qualitative vulnerability assessment.
- Provided on-demand assistance in designing participatory adaptation planning techniques for all Adaptation International projects.
- Provided on-demand assistance in identifying contextually relevant adaptation strategies to help build place-based resilience in all of Adaptation International's projects.

Resilience and Climate Adaptation Consultant to Stratus/Abt Consulting, April 2014 – March 2016

- Co-developer of research protocol to assess the state of community-based adaptation activities in the United States.
- Assisted in the creation of a cross-case analysis to identify commonalities and novelties across 17 community-based adaptation efforts profiled within the project.
- Applied the research protocol in **Boston, MA**; **Grand Rapids, MI**; **Cleveland, OH**; and Seattle Public Utilities in Seattle, WA. Research culminated in case studies for each site.
- Helped organize a public launch of the research findings, including speaking about the work on a number of conference panels.

Resilience and Climate Adaptation Consultant to VHB Consulting, May 2013 – December 2014

• Co-creator of the adaptation certification criteria for the New York State Climate Smart

CommunitiesTM program.

• Provided technical assistance to New York State communities with implementing climate adaptation and mitigation strategies per the Climate Smart CommunitiesTM program.

• Created and delivered climate vulnerability trainings for 15 New York local governments.

Climate Adaptation Consultant to the Institute for Sustainable Communities, September 2013 – December 2014

- Co-developed and delivered workshops in the San Francisco Bay area and New Orleans for communities recognized as a Rockefeller Foundation 100 Resilient[™] Cities recipient.
- Co-developed agendas and support material and co-led a series of Climate Leadership Academies focused on climate adaptation activities for U.S. local government stakeholders.

Climate Adaptation and Mitigation Consultant to Schneider Electric, September 2012 – December 2012

- Organized and facilitated workshop to help Schneider Electric develop a new suite of climate and sustainability services for local government clients.
- Conducted market research on climate adaptation and mitigation services provided by the private sector to support local government climate and sustainability efforts.

The Climate Resilience Fund

Program Officer, February 2016 – December 2017

- One of two staff working to launch a new philanthropy to invest in climate resilience initiatives in the United States. Includes actively seeking investments from existing foundations and venture capitalists, organizing a philanthropic working group on climate change adaptation, and building strategic partnerships with foundations, federal agencies, nonprofits, and for profit.
- Conducted research on the state of climate adaptation/resilience within the U.S. and areas in need of existing and future investment.

Summit Energy Services (Louisville, KY)

Sustainability Analyst, July 2011 – March 2012

- Assisted Fortune 500 companies in developing their climate and sustainability programs, including assistance with tracking sustainability performance indicators.
- Assisted local governments clients with identifying, implementing and monitoring the success of energy efficiency, transportation, renewable energy, waste diversion, water conservation, and other climate and sustainability initiatives.
- Oversaw the development of services for local government clients in the areas of climate mitigation, climate adaptation, and sustainability.

ICLEI-Local Governments for Sustainability (Boston, MA)

Climate Mitigation and Adaptation Director, February 2011 – July 2011

- Oversaw the development of ICLEI's Climate Resilient Communities (adaptation) program and ICLEI's Communities for Climate Protection (mitigation) program.
- Managed five professional staff, including work planning, budgeting, and professional development.
- Contributed to the team developing the national sustainability index for local governments STAR Community Index.
- Project management, including management of approximately 15 grants, including:
 - Development and delivery of a Green Business Challenge that engages the commercial sector in local greenhouse gas, water, and waste reduction efforts.
 - Creation of national guidance for how local governments can inventory greenhouse gas emissions, set emissions reduction targets, create plans for reducing emissions, and implementing those plans.
 - Creation of national guidance for local governments on how to conduct a climate change vulnerability assessment, set climate preparedness goals, select climate preparedness strategies, and implement preparedness strategies.
- Led/Facilitated an adaptation advisory group and scientific advisory group comprised of

local governments, academics, and federal agency representatives that provided strategic direction to ICLEI's adaptation program.

- Developed resources and support for behavioral change initiatives including how to effectively communicate climate change and risk, and how to inspire and promote individual and corporate behavior change.
- Fundraised, including seeking revenue from private foundations, federal agencies, and through fee-for-service consulting.
- Regularly proposed, analyzed, and assisted local governments with implementation of sustainability and climate protection strategies.
- Maintained partnerships with dozens of organizations on topics related to sustainability.
- Organized meetings, workshops, trainings, networking events, and national webinars for audiences ranging from a dozen to a few hundred.
- Delivered presentations and trainings to local communities, private sector entities, non-profit allies, federal partners, and others. Over 100 presentations delivered.
- Extensive experience working in and managing a multi-disciplinary team.

• Extensive experience writing reports, briefs, memos, and proposals for funding.

Adaptation Manager, November 2009 – February 2011

- Oversaw development of ICLEI's Climate Resilient Communities[™] (adaptation) program, including development of tools, resources, and trainings.
- Developer of ADAPT- the Adaptation Database and Planning Tool.
- Managed three-part adaptation series on local, state, and federal collaboration on coastal resilience based out of Groton, CT.
- Worked with local governments and relevant stakeholders in the San Diego Bay to create a San Diego Bay Regional Sea-Level Rise Adaptation Strategy.
- Worked with researchers at the University of Michigan to develop a series of resources and host workshops and trainings focused on managing extreme heat.
- Managed effort in Lewes, DE exploring how climate change could be integrated into the City's multi-hazard mitigation plan.

Regional Program Manager and Senior Program Officer, April 2007 – November 2009

- Oversaw the Northeast and Mid-Atlantic region of ICLEI USA, including overseeing two staff, providing direct membership support to members in New England and the Mid-Atlantic, and assisting the Regional Director with fundraising.
- Provided technical guidance on greenhouse gas emissions quantification, identifying emissions reduction activities, developing Climate Action Plans, and helping municipalities implement local sustainability actions.
- Assisted with the development of ICLEI USA's climate adaptation program.
- Managed the completion of a greenhouse gas inventory and an Energy Efficiency and Conservation Strategy for the City of Richmond, VA.
- Managed Methane to Markets program with ICLEI Brazil.
- Developed climate change outreach strategy for Falls Church, Virginia.
- Co-facilitated the Massachusetts, Maine, Maryland, and Virginia Climate Networks.
- Led development of the Municipal Clean Energy Toolkit.
- Designed and co-led adaptation planning workshops for local governments in both St. John's, Newfoundland and Boston, MA, with support from the Conference of New England Governors and Eastern Canadian Premiers.
- Led the region's New England Cities Project, which aided in implementation of climate mitigation policies and practices in ten select New England cities.
- Developed ICLEI's Outreach and Communications Guidebook.
- Managed a community-wide emissions inventory for the City of Boston.
- Managed an emissions inventory program for 10 New York City Universities.

Coalition for Rainforest Nations (New York, NY)

Outreach Coordinator, April 2006 – April 2007

- Collaborated with Coalition members and United Nations Framework Convention on Climate Change (UNFCCC) Focal Points to advance the policy and scientific argument for including avoided deforestation within the UNFCCC and Kyoto Protocol. Work included report writing, policy analysis, and coalition building.
- Organized international meetings and correspondence with Coalition members. Organized workshops in Rome, two meetings in New York City, and a meeting in Costa Rica.

Columbia University's Center for Climate Systems Research (New York, NY)

Project Manager, February 2006 – August 2006.

• Led client engagement and outreach focused on supporting the New York City Department of Environmental Protection (NYCDEP) with understanding their climate risk. Efforts included organizing monthly outreach and science meetings, analyzing climate adaptation and mitigation findings for presentations and publications, and working with a team to create a climate adaptation report for the NYCDEP.

Columbia University's Global Roundtable on Climate Change (New York, NY)

Program Coordinator, June 2005-June 2006

- Organized international conferences of private, public, and governmental leaders to discuss the trajectory of future domestic and international climate policy.
- Maintained regular dialogue with CEO's, heads of State, Senators, and heads of nongovernment organizations through newsletters, reports, and email communications.
- Wrote reports and briefs on issues relating to climate change science and policy.

Research City of Ann Arbor, Ann Arbor, MI

Experience Exploring climate-related migration patterns in order to integrate future projections into city planning, February 2019 - present

City of Ann Arbor, Ann Arbor, MI

Co-producing climate knowledge and sustained engagement in the Great Lakes in support of stormwater management adaptation, September 2018 - present

City of Ann Arbor, Ann Arbor, MI

Expanding water sector climate preparedness in the Intermountain West through network-based learning, September 2018 - present

City of Ann Arbor

Science to Action Community, Ann Arbor, MI Identifying and chronicling the value of at-risk federal programs, July 2017 – present

Science to Action Community, Ann Arbor, MI

Conducting landscape analysis of the actors, actions, and needs of organizations working on climate action, environmental protection, and the production and use of science, June 2017 – present

University of Michigan, Ann Arbor, MI

Assessing Local Climate Adaptation Planning and Action in the United States, September 2012 – September 2016

The Kresge Foundation, Ann Arbor, MI

Existing Practices and Opportunities for Urban Professional Societies to Educate and Engage Members on Climate and Social Equity, April 2016 - present

	The Kresge Foundation, Ann Arbor, MI Project and Program Evaluation, August 2016 - present
	Stults Consulting, Ann Arbor, MI Assessing the Local and Regional Adaptation Resource and Service Landscape, July 2013 – December 2014
	 University of Michigan, Ann Arbor, MI Identifying Characteristics of Resilient Urban Systems, October 2014 – January 2016 Climate Adaptation in the U.S. – U.S. National Climate Assessment, May 2012 – December 2014 Vulnerability Versus Resilience: Identifying Motivating Frames for Community Action, May 2013 – May 2014 Opportunities for Integrating Climate Change Into Hazard Mitigation Planning, May 2013 – December 2014
	German Bundestag, Berlin, Germany Climate Researcher, Office of Ernst Ulrich von Weizsäcker, MdB, MP, May 2005-July 2005
	New York City Department of Environmental Protection (New York, NY) <i>Climate Change Task Force, January 2005- May 2005</i>
Select Teaching Experiences	 University of Michigan, Ann Arbor, MI Graduate Student Instructor, Climate Adaptation Seminar, School of Natural Resources and Environment, September – December 2012 and September – December 2013 Graduate Student Instructor, Climate Policy, School of Natural Resources and Environment, January – April 2013 Guest Lecturer, Climate Policy Seminar, March 2015, 2016 Guest Lecturer, Climate Adaptation Seminar, December 2015, 2016, 2017 Guest Lecturer Sustainable Water Resource Management, February 2015
	University of Arizona Guest Lecturer, Adaptation and Resilience Seminar, November 2016
	Institute for Sustainable Communities, Minneapolis, MN <i>Guest Lecturer,</i> Adaptive Water Resources Management and Infrastructure, October 2014 <i>Program and Curriculum Developer,</i> Great Lakes Climate Leadership Academy, November 2013 <i>Guest Lecturer,</i> Adaptive Water Resources Management and Infrastructure, June 2013 <i>Guest Lecturer,</i> Climate Adaptation and Resilience 2.0, October 2012
	Massachusetts Institute of Technology, Cambridge, MA Guest Lecturer, Local Climate Action, January – May 2011
Awards & Fellowships	Doctoral Fellowship, University of Michigan, 2013 – 2015 National Science Foundation Graduate Research Fellows Award, 2013 – 2016 World Environmental Forum Essay Contest Winner, New York, NY, 2012 National Collegiate Athletic Association Scholar Athlete award, New York, NY, 2004 University of New England Scholar Athlete, Biddeford, ME, 2000-2004 All Academic NCAA Team, Biddeford, ME, 2000-2004 All State Academic Team, Biddeford, ME, 2000-2004
	All-Conference Academic Team, Biddeford, ME, 2000-2004
Professional Memberships	American Society of Adaptation Professionals American Meteorological Society Natural Hazards Mitigation Association

	American Planning Association American Geophysical Union
Professional Service	Board Chair, American Society of Adaptation Professionals, February 2019 – present Committee Member, Sierra Club's National Adaptation and Carbon Sequestration Advisory Board, May 2019 – present Member, American Society of Civil Engineers Sustainability Working Group, February 2019 –
	present Board Member, American Society of Adaptation Professionals, June 2017 – present Board Member, Southern Climate Impacts and Planning Program, May 2010 – present Chair, Code of Ethics Working Group, American Society of Adaptation Professionals, October 2016 – present
	Chair, Projects and Evaluations Working Group, American Society of Adaptation Professionals, September 2010 – 2016 Advisory Board Member, Notre Dame Global Adaptation Index, March 2015 – present Advisory Board Member, Resilient Communities for America, March 2014 – present
	 Advisory Board Member, Adaptation International, 2012-present Volunteer, Resilience Dialogues, American Geophysical Union's Thriving Earth Exchange, 2017 Member, National Disaster Resilience Competition Advisory Committee, October 2014 – 2016 Co-Editor in Chief, Michigan Journal of Sustainability, May 2014 – May 2015 Editorial Board Member, Michigan Journal of Sustainability, September 2013 – May 2015 Reviewer, Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part B: Regional Aspects. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014
	Member, Advisory Panel for the United Nations Strategy for Disaster Reduction, 2010-2011
Public Service	Member, City of Ann Arbor Climate Action Partnership Committee, January 2014–present Member, Washtenaw County Environmental Council, April 2019 – present Commissioner, City of Ann Arbor Transportation Commission, March 2017 – June 2018 Commissioner, City of Ann Arbor Parks Advisory Commission, October 2012–2016 Commissioner, City of Ann Arbor Environmental Commission, December 2012–2016 Co-Chair, Ann Arbor Dog Park Sub-Committee, October 2013 - 2016 Alumni Council Member, University of New England, 2011-2014
Language & Computer Skills	Native English -speaker; Intermediate Spanish -speaker Fluent in Microsoft Windows and Macintosh environments. Proficient in ICLEI CACP and ADAPT Software

MPSC Case No. U-20471 Exhibit AA-2 Page 1 of 2

<u>Sign In</u>

City Home City Cle	rk Home Legislation	Calendar	City Council Bo	ards and Commissions	People
Watch Live Public Meeting	gs				
				🖪 💟 🖸 Share) 🖾 RS	S 👂 Alerts
Details Reports					
File #:	17-1899 Version: 1		Name:	12/4/17 - Renewable E City Operations	nergy for
Туре:	Resolution		Status:	Passed	
File created:	12/4/2017		In control:	City Council	
On agenda:	12/4/2017		Final action:	12/4/2017	
Enactment date:	12/4/2017		Enactment #:	R-17-442	
itle: Resolution Committing the City of Ann Arbor to Using 100% Clean and Renewable Energy for City Operations					y for City
Sponsors:	Chip Smith, Chuck Warpehoski, Christopher Taylor				
Attachments:	1. GHG Protocol Scope Defir	nitions (2).pdf			
History (1) Text					

Title

Resolution Committing the City of Ann Arbor to Using 100% Clean and Renewable Energy for City Operations

Body

Whereas, In December 2012, with the passage (by the Ann Arbor City Council) of the Climate Action Plan (CAP), the City of Ann Arbor committed to an ambitious multi-strategy vision to address Climate Change by reducing its community-wide greenhouse emissions (8% by 2015, 25% by 2025, and 90% by 2050 relative to year 2000 baseline carbon dioxide equivalent (CO2e) emissions levels);

Whereas, The Energy Commission's CAP-derived Solar Goals (24 MW by 2025) were unanimously endorsed by the Ann Arbor City Council in their June 2016 Resolution Authorizing a Commitment to Making the City of Ann Arbor a Solar Ready Community;

Whereas, In May 2017, the City Council passed a Resolution calling for the City of Ann Arbor to follow LEED standards for existing and new city-owned building renovations and construction in the Capital Improvement Plan, including the use of energy efficiency and renewable energy technologies;

Whereas, City Council unanimously reaffirmed local commitment to climate action in Resolution R-17-238 ("Resolution Committing the City of Ann Arbor to Adopt, Honor and Uphold Paris Climate Agreement Goals");

Whereas, Mayor Christopher Taylor has endorsed and signed onto the Global Covenant of Mayors for Climate & Energy and U.S. Climate Mayors initiatives;

Whereas, City municipal government operations account for approximately 1.3% of total communitywide greenhouse gas emissions; Whereas, City municipal government operations for building electricity, heating and vehicles cufrently require approximately 283,000 MMBTUs of energy per year, the potential equivalent in electricity units of 85,000 MWh, or approximately 71 MW of installed solar capacity;

Whereas, The City should lead by example in the achievement of its CAP targets; and

Whereas, The City of Ann Arbor has appointed an Executive Policy Advisor for Sustainability who has been tasked with implementing a SMART Goal framework (i.e., <u>Specific</u>, <u>Measurable</u>, <u>Attainable</u> and <u>Relevant with a Time-bound target</u>) for all CAP-related renewable energy initiatives in Ann Arbor;

RESOLVED, that the City Council commit the City of Ann Arbor Ann Arbor to meet the 100% clean and renewable goal for all Scope 1 and 2 City operations (per *The Greenhouse Gas Protocol*) by 2035 or sooner and directs the City Administrator to provide specific actions, using the SMART framework, on how the City of Ann Arbor can achieve this objective through a combination of energy efficiency measures, renewable energy sources and optimal business practices; and

RESOLVED, That the City Council direct the Administrator to provide a multi-year action plan to Council through the Energy and Environmental Commissions no later than September 2018 and that the plan include five-year target objectives that will be reported upon and revised as necessary within each year's budget beginning in FY2020.

Sponsored by: Councilmembers Smith and Warpehoski and Mayor Taylor
Historical Climatology: Ann Arbor, Michigan

Summary of Observed Changes

More precipitation: Total precipitation increased 44.2% (13.4 inches), from 1951 through 2014. Winter increases over that time exceed 75% (4.4 inches).

More heavy precipitation: The number of very heavy precipitation events has increased by 41.2% (comparing the 1951-1980 total to the 1981-2010 total).

Rising average temperatures: Annual average temperatures warmed by 0.7°F from 1951-2014, slower than regional, national, and global rates. Average low and high temperatures have warmed at approximately the same pace.

Shorter freeze-free season: Despite warming average temperatures, the freeze-free period of the year has actually shortened slightly, by approximately 4 days, from 1951-2014.

Average monthly temperatures during the 1981-2010 period. Shaded bands represent the standard deviation in the 30-year monthly average.

Overview

Ann Arbor's climate is mostly continental and is strongly influenced by the movement of high and low pressure systems across the continent. It experiences larger seasonal temperature ranges than areas closer to the Great Lakes which have moderated temperatures. Prevailing westerly winds deliver some lake effect precipitation to the area, but it is essentially limited to increased cloudiness during the late fall and early winter. While the day-to-day weather is highly variable, prolonged periods of hot, humid weather in the summer or extreme cold during the winter are relatively uncommon. Precipitation is welldistributed throughout the year, although the wettest months of the year tend to occur during the warm season. Summer precipitation comes mainly from afternoon thunderstorms.

Recent Climate Summary: 1981-2010 Temperature and Precipitation

Average Temperature	49.8°F
Average Low Temperature	40.4°F
Average High Temperature	59.1°F
Days/Year that exceed 90°F	8.4
Days/Year that fall below 32°F	122
Lowest Annual Average Temperature	47.8°F
Highest Annual Average Temperature	53.3°F
Average Precipitation Total	37.6 in
Lowest Annual Precipitation Total	30.5 in
Highest Annual Precipitation Total	47.6 in
Days/Year that exceed 1.25" of Precipitation	3.7

Average monthly total precipitation for the 1981-2010 period. The shaded band represents the 25th to 75th percentile.

GLISA is a collaboration of the University of Michigan Climate Center and Michigan State University.

Changes in Average Temperature and Precipitation

Annual departures from the 1951-1980 average annual temperature. The solid red line is the 9-year moving average. Open circles represent the departure from the 1951-1980 historical reference for a single year.

Changes in Average Temperature 1951-2014	°F	°C
Annual	0.7	0.4
Winter, December-February	0.7	0.4
Spring, March-May	1.7	0.9
Summer, June-August	0.6	0.3
Fall, September-November	-0.2	-0.1

Temperatures in Ann Arbor have risen since 1900, but have seen more moderate rates of change in recent decades than most other stations in the region. Annual average temperatures warmed by 0.7°F from 1951-2014, slower than than regional, national, and global rates. Spring temperatures have warmed the fastest, while fall temperatures have declined or remained nearly stable.

Annual departures from the 1951-1980 average of total annual precipitation. The solid blue line is the 9-year moving average. Open circles are departures from the 1951-1980 average for single years.

Changes in Total Precipitation 1951-2014	inches	%
Annual	13.4	44.2
Winter, December-February	4.4	75.4
Spring, March-May	2.7	32.7
Summer, June-August	3.1	33.5
Fall, September-November	2.9	41.5

Annual precipitation totals rose 44.2% from 1951-2014, far more rapidly than other locations nearby. All seasons have seen an increase in precipitation, with fall and winter seeing the greatest changes in terms of percentage change relative to the 1951-1980 average and winter and summer seeing the greatest changes in precipitation volume (inches).

Changes in Average High and Low Temperatures from 1951 through 2014	°F	°C
Highs	0.7	0.4
Lows	0.7	0.4

While most locations in the region have seen low temperatures warm faster, overnight low temperatures and mid-day high temperatures have warmed at roughly the same rate in Ann Arbor from 1951 through 2014.

Left: Departures from the 1951-1980 average high and low temperatures. The red and blue lines are the 9-year moving averages. The shaded bands represent the standard deviations.

Changes in Hot and Cold Days

The red line represents the 9-year moving average of the number of days per year exceeding 90°F. The shaded band represents the standard deviation.

Despite rapidly rising average temperatures, the number of days per year that exceed 90°F has remained relatively stable. This is a trend not uncommon in the region. Why there hasn't been a greater increase in these hot days remains unclear, but other local factors and large-scale changes in land-use near the observing site can play a role.

The blue line represents the 9-year moving average of the number of days per year falling below 32°F. The shaded band is the standard deviation.

The number of days falling below 32°F per year dropped by 4.1 from 1951-2014, a modest change compared to other locations in the region.

The number of daily precipitation totals for the 1951-1980 and 1981-2010 periods that exceeded the size of the heaviest 1% of storms as defined by the 1951-1980 period.

A "Very Heavy" Precipitation Day, as defined by the National Climate Assessment, is in the top 1% of daily precipitation totals. These precipitation events are typically disruptive and can cause infrastructure damage. Ann Arbor has seen a 41.2% increase in the number of these precipitation events (36 storms from 1951-1980 to 51 storms from 1981-2010).

The blue line represents the 9-year moving average of the number of days per exceeding a daily total of 1.25 inches of precipitation. The shaded band represents the standard deviation.

Daily precipitation totals that exceed 1.25" may lead to nuisance flooding and minor infrastructure impacts in some areas. Ann Arbor now sees 1.3 more such days per year than in the past (an increase of 49% relative to the 1951-1980 average).

Changes in Heavy Precipitation

Changes in Seasonality

The percent change in heating and cooling degree day units from the 1951-1980 average. The red and blue solid lines represent the 9-year moving average. The shaded bands show the standard deviation.

Projected Future Climate of Ann Arbor

The freeze-free season (growing season), shortened by 4 days from 1951-2014, opposite the trend of a longer growing season observed in most of the Great Lakes region. The growing season has been variable, but has decreased slightly in length after the early 1960s. This is also consistent with less observed warming than other locations in the region.

Left: The green line represents the 9-year moving average of length of the time between the last freeze of spring and the first freeze of fall, the freeze-free period. The shaded band represents the standard deviation.

Heating and cooling degree days are indexed units, not actual days, that roughly describe the demand to heat or cool a building. Cooling degree days accumulate on days warmer than 65°F when cooling is required. Heating degree days accumulate on days colder than 65°F when heating is required. Extremely hot days accumulate heating degree day units faster than a mildly warm day, and similarly, bitterly cold days accumulate cooling degree day units much faster than a mildly chilly day. Ann Arbor sees far more days that require heating than it does days that require cooling, and so it accumulates far more heating degree days than cooling degree days in a given year.

From 1951-2014, cooling degree days have increased by 7.6%, consistent with warming temperatures. Heating degree days have declined slightly. But because Ann Arbor sees more cool days than warm days in a given year, the actual decline of 124 heating degree day units has outpaced the increase of 56 cooling degree day units.

Many of the observed trends in temperature and precipitation are expected to continue or accelerate in the future.

- Average Temperature: Models project average temperatures will continue to rise by 3-7°F in the region through mid-century.
- More high temperature days: Despite little observed change in the number of days with high temperatures above 90°F, the number of hot days is expected to increase, with 12 to 36 more days of 90°F by mid century.
- Freeze-free season: Even though the growing season has shortened slightly in the past at this particular station, it is projected to lengthen by 1-2 months under high emissions scenarios for the region overall.
- **Total Precipitation:** Most models project precipitation will increase overall, though the magnitude of projections vary widely. Many models project that summer precipitation will remain stable or decline.
- More Heavy Precipitation: Heavy precipitation events will likely continue to become more intense and more frequent as they have in the recent past.
- **Changing winter precipitation:** With warmer temperatures, rain may fall in place of snow, and mixed winter precipitation events, like freezing rain, may become more likely in some areas.

Annual Report to NOAA Climate Program Office, Climate and Societal Interactions, Regional Integrated Sciences and Assessments

Award Title: Great Lakes Regional Integrated Sciences and Assessments Center

Award Number: NA15OAR4310148

Performance Period: June 1, 2017 – May 31, 2018

Table of Contents

Team Members	2
New Areas of Focus and Partnership	3
New or Tailored Regional Climate Services	8
Program Evaluation & Impact	10
Key Research Findings	14
Outreach and Communication Activities	16
2017-2018 Publications	18
Narratives	19
Appendix A: Additional 2017-2018 Publications	21
Appendix B: Impact Stories	23
Appendix C: New or Tailored Regional Climate Services	24

Team Members

The Great Lakes Integrated Sciences and Assessments (GLISA) is housed jointly at the University of Michigan (UM) and Michigan State University (MSU), in the School for Environment and Sustainability (formerly the School of Natural Resources and Environment) and at the Center for Global Change and Earth Observations, respectively. GLISA's team includes an interdisciplinary group of Principal Investigators, staff and researchers, and graduate students at both institutions.

Principal Investigators

Team Member	Title	Institution		
Jeffrey Andresen	Co-Director; Co-Principal	Michigan State University		
	Investigator			
Maria Carmen Lemos	Co-Director; Principal Investigator	University of Michigan		
Thomas Dietz	Principal Investigator	Michigan State University		
Kenneth Frank	Co-Principal Investigator	Michigan State University		
Richard Rood	Co-Principal Investigator	University of Michigan		

Staff & Researchers

Team Member	Title	Institution
Laura Briley	Climatologist	University of Michigan
Kim Channell	Research Associate	University of Michigan
Omar Gates	Climatologist	University of Michigan
Jenna Jorns	Program Manager	University of Michigan
Frank Marsik	Research Scientist	University of Michigan
Edward Waisanen	Research Associate; left 9/2017	University of Michigan
Angela Wilson	Research Associate; left 9/2017	University of Michigan

Students

Team Member	Institution Department		
William (B.J.) Baule, PhD	Michigan State University	Geography, Env. & Spatial Sciences	
Samantha Basile, PhD	University of Michigan	Climate, Space Sciences & Eng.	
Katherine Browne, PhD	University of Michigan	School Env. & Sustainability	
Jennifer Carmen, PhD	University of Michigan	School Env. & Sustainability	
Tingqiao Chen, PhD	Michigan State University	Counseling & Educational Psychology	
Rachel Dougherty, MEng	University of Michigan	Climate, Space Sciences & Eng.	
Logan Dreher, BA	Brown University	Environmental Studies	
Thomas Hercula, MEng	University of Michigan	Climate, Space Sciences & Eng.	
Matthew Irish, MEng	University of Michigan	Climate, Space Sciences & Eng.	
Xiaolong Ji, MEng	University of Michigan	Climate, Space Sciences & Eng.	
Kyle Klein, MEng	University of Michigan	Climate, Space Sciences & Eng.	
Alexia Prosperi, MEng	University of Michigan	Climate, Space Sciences & Eng.	
Jessica Worl, PhD	University of Michigan	School Env. & Sustainability	
Haochen Ye, MEng	University of Michigan	Climate, Space Sciences & Eng.	

New Areas of Focus and Partnership

Annual Climate Trends and Impacts Summary for the Great Lakes Basin

Team Leads: Jeff Andresen, B.J. Baule, Kim Channell, Jenna Jorns

Partners: Heather Arnold, Sylvain Deland, Wendy Leger, Nancy Stadler-Salt, Frank Seglenieks, and Robert Whitewood, Environment and Climate Change Canada; Beth Hall and Jonathan Weaver, Midwest Regional Climate Center; Meredith Muth and Douglas Kluck, NOAA; Brent Lofgren, NOAA Great Lakes Environmental Research Laboratory (GLERL)

Under the Great Lakes Water Quality Agreement (GLWQA), the Annex 9 Extended Subcommittee on Climate Change Impacts identified a need for an annual climate synthesis product for the region to address an information gap at the annual timescale. A pilot product for 2017, titled '2017 Annual *Climate Trends and Impacts Summary for the Great Lakes Basin,*' aims to provide a timely and succinct summary of the past year's climate trends, notable climate-related events, and relevant new research, assessments, and activities in the context of the Great Lakes. The United States and Canada coordinated on synthesizing existing information and developing a short and easy-tounderstand document, intended to be replicated each year if the product is found to be useful to GLWQA annexes, the Great Lakes Executive Committee, and policy and decision makers at all levels in the Great Lakes. With funding from the NOAA Great Lakes Regional Collaboration Team, GLISA served as the coordinator for the project, leading the climate overview section, compiling the draft document, and managing the incorporation of feedback. GLISA staff are presenting the product this summer to the Great Lakes Executive Committee, the International Association of Great Lakes Research, and the American Association of State Climatologists to solicit feedback on the summary's utility.

Organizing and Hosting the 2018 Great Lakes Adaptation Forum

Team Leads: Jenna Jorns, Jessica Worl

Partners: Beth Gibbons, Rachel Jacobson, and Dawn Nelson, American Society of Adaptation Professionals

Building off of the success of the 2014 and 2016 fora, the 2018 Great Lakes Adaptation Forum (GLAF) will bring together practitioners and scholars from across the Great Lakes region for three days of sharing strategies and approaches to climate adaptation in an engaged learning program from September 24 to 26 in Ann Arbor, Michigan. GLAF 2018 is co-hosted by GLISA and the American Society of Adaptation Professionals (ASAP). The Forum's program approach will break down silos between these sectors, creating ample opportunity for practitioners to share best practices, lessons learned, and work jointly to produce solutions to climate challenges facing our region. The 2018 GLAF will focus on equity in climate adaptation and accelerating action through innovation and technology. GLISA and ASAP are working with an Advisory Board to develop the Forum approach and session tracks, and with a Program Committee to review session programs and determine the agenda. We have also separately engaged partners in Indigenous Tribes and community-based organizations to ensure the Forum approach and program are attractive to these groups. Finally, to further strengthen our network in this space, we have regularly communicated and collaborated with other regional fora planners, including the Carolinas Integrated Sciences & Assessments (CISA).

Great Lakes Ensemble Stakeholder Working Group

Team Leads: Laura Briley, Rachel Dougherty, Richard Rood *Partners:* see membership list (below)

GLISA's Great Lakes Ensemble project has made great progress in the last year to assess the credibility of climate model data for the region and bring practitioners the highest quality of information for planning. We convened a Stakeholder Working Group to co-develop climate information products for the Ensemble to ensure they meet the needs of the communities and sectors we serve. More specifically, this group provides feedback on existing GLISA products to improve usability, co-develops new products with GLISA, investigates how to scale products to larger audiences, and provides guidance on GLISA's overall program direction. The group convened for a kickoff call this spring, followed by individual conversations to learn more about each member's needs and interests. The group is already actively involved in co-developing a climate scenario guide for practitioners and a climate model consumer report for the Great Lakes region. The climate scenario guide will be a collection of information about the premise, creation, use, and expert-driven recommendations for radiative forcing, climate, and impact scenarios. The guide will explain how all three types of scenarios are related to one another and what their individual functions serve from a stakeholder perspective. We plan to highlight specific stakeholder applications of the three types of scenarios and expert guidance for new stakeholders who are interested in incorporating scenarios in their own work. The Working Group is composed of the following members: Dr. Tim Boring, Michigan Agribusiness Association; Devon Brock-Montgomery, formerly with the Bad River Band of Lake Superior Chippewa Indians; Eric Clark, Sault Ste. Marie Tribe of Chippewa Indians; Dr. Ankur Desai, University of Wisconsin-Madison; Rebecca Esselman, Huron River Watershed Council; Edmundo Fausto, Amec Foster Wheeler; Elizabeth Gibbons, American Society of Adaptation Professionals; Christopher Hoving, Michigan Department of Natural Resources, Michigan Climate Coalition; Michele Richards, Michigan Army National Guard, Michigan Climate Coalition; Dr. Greg Mann, National Weather Service.

Lac du Flambeau Tribe Climate Change Resilience Plan

Team Leads: Omar Gates, Frank Marsik

Partners: Sascha Petersen and Ellu Nasser, Adaptation International; Eric Chapman and Patricia Moran, Lac du Flambeau Tribe of Lake Superior Chippewa Indians; Mike Steinhoff and Fei Mok, ICLEI Local Governments for Sustainability; Missy Stults, Independent Consultant; George Haddow, Bullock & Haddow LLC

GLISA previously worked with Adaptation International on the Climate Change Vulnerability Assessment and Adaptation Plan for the 1854 Ceded Territory, including the Bois Forte, Fond du Lac, and Grand Portage Reservations in Minnesota. Following this successful partnership, Adaptation International reached out to GLISA to partner on a new project to develop a climate change resilience plan for the Lac du Flambeau Tribe of Lake Superior Chippewa Indians in northern Wisconsin. As a subcontractor to Adaptation International, we are leading the climate change analysis, providing a custom analysis of historical observations and future projections for a geographic area defined by the Tribe. Preliminary findings were presented during a site visit in May 2018, when additional topics of interest were added to our role including writing up a climate summary, identifying climate thresholds for the Climate Change Vulnerability Index (CCVI) for

species of interest, and providing relevant literature on groundwater, ice cover and pollen. The climate analysis portion of the project is expected to be completed by the end of 2018 with another site visit planned for fall, but GLISA will continue to consult as the project team completes the vulnerability assessment and identifies adaptation strategies in 2019.

Bad River Band FEMA Pre-Hazard Mitigation Plan

Team Leads: Laura Briley, Kim Channell, Omar Gates, Frank Marsik *Partners:* Devon Brock-Montgomery and Nathan Kilger, Bad River Band of Lake Superior Chippewa

After attending the Tribal Climate Workshop in 2017 (co-hosted by GLISA and the Inter-Tribal Council of Michigan) and learning about GLISA, the Climate Change Coordinator for the Bad River Band of Lake Superior Chippewa Indians reached out to GLISA for support developing the Tribe's Pre-Hazard Mitigation Plan for FEMA. The Tribe suffered \$25 million in damages to roads and public infrastructure after a historic 2016 flood from a heavy precipitation event. As a result, the Tribe's Natural Resources department began an analysis of current and future risks to a variety of weather events and was interested in including regionally downscaled climate projections for their location. GLISA worked with the department to define a suite of custom variables and thresholds of interest, including temperature, precipitation, snow, extreme precipitation, and frost-free season. These were presented to the Tribe in the form of figures, tables, a written summary, and a power point presentation. We also provided basic evaluation information for the underlying global climate models used for the projections and a comparison of the underlying models, per request. As a result, Devon Brock-Montgomery has joined our Ensemble Stakeholder Working Group.

Collaborative Assessment of Stormwater Runoff on Tribal Lands in Michigan

Team Lead: Maria Carmen Lemos, Frank Marsik

Partners: Robin Clark, Inter-Tribal Council of Michigan; Keweenaw Bay Indian Community; Lac Vieux Desert Band of Lake Superior Chippewa Indians; Grand Traverse Band of Ottawa and Chippewa Indians; Little Traverse Bay Bands of Odawa Indians; Saginaw Chippewa Indian Tribe of Michigan; Graham Sustainability Institute, University of Michigan

GLISA and the Inter-Tribal Council of Michigan (ITCM) worked together to co-host a Tribal Climate Workshop in 2017 to address concerns about increases in heavy precipitation events. During the workshop, GLISA presented a demonstration of the U.S. EPA's National Stormwater Calculator (SWC), which provides a quantitative assessment of stormwater runoff in a community as well as the potential effectiveness and cost of low-impact development options to reduce runoff. These critical assessments are, however, time- and cost-prohibitive for many Tribal natural resources departments. GLISA received a Catalyst grant from the University of Michigan Graham Sustainability Institute to apply the SWC on the lands of five tribes in Michigan. Using the SWC, we will work with each Tribe to develop a report of the magnitude of precipitation runoff in vulnerable areas of their lands for current and plausible future climates. The assessments will allow participating tribes to identify vulnerabilities, develop management practices specific to their infrastructure and aquatic resources, and to provide quantitative information valuable for seeking funding to implement management practices. We will present results to other ITCM-members tribes via webinar and to other Tribal representatives in the region at the 2018 Great Lakes Adaptation Forum.

Synthesis of Ice Cover in the Great Lakes

Team Lead: Laura Briley

Partners: Drew Gronewold, NOAA GLERL; Amy Sacka, Photographer and National Geographic writer

This work started from a request for historical ice cover data for the Great Lakes from Amy Sacka, a Detroit-based photographer who was working on a piece for National Geographic under a National Geographic Explorer grant. The original project idea was to document ice fishing communities and the impact of climate change on the culture and pastime in Lake St. Clair. However, after many conversations with local fishermen and reviewing data on GLISA's website, Ms. Sacka expanded the focus to Lakes Erie, Michigan, and Huron. To respond to this request, GLISA developed a narrative summary of Great Lakes ice cover including ice cover data, trends, and recent literature that address the observed decline in ice cover, mechanisms behind that decline, and context for thinking about the future of Great Lakes ice cover. The analysis is being finalized to share on our website and is intended to be used in future GLISA projects that require ice information.

Apostle Islands National Lakeshore Climate Change Vulnerability Assessment

Team Leads: Laura Briley, Alexia Prosperi, Richard Rood

Partners: Stephen Handler, Northern Institute of Applied Climate Science (NIACS); Peggy Burkman, U.S. National Park Service

Continuing a long engagement with the National Park Service and the Apostle Islands National Lakeshore in northern Wisconsin, we began a new project to support the Park's climate change vulnerability assessment for terrestrial ecosystems. Building on the scenario planning process conducted in 2015, we updated and refined the original scenarios with downscaled climate data, end-of-century projections, and new information on several requested variables (i.e., lake ice, lake levels, arctic cold spells, wind speed, wave action, strong storms, snowfall, lake-effect show, lake currents). We also conducted an analysis of historical trends and presented this alongside the new scenarios at an in-person workshop at the Park in spring 2018. Working with partners at NIACS, we are authoring a chapter on climate drivers for the assessment, including a discussion on climate models, uncertainty, and statistical versus dynamical downscaling.

Expansion and Automation of Web-based Station Climatologies

Team Leads: Jeff Andresen, B.J. Baule, Laura Briley, Omar Gates

Partners: Beth Hall and Michael Timlin, Midwest Regional Climate Center; David Mudie, University of Michigan Graham Sustainability Institute

One of the primary resources GLISA has developed in partnership with cities are our station climatologies. These have proven essential in our work, and we recently released a new suite of <u>web climatologies</u> for over 200 stations. However, we currently have only 21 station climatologies publicly available in PDF form with a customized climate narrative (i.e., overview and geography of location, summary of observed changes). We have been working on an interactive online version for all stations, but need support with: a) better automating this process to allow for annual updates, b) developing the capability to generate printable versions from the website, and c) to continue developing climate narratives for additional stations. To expedite this process and expand our capacity to accomplish these goals we formally established an agreement with the Midwest

Regional Climate Center (MRCC). MRCC and GLISA have collaborated in the past on the development of station climate summaries for select areas across the GLISA spatial domain. In the agreement, MRCC will leverage GLISA's existing climatology code and output products to build and finalize the interactive web version. MRCC will then develop a process for users to export the web version to a PDF. MRCC and GLISA are working together to select at least 20 new stations for which to develop climate narratives, aiming to fill spatial gaps in the Great Lakes region (in the U.S. and Canada) and to respond to stakeholder requests. If feasible, Canadian data will be integrated into the new and updated climatologies for Canadian stations.

Projected Changes in Frequency of Major Tree Fruit Disease in the Central Great Lakes

Teams Leads: Jeff Andresen, B.J. Baule *Partners:* Aaron Pollyea, Michigan State University Department of Environment & Spatial Sciences

Tree fruit production in the Great Lakes region is a significant factor in the region's agricultural economy. The modification and moderation of regional climate, particularly in the areas leeward of the lakes, allows for the commercial production of specialty crops not common in other areas of similar latitude. Previous studies in the region have identified significant trends of several hydroclimatic variables over the past several decades with both over-land and over-lake measurements, and there is concern in the agricultural industry that these trends may continue in the future. In this study, we consider the potential impacts of a shifting climate on three major tree fruit diseases - fire blight, cherry leaf spot, and apple scab - for the historical (1980-2017) and projected future (2040-2059 and 2080-2099) time frames. The frequency and severity of these diseases are heavily dependent on diurnal variations and combinations of air temperature, humidity, and precipitation. Future climate projections were obtained from multiple General Circulation Models dynamically downscaled through a Regional Climate Model. See Key Research Findings for preliminary results.

Development of Teaching Case for Great Lakes Climate Adaptation Network

Team Leads: Katie Browne, Jenna Jorns, Maria Carmen Lemos

Partners: Michigan Sustainability Cases, University of Michigan School for Environment and Sustainability; Matthew Gray, Office of Sustainability, Cleveland (OH); Jeffrey Meek, City of Indianapolis (IN); Rebecca Esselman, Huron River Watershed Council

GLISA is partnering with Michigan Sustainability Cases (MSC), a program at the UM School for Environment and Sustainability, to develop a teaching case about the challenges of coproduction and sustaining partnerships between producers and users of climate information. The case will highlight the establishment of the Great Lakes Climate Action Network (GLCAN) as a model of sustainable coproduction. Forming in part as a result of the Great Lakes Adaptation Assessment for Cities (GLAA-C) project, <u>GLCAN</u> was created in 2015 as a regional network of the Urban Sustainability Directors Network to unite Great Lakes cities with universities in the region. Last year, GLISA and partners worked with five cities in GLCAN to develop a common vulnerability assessment template, which the cities could use to mainstream adaptation planning. The partnerships between GLISA, GLCAN, HRWC, and the cities of the Great Lakes illustrate GLISA's boundary chain model of stakeholder engagement and points to ways in which coproduction of usable climate information can be sustained even when funding has ceased. To develop the case, we will utilize MSC's innovative multimedia platform to pair the development of a case study with video and podcast

GLISA A NOAA RISA TEAM

production (i.e., three three-minute videos with practitioners, a one-hour podcast with GLISA's climatologists, and an interactive diagram of the boundary chain model of coproduction). Practitioners will not only participate in on-camera interviews, but will also review and contribute to the case study itself, ensuring that their perspective is accurately captured. We anticipate that the case will be completed by the end of 2018, when it will be used as a teaching case by GLISA Co-Director Maria Carmen Lemos in her courses. The case will also be featured on MSC's open access platform, where sustainability educators and practitioners will be able to use it worldwide.

New or Tailored Regional Climate Services

Previews of each formal product discussed are in Appendix C, and links to pages on GLISA's website with the full materials are hyperlinked in the text, below, where available. Details on other services are available upon request.

Annual Climate Trends and Impacts Summary for the Great Lakes Basin

States: All (Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, Wisconsin), and the province of Ontario

Please see the project description in New Areas of Focus and Partnership and Appendix C for the complete document. The final summary, available in both English and French, is available on <u>GLISA's</u> <u>website</u> and will soon be available on <u>binational.net</u>.

City Climatologies for Vulnerability Assessment Template

Team Leads: Kim Channell, Omar Gates, Jenna Jorns *States:* Illinois, Indiana, Michigan, Ohio *Partners:* Rebecca Esselman, Huron River Watershed Council; Missy Stults, Independent Consultant

In 2017, GLISA partnered with five Great Lakes cities (i.e., Ann Arbor & Dearborn (MI), Evanston (IL), Indianapolis (IN), and Cleveland (OH)), the Great Lakes Climate Adaptation Network (GLCAN), and HRWC to develop a comprehensive vulnerability assessment template. The project-based template mainstreams the adaptation planning process by integrating climate-smart and equity-focused information into all types of city planning. For each city, GLISA developed a city-specific climatology as well as an overall climatology for the Great Lakes region. The content and format of the climatologies was co-developed with the project partners to include historical observations and future projections for several variables of interest. The data was presented qualitatively and quantitatively in tables and verbal summaries (see Appendix C), to facilitate use by different decision makers (i.e., qualitative for city leadership, quantitative for municipal staff). This project was funded by the Urban Sustainability Directors Network (USDN) and is a continuation of GLISA's work with Great Lakes cities as part of the Great Lakes Climate Adaptation Network. These cities are already using the templates to plan for the future. For example, Cleveland (OH) is updating their Climate Action Plan and performing a social and climate vulnerability assessment based on the template. Indianapolis (IN) also made use of information from the template in creating their Climate Action Plan that covers sustainability, resilience, and hazard mitigation.

Detroit's Climate Action Plan

Team Leads: B.J. Baule, Omar Gates *State:* Michigan *Partners:* Detroiters Working for Environmental Justice

Continuing a long-standing relationship with Detroiters Working for Environmental Justice (DWEJ), GLISA provided updated, localized climate information to inform the development of the city's firstever <u>Climate Action Plan</u> (see Narratives). While this information was provided in early 2017, the plan was finalized and released in fall 2017. Developed by the Detroit Climate Action Collaborative, an initiative of DWEJ, the plan outlines specific ideas and attainable goals. GLISA Climatologist Omar Gates was invited to present at a press conference to announce the report release. In his remarks, Gates drew attention to the potential impacts of warmer temperatures on vulnerable populations, such as youth and the elderly, and increased precipitation on the daily functions of the city.

Extreme Precipitation and Impact Scenarios for Michigan

Team Leads: Laura Briley, Omar Gates, Frank Marsik *State:* Michigan *Partners:* Inter-Tribal Council of Michigan

As part of GLISA's partnership with the Inter-Tribal Council of Michigan (ITCM) and the fall 2017 Tribal Climate Workshop, GLISA co-produced four extreme precipitation scenarios with ITCM in response to the tribes' interest in scenario planning for future heavy precipitation events (see Appendix C). These scenarios were presented at the workshop, revised to incorporate feedback, and shared with all workshop participants for use by environmental managers and other representatives from ITCM-member tribes in their climate adaptation planning.

Lac du Flambeau Climate Change Resilience Plan

State: Wisconsin

Please see the project description in New Areas of Focus and Partnership. While this project is ongoing, the Tribe is already using the climate information presented by GLISA in two presentations to the Tribe's Tribal Council and Tribal Climate Resilience Planning Committee (TCRP). The TCRP is using past observations and future projections to identify vulnerable species as part of their vulnerability assessment and implement this information into their Climate Resilience Plan.

Bad River Band FEMA Pre-Hazard Mitigation Plan

State: Wisconsin Please see the project description in New Areas of Focus and Partnership.

Climate Adaptation Planning in Ohio Cities

Team Leads: B.J. Baule, Omar Gates *State:* Ohio *Partners:* Jason Cervenec, State Climate Office of Ohio; Dan Meaney, Cuyahoga County Planning Commission; Ramarao Venkatesh, Ohio State University

GLISA responded to two requests for information from cities in Ohio, Cleveland, and Columbus. For Cleveland, we provided information for Cuyahoga County based on the <u>climate divisions</u> to inform their first county-wide Climate Change Action Plan. For Columbus, we provided localized maps (i.e., projected changes in average temperature, observed percent change in number of days with extreme precipitation events) to inform their Climate Change Action Plan.

Case Studies of Climate Adaptation in Tribal Communities

Team Leads: Logan Dreher, Frank Marsik

States: All (Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, Wisconsin)

In summer 2017, GLISA hosted an undergraduate student from Brown University as part of the UM School for Environment and Sustainability Doris Duke Conservation Scholar program (see Training of Students). The scholar conducted a review of adaptation planning in Indigenous communities across the United States, to inform our preparation for the Tribal Climate Workshop. The project culminated in a report (see Appendix C) that was shared with workshop participants, highlighting case studies in infrastructure, natural resource management, comprehensive planning, and integrating adaptation strategies. In particular, the report was shared the Midwest Tribal Resilience Liaison for the Northeast Climate Science Center, who expressed an interest in using it in her work.

Program Evaluation & Impact

GLISA has made it a priority to better understand how our resources and information inform decision making and build communities' capacity to respond to climate variability and change in the Great Lakes region. We continue to track the metrics we presented in our Phase I report for 2010-2016 - indicators on sectors engaged, number of entities engaged, number of organizations engaged at different levels of government, total grants awarded, and funds leveraged. We have expanded to track not only these metrics, but also a list of collaborations, our community network, reach, and early career professionals supported. The new additions are in response to the network-wide effort by the RISA teams to better quantify and communicate our collective impact. We continue to evaluate GLISA's small grants competition model and began two new evaluation avenues, evaluation of impact and sharing impact stories, all of which are described below.

Evaluation of Small Grants Competition

GLISA is continuing its evaluation of the first five years of the small grants competition, focusing on how recipients used the climate information provided and how effectively they partnered with other organizations. We have completed interviews with 20 of the grant recipients and collected network information from 16. Network data includes the number of organizations recipients collaborated with, the nature of the collaboration, and the type of information shared. The data indicate that while recipients collaborated with a wide diversity of organizations to use the climate information GLISA provided, the network contracted in the years in which funding ceased. This finding raises questions about the sustainability of the network and the supply-driven nature of coproduction. We have delivered presentations of these preliminary findings at three conferences and received valuable feedback. A manuscript is in development.

Evaluation of Impact of Adaptation Projects

While adaptation professionals and other decision makers are currently implementing numerous adaptation projects, tools to evaluate the effectiveness of these projects are scarce and difficult to access. Recognizing this need, GLISA has begun development of a new web-based adaptation evaluation tool: My Adaptation Evaluation Resource Assistant (MAERA). We are partnering with evaluation specialist Dr. Michaela Zint, who developed a similar tool for the Environmental Protection Agency (EPA) that has been used by over 25,000 environmental educators to conduct and improve evaluations of their programs. The MAERA tool will provide a step-by-step guide for learning about and conducting evaluations of adaptation actions. It will also provide explanations, guides, and examples for users with different levels of experience with program evaluation (from beginner to advanced). GLISA and our partners will organize a workshop at the 2018 Great Lakes Adaptation Forum to introduce the tool and solicit feedback from potential users on a beta version. We will also partner with the American Society of Adaptation Professionals (ASAP) to assess the program evaluation needs of adaptation professionals and design the tool to better meet their needs. The tool will be completed by the end of 2018 and launched soon after.

Development of Impact Stories

In an effort to better communicate successful engagements, we developed three impact stories for use in outreach to elected officials, funding organizations, and the general public. We aimed to highlight GLISA's work in different sectors, choosing to begin with case studies in cities, tribes, and infrastructure. These stories are included in Appendix B and are available on our website <u>here</u>. We have several projects targeted to develop additional impact stories in fall 2018.

Building Local and Regional Expertise

We continue to focus on deepening existing relationships in our three focus sectors: cities, tribes, and agriculture. We also continue to explore new ideas in the health sector, train students, and strengthen collaborations with other NOAA entities.

Urban Adaptation

GLCAN (see Development of Teaching Case for Great Lakes Climate Adaptation Network) continues to be the primary mechanism by which we interact with cities in the region, by providing financial support to the network, climate information to members, and by working on dedicated projects together. Having completed our first funded project together, we recently received funding from the NOAA Sectoral Applications and Research Program (SARP) to continue this work and apply the template with six new cities in the region. By applying the template to stormwater management projects using three test engagement methodologies, we will assess whether our boundary chain model can reduce transaction costs for scaling up sustained stakeholder engagement. By developing our first teaching case on our work with cities, we aim to disseminate the boundary chain model of stakeholder engagement to other regions and countries. In addition, we continue to give presentations in cities across the region on climate change and localized impacts (see Great Lakes Climate Change Presentations).

Tribal Engagement

Our growing portfolio of work with Indigenous communities in the region continues to lend trust and credibility with stakeholders in the Great Lakes. The successful completion of our 2017 Tribal Climate Workshop in Michigan (see Extreme Precipitation and Impact Scenarios for Michigan) led to a new collaboration with the Bad River Band of Lake Superior Chippewa Tribe (see Bad River Band FEMA Pre-Hazard Mitigation Plan). Our previous work with the 1854 Treaty Authority in Minnesota led to a new project with Adaptation International in Wisconsin (see Lac du Flambeau Tribe Climate Change Resilience Plan). Our new project with the Inter-Tribal Council of Michigan (see Collaborative Assessment of Stormwater Runoff on Tribal Lands in Michigan) is a first for GLISA, to train stakeholders on a specific tool. GLISA Climatologist Omar Gates was invited to attend the 2018 Rising Voices Workshop in Duluth (MN) where attendees discussed how to better engage Tribal partners in sustainability work and in the protection of their way of life. The discussions highlighted GLISA's work with The 1854 Treaty Authority. Furthermore, we have engaged a group of Tribal partners as we plan for the 2018 GLAF to solicit feedback on program development and outreach (see Organizing and Hosting the 2018 Great Lakes Adaptation Forum).

Agricultural Work

GLISA is working to strengthen our focus on the agricultural sector, conducting original research projects and providing usable climate information to the industry. Key areas of focus in the past year have been on: changes in heavy precipitation and its relationship to nitrogen management (See Key Research Findings), the measurement and forecasting of radiation freeze events in key fruit growing regions and applications for frost prevention systems in fruit orchards (see Narratives), and on the projected changes in the frequency of tree fruit diseases in a changing climate (see Key Research Findings). We continued engaging stakeholders in these areas through MSU Extension and through presentations at conferences and meetings (see Outreach and Communication Activities). Additionally, GLISA's collaboration with Purdue University and Ohio State University has continued to explore agricultural water management in the region and how strategies will likely need to evolve under climate change (see 2017-2018 Publications).

Human Health

GLISA's active work in the public health sector stems from our collaboration with the Michigan Department of Health and Human Services (MDHHS). We created a survey to learn how other state public health departments in the region are using climate information in their work to inform plans for future GLISA projects. Representatives from the MDHHS provided contacts for other states, and six departments (i.e., Illinois, Indiana, Michigan, Minnesota, New York, and Wisconsin) volunteered to participate in the survey via phone or email. The results showed that many states are already utilizing climate science in their work, especially in areas of extreme heat, extreme precipitation, and water- and vector-borne illnesses. Much of the climate information they received were from university partners, federal agencies, and the state's departments of natural resources. The results were presented at the 2018 American Meteorological Society Annual Meeting in Austin (TX).

Training of Students

GLISA has continued our relationship with the UM College of Engineering Applied Climate graduate program in the Department of Climate and Space Sciences and Engineering. Over the last year, GLISA has worked with six students on real-world, applied climate projects to contribute to GLISA's

GLISA A NOAA RISA TEAM

research efforts as well as to provide usable climate information for stakeholders in the region. The students contributed to much of the work highlighted in the report, including the Great Lakes Ensemble and engagement with Apostle Islands National Lakeshore. We hope these students will maintain the knowledge and skills gained in their work with GLISA, including their role as brokers of climate information, in their future careers as leaders and decision makers regardless of profession or sector. In addition, GLISA mentored our first undergraduate student in the last year, through the Doris Duke Conservation Scholars Program (see Case Studies of Climate Adaptation in Tribal Communities). The program aims to diversify the conservation workforce by funding and developing the next generation of land, water, and wildlife professionals among traditionally underrepresented groups. We are hosting a second scholar in summer 2018.

Maintaining Partnerships and Collaborations with NOAA-funded Great Lakes Organizations

GLISA has continued to meet regularly with other UM-based, NOAA-funded Great Lakes programs to strengthen our collaboration and leverage resources, including Michigan Sea Grant, The Cooperative Institute for Great Lakes Research, and The National Estuarine Research Reserve System Science Collaborative. We worked together to develop a common set of metrics we can report and showcase on a 'NOAA @ UM' web portal (in development). We often table together at University and regional events, notably including the University President's Tailgate for the UM/MSU football game and the Michigan Congressional Roundtable (see Congressional Outreach). Outside the University, we maintain an active relationship with the NOAA Great Lakes Environmental Research Laboratory, working together to respond to one-time requests for information from scholars and the media, and collaborating on projects including the Great Lake Ensemble, the Great Lakes Adaptation Data Suite, the 2017 Annual Climate Trends and Impacts Summary for the Great Lakes Basin, and development of a lake ice narrative.

Regional Leadership & Partnerships

As a regional convener and content expert, we are often invited to serve on a number of local and regional committees. The following activities allow GLISA to broaden our impact by communicating our work to a larger group of stakeholders and lend our expertise to new projects:

- Participate in the Michigan Climate Coalition
- Serve on Great Lakes Water Quality Agreement Annex 9 Subcommittee
- Serve on NOAA Great Lakes Regional Collaboration Team and Communications Sub-group
- Participate in UM Library's Public Science Initiative
- Participate in working group to establish a regional page of U.S. Climate Resilience Toolkit
- Co-authors on the Fourth National Climate Assessment Midwest chapter
- Administer & participate in Great Lakes Climate Adaptation Network (GLCAN)
- Participate in Flint Citizen Science Advisory Board

Greatest Accomplishment This Year

Our team's greatest accomplishment this year is leading the development, production, and dissemination of the first-ever Annual Climate Trends and Impacts Summary for the Great Lakes Basin (see New Areas of Focus and Partnership). GLISA was asked to act as the coordinator for this binational pilot product, leading the development of the climate overview section while also synthesizing information from other section leads in both countries, managing graphic design and integration of feedback from the Annex 9 Subcommittee and external review. The document

underwent several iterations of review and feedback, with our team needing to incorporate and respond to detailed and technical feedback while maintaining the readability of a report intended for a broad audience (i.e., researchers, decision makers, general public). As part of this process, we strengthened our relationship with Annex 9 leadership, NOAA, and Environment and Climate Change Canada (ECCC). In particular, we benefited from working closely with ECCC colleagues, learning what datasets in both countries were compatible to produce maps representing the entire region. In presenting the synthesis at regional and national meetings, we have reached new audiences, such as the Great Lakes Executive Committee (GLEC). We are in the process of collecting feedback on the utility of the report. To-date, the initiate response has been overwhelmingly positive that the document is valuable, easy to understand, and appropriate for decision makers.

Key Research Findings

Great Lakes Ensemble

Team Leads: Laura Briley, Rachel Dougherty, Richard Rood, Haochen Ye *Partners:* Joe Barsugli, NOAA Earth System Research Laboratory; Edmundo Fausto, Amec Foster Wheeler; Drew Gronewold, NOAA GLERL; Glenn Milner, Ontario Climate Consortium; Michael Notaro, University of Wisconsin Madison; Peter Snyder, University of Minnesota;

As part of GLISA's Great Lakes Ensemble project, we conducted a systematic evaluation of lakes in the Coupled Model Intercomparison Project Version 5 (CMIP5) climate models. Large lakes can have an impact on regional weather. In addition, they can be both sensitive to and contribute to regional climate changes. However, in the numerical models that are used to investigate future climate changes, lakes are often absent or overly simplified. At the regional scale, this can have strong implications for the quality of the model information about the future. We argue that there is a first order requirement that the underlying climate models simulate lake-atmosphere interactions for their future information to be relevant in regions where lakes modify the climate. However, we are aware of very little effort within the scientific community to make known how individual large lakes are represented in models and how those representations translate to the quality of the data for particular regions. One of the first barriers we faced in uncovering the treatment of large lakes was a lack of model documentation focused on the simulation of lakes. We relied heavily on the modeling experts in our Science Advisory Panel and other modelers in our network to increase our knowledge about the models and guide our investigation. The primary goal of this work is to share our framework for identifying how individual large lakes are represented in climate models. We have applied our framework to a large number of CMIP5 climate models with an emphasis on uncovering the treatment of the U.S. Great Lakes. We now know which CMIP5 models simulate the Great Lakes, so we can build a CMIP5 lakes Ensemble and compare this to other regional data sets. In addition, our outlined methodology (i.e., decision tree) can be used by applied scientists in other regions where large lakes drive climate processes to identify the models that may offer the most credible lake-atmosphere representations. Two manuscripts are in preparation from this work.

Heavy Precipitation and Nitrogen Management

Team Leads: Jeffrey Andresen, B.J. Baule *Partners:* Michigan State University Extension

GLISA A NOAA RISA TEAM

Changes in total annual precipitation and in the intensity and frequency of heavy precipitation events have occurred across the United States. These heavy precipitation events have become increasingly damaging to crops and often result in large financial losses and other damages from the resulting flooding. Establishing a quantitative, cause and effect relationship over time between heavy precipitation and crop losses has proven difficult due to heterogeneities in practices over several decades. Loss of nutrients is one such loss related to heavy precipitation and can represent a substantial financial risk to producers (e.g., the average price in the United States for a short ton of anhydrous ammonia was \$847). Depending on application rate, crop requirements, and operation size, the excessive application of nitrogen fertilizer, and subsequent losses, represents a substantial economic impact to producers. Our work to-date has focused on quantifying and updating existing work on precipitation trends and patterns across the greater Midwest. Precipitation has exhibited changes in frequency and intensity at seasonal and annual timescales, resulting in more precipitation, in greater intensities, across the landscape. Exploratory results suggest that low frequency precipitation variability has a significant effect on nitrogen loss and crop yields across the Midwest. At present, field data on inorganic nitrogen is being collected at two locations in western Michigan to calibrate and validate crop models for the present climate and allow us to evaluate nitrogen cycling under climate change scenarios.

A Network Intervention for Natural Resource Management

Team Lead: Ken Frank, Tingqiao Chen *Partners:* Alliance for the Great Lakes

Network analysis was used to visualize knowledge flows and collegial ties among those managing ravines along southwestern Lake Michigan. The visualizations were used to target professional development to modify the network. Efforts altered the network centrality of key actors who had either incorporated knowledge about climate change into their own practices or who were strategically located in the social network of those managing ravines, but knowledge flows explicitly about climate change did not change. This provides insight into the potential and limitations of network analysis for informing the management of natural resources. The key finding is that it was possible to leverage a visualization of the network to guide changes in the network. This is referred to as a network intervention, a relatively new strand in social network analysis. In particular, members of the Alliance for the Great Lakes were able to identify clusters in the network of those who managed ravines on southwestern Lake Michigan. Through intensive professional development, members of the Alliance then cultivated more network ties with those who had the potential to bridge between networks. The result was a more integrated, less siloed, network. The project also created two unexpected findings. First, members of the Alliance had to cultivate an identity within each network cluster before cultivating bridging ties between clusters. In this way they supported both bonding and bridging social capital. Second, while they were able to cultivate bridging collegial interactions, members of the Alliance were not able to cultivate direct knowledge flows about climate change. Such knowledge flows are the target of their current work. A manuscript on this work has been submitted to Ecology and Society.

Projected Changes in Frequency of Major Tree Fruit Disease in the Central Great Lakes

Please see the summary in New Areas of Focus and Partnership for the project rationale. Early results suggest overall changes of some types of plant disease risk in recent decades, and some

decreases in risk in the future, due mainly to projected decreases in relative humidity. As this work matures, results will be applicable to planning for disease management on an annual time scale and orchard planning on longer time scales, given that orchards often produce for 30 years or more.

Ice Prediction for Apostle Islands National Lakeshore

Team Lead: Richard Rood, Xialong Ji

Partners: Drew Gronewold, NOAA GLERL; Houraa Daher, University of Miami

GLISA and collaborators are working to forecast the first date of solid ice in the Apostle Islands National Lakeshore (APIS), a U.S. National Park Service (NPS) site in northern Wisconsin on Lake Superior to support regional management planning decisions and to protect human health and safety. We developed a new statistical model that simulates the onset of seasonal ice cover along the APIS shoreline. Our model encodes relationships between different modes of climate variability and regional ice cover from 1972 to 2015, and successfully simulates both the timing of ice onset and the probability that ice cover might form at any point in a particular winter. We simulate both of these endpoints using a novel combination of statistical hazard and beta regression models. Our analysis of coastal ice cover along the APIS reinforces findings from previous research suggesting that the late 1990s signified a regime shift in climate conditions across North America. Before this period, coastal ice cover at the APIS has been highly variable. Our new model accommodates this regime shift, and provides a stepping stone towards a broad range of applications of similar models for supporting regional management decisions in light of evolving climate conditions.

Outreach and Communication Activities

Organizing and Hosting the 2018 Great Lakes Adaptation Forum

Please see New Areas of Focus and Partnership for the planning effort underway for the 2018 Great Lakes Adaptation Forum (GLAF). As part of our planning, we have deliberately engaged a diverse group of stakeholders to ensure the process and Forum are inclusive. This includes convening an Advisory Board monthly (membership roster <u>here</u>), composed of more than 30 practitioners and scholars in the region. Separately from this group, we have had several conversations with groups of Tribal partners and leaders in regional community-based organizations. By targeting these groups in particular, we hope to design the program format and content to appeal to their networks and increase their participation in the Forum. We have also established a Program Committee (membership roster <u>here</u>) who will review session proposals and set the Forum agenda.

Congressional Outreach

As part of the RISA Executive Committee, GLISA has been working with the other regional teams on a unified network strategy to engage elected officials. In preparation, we updated our one-pager with a new <u>case study</u> for Michigan and drafted several GLISA 'songs,' 1-2 sentence summaries of impact stories for use throughout the RISA network. On May 8, GLISA was invited to participate in the NOAA Great Lakes Regional Collaboration Team's first-ever state congressional roundtable for Michigan. The event was hosted at GLERL and was attended by more than a dozen staffers from local Congressional offices. GLISA hosted a table and Co-Directors Lemos and Andresen attended

the event to share GLISA's mission and work with the attendees. The event was a success and will serve as a model to host one or two more roundtables in the region in 2019. Notably, a staffer of Congresswoman Debbie Dingell reached out to GLISA to have a separate meeting on the same day to learn more about work in the Great Lakes. GLISA hosted this meeting at the UM School for Environment and Sustainability and talked more about our work alongside other UM partners.

Great Lakes Climate Change Presentations

As our reputation as a trusted expert continues to grow, GLISA is often invited to speak at workshops or community meetings on the topic of climate change in the Great Lakes region. Co-Director Jeffrey Andresen also serves as the State Climatologist for Michigan, increasing GLISA's reach and visibility through his presentations in this capacity. For each of these talks, we typically build our presentation from a standard slide deck prepared for general audiences and tailor the talk to any unique information needs or topics not already covered. Below is a list of meetings we participated in over the last year:

- Michigan Water Environmental Assoc. Technology Conference, June 2017, Boyne City (MI)
- North Central U.S. Monthly Climate and Drought Summary and Outlook, July 2017, webinar
- MSU Friendship House, August 2017, East Lansing (MI)
- Land Information Access Association (LIAA) community meeting, Sept. 2017, Bridgman (MI)
- North Central Extension Educators Cropping Academy, Sep. 2017, Hickory Corners (MI)
- NOAA Research Social Science Webinar, September 2017, webinar
- LIAA Resilient St. Joseph Project meeting, October 2017, St. Joseph (MI)
- Dearborn Water Fellows meeting, November 2017, Dearborn (MI)
- MSU Extension Climate Outreach Team, November 2017, webinar
- Ottawa County Water Quality Forum, November 2018, West Olive (MI)
- SmartAg Symposium, December 2017, East Lansing (MI)
- 2018 Dry Bean Conference, December 2018, Bay City (MI)
- Kalamazoo Math and Science Academy, January 2018, Kalamazoo (MI)
- Michigan Agribusiness Association, January 2018, Lansing (MI)
- MSU Extension Ag Action Day, January 2018 (via webinar), Kalamazoo (MI)
- Great Lakes Crop Summit, January 2018, Mt. Pleasant (MI)
- MSU Extension Macomb County Education Series, February 2018, Mt. Pleasant (MI)
- Michigan Crop Improvement Association, March 2018, Okemos (MI)
- MSU Fate of the Earth conference, March 2018, East Lansing (MI)
- Kalamazoo Valley Museum, March 2018, Kalamazoo (MI)
- MSU Extension Blueberry Meeting, March 2018, Fennville (MI)
- University Lutheran Church, April 2018, East Lansing (MI)
- Michigan Association of Planning's Resilience Summit, April 2019, Lansing (MI)
- LIAA Resilient Michigan, April 2018, Lansing (MI)
- Tip of the Mitt Climate Change Summit, May 2018, Petoskey (MI)
- City of Ann Arbor Sustainability Forum, May 2018, Ann Arbor (MI)

Presentations at Regional and National Conferences

GLISA team members have attended a number of local, regional, and national conferences to present and communicate our work to our stakeholder groups, including academic and federal researchers, adaptation practitioners, and NOAA collaborators:

GLISA A NOAA RISA TEAM

- RISA Annual Meeting, June 2017, Washington (DC)
- American Meteorological Society 23rd Applied Climatology Conference, June 2017, Asheville (NC)
- Midwest Climate Services Workshop, September 2017, Champaign (IL)
- Forging University-Municipality Partnerships Toward Urban Sustainability, October 2017, New Haven (CT)
- American Geophysical Union (AGU) Fall Meeting, December 2017, New Orleans (LA)
- Resilience Ecosystem Workshop, January 2018, Washington (DC)
- Michigan Dept. of Natural Resources Annual Meeting, January 2018, Traverse City (MI)
- American Meteorological Society 98th Annual Meeting, January 2018, Austin (TX)
- Michigan University-Wide Sustainability & Environment Conference, February 2018, Ann Arbor (MI)
- University of West Virginia Extension Education Series, March 2018, Martinsburg (WV)
- Fourth National Climate Assessment All-authors Meeting, March 2018, Washington (DC)
- 6th Rising Voices Workshop, April 2018, Duluth (MN)
- Association of American Geographers, April 2018, New Orleans (LA)
- Climate Predictions and Applications Science Workshop, May 2019, Fargo (ND)

Media Interviews & Mentions

GLISA has interacted with the media several times in the last year, and has participated in a number of interviews, listed below. Information we have provided is often cited as well in articles, and the following list includes some examples of these.

- Earth and Space Science News, August 2017; Faculty Richard Rood interviewed for an <u>article</u> on the historic flooding on Lake Ontario
- The State Press, September 2017; Co-Director Maria Carmen Lemos quoted in an <u>article</u> on the dismissal of the National Climate Assessment sustained assessment committee
- Crain's Detroit Business, October 2017; Climatologist Omar Gates quoted in an <u>article</u> about Detroit's Climate Action Plan
- Great Lakes Echo, November 2017; Co-Director Jeff Andresen interviewed for an <u>article</u> on weather prediction and accuracy
- Brownfield Agricultural News for America, February 2018; Co-Director Jeff Andresen quoted in an article on a warmer and wetter Midwest
- Columbus Underground, February 2018; GLISA information quoted in <u>article</u> to justify potential policy implementation for climate change
- Farm and Dairy, February 2018; GLISA information quoted in an <u>article</u> about farmers adapting to climate change
- Farmers Advance, April 2018; Co-Director Jeff Andresen quoted in an <u>article</u> on winter flooding and spring planting
- National Geographic, forthcoming; Climatologist Laura Briley interviewed for an article on climate change and lake ice cover in the Great Lakes

2017-2018 Publications

Additional publications and abstracts for all those listed here are in Appendix A.

Peer-reviewed

When do Climate Change, Sustainability, and Economic Development Overlap in Cites?

Citation: **Kalafatis, S. E.*** 2017. When do climate change, sustainability, and economic development considerations overlap in cities? *Environmental Politics*, 27: 115-138.

*Scott Kalafatis was formerly a graduate student with GLISA and is now a postdoctoral scholar at the College of Menominee Nation.

Status: Published, https://doi.org/10.1080/09644016.2017.1373419

Vulnerability of Specialty Crops to Short-term Climatic Variability and Adaptation Strategies on the Midwestern USA

Citation: Kistner, E., O. Kellner, J. Andresen, D. Todey, and L. Morton. 2017. Vulnerability of specialty crops to short-term climatic variability and adaptation strategies in the Midwestern USA. *Climatic Change*, 146(1-2): 145-158.

Status: Published, DOI: 10.1007/s10584-017-2066-1

Modeled Climate Change Impacts on Subirrigated Maize Relative Yield in Northwest Ohio

Citation: Gunn, K.M., **Baule, W. J**., Frankenburger, J. R., Gamble, D. L., Allred, B.J., **Andresen, J. A.** and L. C. Brown. 2018. Modeled climate change impacts of subirrigated maize relative yield in northwest Ohio. *Agricultural Water Management*, 206: 56-66. *Status:* Published, DOI: <u>https://doi.org/10.1016/j.agwat.2018.04.034</u>

Identifying the Potential for Climate Compatible Development Efforts and the Missing Links *Citation:* **Kalafatis, S. E.*** 2017. Identifying the Potential for Climate Compatible Development Efforts and the Missing Links. *Sustainability,* 9(9): 1642. *Status:* Published, <u>https://doi.org/10.3390/su9091642</u>

Non-peer Reviewed

2017 Annual Climate Trends and Impacts Summary for the Great Lakes Basin

Citation: Environment and Climate Change Canada and the U.S. National Oceanic and Atmospheric Administration. 2017 Annual Climate Trends and Impacts Summary for the Great Lakes Basin. 2018. Available at binational.net.

Status: Published, on GLISA's <u>website</u> (see Appendix C).

Narratives

Plans, Policies, Strategies, Tools, or Agreements Implemented as a Result of GLISA Work

City of Ann Arbor Hazard Mitigation Plan and Stormwater Management Fee Increase

The City of Ann Arbor and GLISA have been working together since 2011, stemming from our collaboration on the Great Lakes Adaptation Assessment for Cities (GLAA-C) project. As part of GLAA-C, GLISA developed a city <u>climate fact sheet</u> and has provided updated information since. In

GLISA A NOAA RISA TEAM

the last year, two planning efforts have resulted in part from the climate information GLISA provided. First, the City finalized its 2017 <u>Hazard Mitigation Plan</u> for FEMA that mentions climate 228 times (all based on GLISA data), a drastic increase in attention since the 2012 plan. Second, the City Council passed an increase in stormwater management fees to gradually scale up rates to increase the City's capacity to plan for the already observed increase in extreme precipitation events. The impetus for this increase was based on GLISA data summarized in the aforementioned fact sheet. In fact, the Mayor mentioned a GLISA figure, a 45% increase in annual precipitation in the last 60 years, in a <u>news article</u> justifying the fee increase. The fee increase will raise annual stormwater revenues by 28% (an average increase of \$20 per resident) and will partially support the \$160 million worth of potential projects identified to improve stormwater management.

Detroit Climate Action Plan

GLISA has worked with the Detroit Climate Action Collaborative for several years to develop customized, localized climate information to inform the group's climate action planning for the City of Detroit. In the last year, GLISA updated the city-specific Historical Climatology with information for days over 100°F, deaths due to heat-related events, and future projections maps based on high and low emissions scenarios for temperatures greater than 90°F and 95°F. These thresholds were identified by the stakeholders as specific areas of concern in Detroit. This data was used to inform the City's first-ever <u>Climate Action Plan</u>, that was released in fall 2017. Developed by the Detroit Climate Action Collaborative, an initiative of DWEJ, the plan outlines specific ideas and attainable goals. The Plan benefits the more than 672,000 residents of Detroit and the more than 4 million residents of the larger Detroit metro area, including 300,000 business and 11 Fortune 500 companies. GLISA's collaboration with Detroiters Working for Environmental Justice, the leader of the Collaborative, was featured in a news article in October 2016 and in a press conference in October 2017 to launch the Plan. The Plan is now featured on the U.S. Climate Resilience <u>Toolkit</u>.

Economic Return

Projected Changes in Frequency of Major Tree Fruit Disease in the Central Great Lakes Region Tree fruit production in the Great Lakes region is a significant factor in the region's agricultural

economy. The primary weather-related constraint for production of tree fruit and other perennial fruit crops in temperate climates is the frequency and severity of freeze events during the spring season. Unfortunately for fruit producers in the Great Lakes region, the frequency of these freeze events following initial phenological development has increased during the past few decades, as observed during the 2012 growing season when a record warm March was followed by a series of freeze events that resulted in severe crop damage and economic losses as high as \$500 million. Following this event, many regional fruit growers installed frost/freeze protection devices in their operations that provide some protection, but they are expensive (typically on the order of \$3500/acre for the equipment with an additional \$200/acre per year in operating costs, and the technology has functional limits). GLISA is working with growers to help quantify climate-related production risks and the potential mitigation of the freeze events, and the estimated payback times for the technology in historical and projected future time frames. Results from the project should assist growers making strategic investment decisions associated with the technology.

Appendix A: Additional 2017-2018 Publications

Peer-reviewed

Comparing Climate Change Policy Adoption and Its Extension Across Areas of City Policymaking

Citation: **Kalafatis, S. E.** 2017. Comparing Climate Change Policy Adoption and Its Extension across Areas of City Policymaking. *Policy Studies Journal.*

*Scott Kalafatis was formerly a graduate student with GLISA and is now a postdoctoral scholar at the College of Menominee Nation.

Status: Published, https://doi.org/10.1111/psj.12206

Abstract: Public policies increasingly address complex problems such as climate change mitigation and climate change adaptation that require forging connections across existing areas of policy activity. Despite the emerging prominence of these types of policymaking challenges, more research is needed to understand policy responses to them. In this paper, I use survey responses from 287 cities and a hurdle model to comparatively examine the factors that underlie the adoption of climate change mitigation and adaptation as issues influencing city policymaking and their extension across areas of city policymaking. I find evidence that while social change, crisis, and conditions supporting nascent coalitions were associated with adoption, extension across areas of policymaking was associated with the city's prevailing political economy as well as the resources for expanding communities of interest. In the process, I offer empirical evidence for existing similarities and differences in cities' considerations about climate change mitigation and adaptation; particularly that the number of policymaking areas influenced by mitigation was associated with financial factors while the number influenced by adaptation was associated with socioeconomic ones.

When do Climate Change, Sustainability, and Economic Development Overlap in Cites?

Citation: **Kalafatis, S. E.*** 2017. When do climate change, sustainability, and economic development considerations overlap in cities? *Environmental Politics*, 27: 115-138.

*Scott Kalafatis was formerly a graduate student with GLISA and is now a postdoctoral scholar at the College of Menominee Nation.

Status: Published, https://doi.org/10.1080/09644016.2017.1373419

Abstract: Overlaps between economic development, sustainability and climate change objectives have both political and practical implications for the development of policies addressing climate change mitigation and adaptation. However, little empirical research has systematically investigated factors underlying these overlaps. Here, survey responses from 287 cities in the US are used to explore associations between the presence of such overlaps and these cities' policy actions and contextual conditions. Patterns in the presence of these overlaps are described, which help shed light on the political economy underlying policymakers' considerations about overlapping climate change mitigation and adaptation considerations with economic development or sustainability. Policymakers' considerations about the possible political co-benefits and political trade-offs of these objective overlaps will play a critical role in shaping interconnected policy responses to complex challenges like climate change in the years ahead.

GLISA A NOAA RISA TEAM

Vulnerability of Specialty Crops to Short-term Climatic Variability and Adaptation Strategies on the Midwestern USA

Citation: Kistner, E., O. Kellner, J. Andresen, D. Todey, and L. Morton. 2017. Vulnerability of specialty crops to short-term climatic variability and adaptation strategies in the Midwestern USA. *Climatic Change*, 146(1-2): 145-158.

Status: Published, DOI: 10.1007/s10584-017-2066-1

Abstract: While the Midwestern USA ranks among the world's most important corn-soybean production regions, the area also produces a variety of high-value specialty crops. These crops are an important component of the region's rural economy with an estimated value of \$1.8 billion in 2012. More profitable per-acre than many row crops, specialty crops also have higher productionrelated risks. They are generally more sensitive to climatic stressors and require more comprehensive management compared to traditional row crops. Temperature and precipitation fluctuations across the Midwest directly impact specialty crop production quantity and quality and indirectly influence the timing of crucial farm operations and the economic impacts of pests, weeds, and diseases. Increasingly variable weather and climate change pose a serious threat to specialty crop production in the Midwest. In this article, we assess how climate variability and observed climatic trends are impacting Midwestern specialty crop production using USDA Risk Management Agency data. In addition, we review current trends in grower perceptions of risks associated with a changing climate and assess sustainable adaptation strategies. Our results indicate that weatherinduced losses vary by state with excessive moisture resulting in the highest total number of claims across all Midwestern states followed by freeze and drought events. Overall, specialty crop growers are aware of the increased production risk under a changing climate and have identified the need for crop-specific weather, production, and financial risk management tools and increased crop insurance coverage.

Modeled Climate Change Impacts on Subirrigated Maize Relative Yield in Northwest Ohio

Citation: Gunn, K.M., **Baule, W. J**., Frankenburger, J. R., Gamble, D. L., Allred, B.J., **Andresen, J. A.** and L. C. Brown. 2018. Modeled climate change impacts of subirrigated maize relative yield in northwest Ohio. *Agricultural Water Management*, 206: 56-66.

Status: Published, DOI: https://doi.org/10.1016/j.agwat.2018.04.034

Abstract: Subirrigation is employed to supply water to crop root zones via subsurface drainage systems, which are typically installed for the purpose of excess soil water removal. Crop yield increases due to subirrigation have been demonstrated in numerous studies, but there is limited information regarding yield under future climate conditions when growing season conditions are expected to be drier in the U.S. Corn Belt. DRAINMOD was calibrated and validated for three locations with different soil series in northwest Ohio and used to investigate maize relative yield differences between subirrigation and free subsurface drainage for historic (1984–2013) and future (2041–2070) climate conditions. For historic conditions, the mean maize relative yield increased by 27% with subirrigation on the Nappanee loam soil, but had minimal effect on the Paulding clay and Hoytville silty clay soils. Maize relative yield difference between free subsurface drainage and subirrigation practices to nearly double from 9% to 16% between the historic and future periods. Consequently, the subirrigation practice can potentially mitigate adverse future climate change impacts on maize yield in northwest Ohio.

GLISA RISA TEAM

Identifying the Potential for Climate Compatible Development Efforts and the Missing Links

Citation: **Kalafatis, S. E. 2017**. Identifying the Potential for Climate Compatible Development Efforts and the Missing Links. *Sustainability*, 9(9): 1642.

*Scott Kalafatis was formerly a graduate student with GLISA and is now a postdoctoral scholar at the College of Menominee Nation.

Status: Published, https://doi.org/10.3390/su9091642

Abstract: Those examining climate compatible development and triple-win policy efforts that simultaneously negotiate sustainable development, climate change mitigation, and climate change adaptation considerations are on the cutting edge of exploring why and how policymakers address complex social problems that require balancing considerations about multiple, interrelated policy issues. Enhancing understanding of factors underlying the emergence of these efforts can help strengthen incentives for action, address implementation challenges, and anticipate inequities. This paper uses survey responses from 287 cities and logistic regression analyses to explore conditions and policy actions associated with potential climate compatible development efforts when economic development, sustainability, climate change mitigation, and climate change adaptation considerations overlap. It finds evidence that potential climate compatible development efforts were present in 10% of the cities studied. Adaptation was the issue most likely to act as the missing link when each of these other issues influenced city policy actions, and mitigation was the least likely. Contextual factors associated with these efforts included budget stress, leadership from a policy entrepreneur, higher college degree attainment rates, having an environmental department or commission, and the area of the city composed of water versus land. Examining factors associated with these issues acting as missing links revealed contradictions that highlight the necessity of further exploration of processes affecting the pursuit of climate compatible development.

Non-peer Reviewed

2017 Annual Climate Trends and Impacts Summary for the Great Lakes Basin

Citation: Environment and Climate Change Canada and the U.S. National Oceanic and Atmospheric Administration. 2017 Annual Climate Trends and Impacts Summary for the Great Lakes Basin. 2018. Available at binational.net.

Status: Published, on GLISA's <u>website</u> (see Appendix C).

Abstract: During the 2017 reporting period, several notable events and trends were observed across the Great Lakes basin including higher than average seasonal temperature and precipitation, flooding, and low ice cover. The majority of the region experienced a wet spring with persistent heavy rain and snowfall. Water levels in the five Great Lakes were above average, continuing a similar trend during the past several years. Due primarily to high spring rainfall, Lake Ontario reached its highest ever recorded water level in May 2017 resulting in shoreline flooding in New York and Ontario. Winter and fall warm spells led to record warm temperatures in parts of the basin. At just 15% areal coverage, Great Lakes maximum ice cover for the year was 40% below the long-term average.

Appendix B: Impact Stories

GLISA's three new impact stories are displayed on the following pages.

The Climate-Ready Infrastructure and Strategic Sites Protocol (CRISSP)

Partnership Snapshot

- What is CRISSP? A simplified municipal adaptation tool to help small and mid-sized cities understand and prepare for infrastructure vulnerability due to climate change.
- Research Partners: Great Lakes and St. Lawrence Cities Initiative (GLSCI), AECOM, and Gary, IN.
- **Numbers Engaged:** Two boundary organizations (GLSCI; AECOM) and three cities (Gary, IN; Evanston, IL; Traverse City, MI).
- Continuing Impact: After development and piloting of CRISPP in Gary, the Cities Initiative shared the protocol with 110+ municipalities through training workshops, webinars, and outreach.

More frequent extreme weather events have left Great Lakes municipalities looking for a way to identify and secure vulnerable infrastructure, such as water treatment plants and electricity transformers. Limited municipal resources and a lack of reliable data on anticipated weather changes due to climate change have complicated these efforts. To support municipal planning, Great Lakes Integrated Sciences and Assessments (GLISA) collaborated with the Great Lakes and St. Lawrence Cities Initiative (GLSCI) and other partners to develop an adaptation tool for small and mid-sized cities, CRISSP: the *Climate-Ready Infrastructure and Strategic Sites Protocol*.

The protocol gives municipalities a tool to plan for climate extremes by accessing vetted climate information (such as projected increases in rainfall, storm severity, and the number of extreme heat days) and providing a step-by-step guide to assess vulnerabilities and identify adaptation actions. This guide includes instructions for assembling a CRISSP team across municipal departments, conducting a self-assessment, and taking steps to safeguard critical infrastructure, facilities, and sites. The process was developed to be a quick and low-cost adaptation tool, combining climate data with municipal staff's own knowledge of their assets and existing city planning services.

In addition to supporting the project with a small grant, GLISA accessed and provided customized climate and weather information, coordinated research through state and federal agencies, and worked with project partners to develop the CRISSP technical guide and supporting materials. CRISSP was first piloted with the City of Gary, Indiana. As a result, Gary's annual capital investment planning now includes improvements to infrastructure identified as vulnerable to extreme precipitation. "The CRISSP puts municipal staff in the driver's seat, helping them to understand how extreme weather could affect the operations of their facility or infrastructure.

By drawing directly on staff knowledge and experience, the CRISSP helped me secure staff buy-in and build a shared sense of responsibility to be

prepared for the next storm."

Brenda Scott Henry Director/MS4 Coordinator

City of Gary, Indiana Green Urbanism/Environmental Affairs

GLISA and partners shared the protocol and lessons learned from the pilot in Gary with GLSCI's 110+ member cities through training workshops, webinars, and outreach. Traverse City, MI, and Evanston, IL, have since implemented CRISSP. GLISA continues to promote CRISSP to small and mid-sized cities in the United States and Canada, through partnerships with the Urban Sustainability Director's Network (USDN) and the Ontario Centre for Climate Impacts and Adaptation Resources (OCCIAR). The CRISSP project continues to generate interest and attention. It was featured in a NOAA Vulnerability Assessment webinar in September 2017 and the protocol was recently updated to provide a more user-friendly format. The GLISA and GLSCI teams will continue to promote the tool in the future.

Great Lakes Climate Adaptation Network (GLCAN)

Partnership Snapshot

- What is GLCAN? A network of local government staff that collaborate to identify and act on climate adaptation challenges in the Great Lakes region.
- Research Partners: GLCAN and the Urban Sustainability Directors Network (USDN).
- **Numbers Engaged:** Two boundary organizations (GLCAN; Huron River Watershed Council) and five Great Lakes cities (Ann Arbor and Dearborn, MI; Indianapolis, IN; Cleveland, OH; Evanston, IL).
- Continuing Impact: After developing the Vulnerability Assessment template, pilot cities will improve adaptation planning while saving resources. The publically-available template will be further distributed to GLCAN's 26 member cities and through USDN's nine regional networks.

The Great Lake Climate Adaptation Network (GLCAN) is a peer-network of local government staff that work together to identify and act on climate adaptation challenges in the Great Lakes. GLCAN formed, in part, as a result of GLISA's work in the Great Lakes Adaptation Assessment for Cities (GLAA-C) project, funded in 2011-2014 by the Kresge Foundation and the Graham Sustainability Institute. The city partners in the GLAA-C project found great value in working across their cities and discussing common challenges and successes. GLCAN collaborates with GLISA to create climate information to support adaptation decision-making and build capacity for community resiliency efforts in member cities.

In this model of engagement, GLCAN and GLISA act as a *boundary chain* that moves climate information to and from producers at universities to users in cities. This model delivers usable information efficiently, minimizing transaction costs (such as human and financial resources) while building trust and legitimacy between partners (links in the chain). These types of interactions between producers and users play a critical role in increasing the integration and use of climate knowledge for adaptation.

In one example of the success of the boundary chain model, GLCAN and GLISA are currently working with the Huron River Watershed Council and five Great Lakes cities (Ann Arbor and Dearborn, MI; Indianapolis, IN; Cleveland, OH; Evanston, IL) to develop a universal vulnerability assessment template. The goal is to mainstream the adaptation planning process and integrate climate-smart and equity-focused information into all types of city planning. In addition to improving adaptation planning, the publically-available template will reduce municipal workloads and save resources by mainstreaming planning domains (e.g. natural hazards, infrastructure, climate).

The Boundary Chain

In a *boundary chain* model climate information moves through different *boundary organizations*, such as GLCAN, to connect science to users. By co-creating information and pooling resources, trust and legitimacy is built and costs decrease.

Tribal Adaptation Planning with Strategic Foresight Scenarios

Partnership Snapshot

- What are strategic foresight scenarios? Co-developed scenarios that combine indigenous knowledge with local climate trends for long-term planning.
- **Research Partners:** US Forest Service, College of Menominee Nation Center for First Americans Forestlands, Sault Ste. Marie Tribe of Chippewa Indians, Red Lake Nation, and Oneida Nation of Wisconsin.
- Numbers Engaged: Three Tribes in the Great Lakes region.
- Continuing Impact: Tribes are using scenarios to initiate climate change adaptation planning and to seek funding for planning activities. A sustained partnership with the Inter-Tribal Council of Michigan resulted in a Tribal Climate workshop focusing on extreme precipitation events.

Indigenous peoples in the Great Lakes region face many potential impacts to social, cultural, and economic resources from climate change. These include loss of access to culturally significant species as ecological conditions change and threats to marine and forest industries. For Tribes, it is critical that adaptation planning respect Tribal sovereignty and access to natural resources, while harnessing traditional ecological knowledge. The task of adaptation planning in this context is made difficult for Tribes by uncertainty about how climate change will impact the region at relevant scales.

To address these challenges, Great Lakes Integrated Sciences and Assessments (GLISA) teamed with the United States Department of Agriculture Forest Service and the College of Menominee Nation's Center for First Americas Forestland, providing a grant to explore the potential of strategic foresight scenarios to help Tribes adapt to climate change. Foresight scenarios are used to bring long-term perspective to policymaking and planning by outlining a set of possible future scenarios. These scenarios provide a starting point for adaption despite uncertainty around future conditions.

Drawing on GLISA's existing relationships with three Tribes in the region (Sault Ste. Marie Tribe of Chippewa Indians, Red Lake Nation, and Oneida Tribe of Wisconsin), the team organized a Scenario Planning Workshop to bring together Tribal leaders and community members with climate specialists. Participants co-developed scenarios through a collaborative process, combining indigenous knowledge with localized climate impact profiles, customized by GLISA, that describe historical and future climate trends. In further meetings, Tribes used these scenarios to frame discussions about where additional capacity will be needed to adapt to future climate conditions.

The College of Menominee Nation defines sustainability as the interaction of six interrelated dimensions.

These partnerships have produced valuable outcomes. Translating global and regional models has made them meaningful at finer scales relevant for Tribes. Having access to scenarios in narrative form has enabled institutions and communities within each tribe, which rarely communicate with one another, to share knowledge and insights through storytelling. Tribes are already using these scenarios to initiate new climate change adaptation planning activities, and to seek funding for internal and regional adaptation efforts. Sustained engagement with the Inter-Tribal Council of Michigan resulted in a Tribal Climate workshop in Bay Mills, MI, focusing on extreme precipitation events.

GLISA A NOAA RISA TEAM

Appendix C: New or Tailored Regional Climate Services

The first pages of new or tailored climate services GLISA provided in the last year are included in the following pages:

- 2017 Annual Climate Trends and Impacts Summary for the Great Lakes Basin
- City Climatologies for Vulnerability Assessment Template (Great Lakes summary and example for Cleveland included)
- Extreme Precipitation and Impact Scenarios
- Case Studies of Climate Adaptation in Tribal Communities

2017 ANNUAL CLIMATE TRENDS AND IMPAC^{BOD}S^{28 of 58} SUMMARY FOR THE GREAT LAKES BASIN

During the 2017 reporting period, several notable events and trends were observed across the Great Lakes basin including higher than average seasonal temperature and precipitation, flooding, and low ice cover. The majority of the region experienced a wet spring with persistent heavy rain and snowfall. Water levels in the five Great Lakes were above average, continuing a similar trend during the past several years. Due primarily to high spring rainfall, Lake Ontario reached its highest ever recorded water level in May 2017 resulting in shoreline flooding in New York and Ontario. Winter and fall warm spells led to record warm temperatures in parts of the basin. At just 15% areal coverage, Great Lakes maximum ice cover for the year was 40% below the long-term average.

2017 Highlights: Record Breaking Year

High Precipitation

The entire basin experienced a wet winter and spring with portions of Ontario experiencing more than twice the normal amount of precipitation in April and May. Fall was wet in the central Great Lakes, with Michigan experiencing record October rainfall.

High Water Levels

Heavy winter and spring precipitation led to a record rise in Lake Ontario water levels from January to June. This caused major flooding on the shoreline of Lake Ontario and the St. Lawrence River in May 2017. The floods caused property damage, road and park closures, shoreline erosion, and untreated sewage dispersal.

High Temperatures

The winter of 2017 saw record-breaking warmth across the basin, with winter average temperatures 1 to 5°C above the long-term average. Fall warm spells in September and October also set temperature records in some eastern areas of the region.

Photo: Greece, NY. Coastal Flooding Survey Project, Cornell University and New York Sea Grant

Photo: Kingston, ON. Environment and Climate Change Canada (ECCC), Wendy Leger

Environnement et Changement climatique Canada

2017 ANNUAL CLIMATE TRENDS AND IMPACTS SUMMARY FOR THE GREAT LAKES BASIN

Climate Overview: December 2016 - November 2017

The December 2016 – November 2017 reporting period was overall warmer and wetter than normal, though there was substantial spatial and temporal variation across the region (*Figure 1*). Mean annual temperatures were -1 to +2 °C below/above average across the region, with the largest departures from average temperature during the winter months. Precipitation was significantly greater than normal (10 to 50%), as seen by the green areas on the map, with some areas of the region setting new monthly and annual precipitation records. Given milder than normal temperatures during the cold season months, snow accumulations and snow cover duration were less than normal. Air temperatures over land in the basin were milder than normal, as were water temperatures.

Temperature Anomaly (Annual)

Given heavy precipitation during much of the reporting period, basin-wide precipitation, runoff, and evaporation totals were also greater than normal. These numbers are generally consistent with observed long-term trends. Over the period from 1981-2010 across the region, air temperature (+0.26°C/decade), precipitation (+23.4mm/decade), evaporation (+19.9mm/decade), and water temperatures (+0.53°C/decade) have all increased. Runoff (-16.8mm/decade) has declined over the same time period. Highlights and links to additional data are given in the sections below.

*This report utilizes climatological seasons, which includes December from the previous year as part of the winter season.

Figure 1. Maps displaying annual anomalies for temperature (1a) and total precipitation accumulation (1b) in the Great Lakes region. Anomalies for temperature are departures from the 1981-2010 mean. Anomalies for precipitation are % departure from the 2002-2016 mean. Data for temperature are from ECCC model output and precipitation data is a merged dataset containing ECCC model and Numerical Weather Prediction (NWP) model data. Figures created by ECCC.

		Supe	erior	Mich	nigan	Hu	ron	Er	ie	Ont	ario
		2017	LTA	2017	LTA	2017	LTA	2017	LTA	2017	LTA
Water Temps (C°)	Max	16.4	16.0	21.5	21.3	21.1	19.9	24.0	23.9	23.2	22.2
	Min	1.3	1.0	2.4	1.5	1.1	0.9	0.7	1.1	2.7	1.8
	Avg	7.0	6.4	10.5	9.5	9.7	8.8	12.0	11.4	11.2	10.1
lce Cover (%)	Max	18.7	48.6	18.2	28.8	35.4	51.7	35.5	70.1	6.8	20.5
		Superior Michigan-Huron*			Erie		Ontario				
		2017	LTA	2017		LTA		2017	LTA	2017	LTA
Water Levels (meters)	Max	183.8	183.5	177.0		176.6		174.8	174.3	75.8	75.0
	Min	183.4	183.2	176.5		176.3		174.2	174.0	74.5	74.5
	Avg	183.6	183.4	176.7		176.4		174.6	174.1	75.1	74.8
Precipitation (mm)	Ann Sum	1032.8	711.6	883.6		794.4		963.0	842.4	1258.9	859.2
Evaporation (mm)	Ann Sum	764.8	556.8	843.9		504.0		972.5	896.4	745.0	650.4

 Table 1: Summary of hydro-climate variables by lake. Long Term Average (LTA) changes depending on variable: Water Temps (°C) - 2017: December 2016 through November 2017, LTA: 1992-2016; Ice Cover (%) – 2017: December 2016 through April 2017, LTA: 1973-2016; Water Levels (meters) - 2017: December 2016 through November 2017, LTA: Period of Record (1918-2016); Precipitation (mm) - 2017: December 2016 through November 2017, LTA: 1981-2010; Evaporation (mm) - 2017: December 2016 through November 2017, LTA: 1981-2010;

*Lakes Michigan and Huron are treated as one unit for water-levels, precipitation, and evaporation since there is no physical separation between the two lake bodies.

Environnement et Changement climatique Canada

2017 ANNUAL CLIMATE TRENDS AND IMPACTS⁰ SUMMARY FOR THE GREAT LAKES BASIN

Temperature Highlights: Very warm both in February and September

Figure 2. Temperature anomalies (vs. 1981-2010 mean) for winter (December, January, February) 2016-2017. Figure created by ECCC.

Winter temperatures averaged 1 to 5°C above normal (*Figure 2*), with a below to near average December and very warm January and February. September and October were much above average, with record warmth in some eastern areas of the region.

Figure 3. Time series of over-land air temperatures by lake basin 1950-2017. The gray line is a 10 year moving average and the black line is the 2017 average.

Annual air temperatures over land from December 2016 – November 2017 were above the historical long-term mean (*Figure 3*) and are consistent with the observed long-term increasing trend of air temperature, particularly in northern areas.

Hydrologic Highlights: Record Lake Levels on Ontario and Warm Water Temperatures

Figure 4. 2017, historical average, and record lake levels for Lake Ontario. Average levels based on 1918-2016 mean.

In 2017, water levels on all 5 of the Great Lakes were higher than the long-term average. Record high water levels were observed on Lake Ontario in May, June, and July (*Figure 4*).

Figure 5. Time series of water temperatures by lake basin 1950-2017. The grey line is a 10 year moving average and the black line is the 2017 average.

Water temperatures on all of the Great Lakes were above average in 2017 and continuing an upward trend in surface water temperatures (*Figure 5*), that has been particularly notable on the upper Great Lakes.

2017 ANNUAL CLIMATE TRENDS AND IMPACTS^{1 of 58} SUMMARY FOR THE GREAT LAKES BASIN

Precipitation Highlights: Wet Spring and Variable Summer Across the Basin

Figure 6. Spring 2017 (March, April, May) precipitation anomalies (% departure 2002-2016 mean). Figure created by ECCC.

In spring, much of the region experienced above average precipitation both over lake and over land, as seen by the green areas of the map (*Figure 6*). Some areas in eastern Ontario and western Quebec saw more than twice the normal amount for this period, as seen by the gold areas on the map. Summer and fall precipitation was more varied across the region.

Figure 7. Time series of precipitation by lake basin 1950-2017. The grey line is a 10 year moving average and the black line is the 2017 average.

Annual precipitation accumulation for 2017 was above average (10% to 50%) for the region and continued a general upward trend observed in recent years (*Figure 7*), though substantial inter-annual variability is common.

Figure 8. Days with > 10 cm snow cover July 2016-June 2017. Estimated from the National Oceanic and Atmospheric Administration's National Operational Hydrologic Remote Sensing Center (NOAA NOHRSC) model output.

Days with more than 10 cm of snow depth across the region ranged from 1 day in the extreme southern areas of the basin to more than 150 days in the northern reaches (*Figure 8*). 2016-2017 was below the 2012-2017 average for all basins except the St. Lawrence, which experienced 6 more days of snow cover than average. The Lake Michigan basin experienced the largest departure of 16 fewer days of snow cover than average.

2017 ANNUAL CLIMATE TRENDS AND IMPACTS SUMMARY FOR THE GREAT LAKES BASIN

Major Climatic Events

Winter 2016-2017

Entire Great Lakes basin experienced near-record to recordbreaking warmth in January and February.

Great Lakes only reached a maximum ice cover of 15% compared to the long-term average of 55%.

Reduced ice cover forced existing ice near shores to erode coastlines in areas such as Erie, Pennsylvania.

Spring 2017

Record-breaking or near-record precipitation during the spring caused significant flooding.

Water levels on Lake Ontario experienced a record rise in spring, with May seeing the highest water levels recorded since records began in 1918.

Widespread flooding and erosion occurred across New York, Ontario, and downstream in Quebec. Severe flooding closed Toronto Island Park from May 4th to July 30th.

Freezing temperatures May 7-10 caused damage to (🔒 vulnerable vegetation.

Photo: Toronto Island Park. ©Toronto and Region Conservation (TRCA)

Summer 2017

Lake Ontario set new record-high monthly average water levels in June and July.

High water levels and heavy precipitation resulted in several flash flood events across the basin.

Western Lake Erie's harmful algal bloom was larger than average due to excessive spring and summer rain.

Photo: Ellisburg, NY. Coastal Flooding Survey Project, Cornell University and New York Sea Grant

Autumn 2017

Late season heat wave impacted the basin in late September, with many areas getting above 35°C (95°F).

Record precipitation in portions of the Great Lakes region during October.

A rapid transition from above-normal to below-normal precipitation led to harvesting difficulties in November.

- Lake Ontario had the highest decline in water levels on record for the month of September due to a dry August and September.
- Near-record high monthly water levels for Lake Superior in October and November

November saw the highest wave ever recorded on Lake Superior at 8.8m (28.8ft)

Photo: Hamlin, NY. Coastal Flooding Survey Project, Cornell University and New York Sea Grant

New Research, Applications, and Activities

This section highlights research findings from across the region from the previous year. Findings from these efforts have implications for a wide range of sectors across the region, improve the understanding of regional climate, and show promise for informing planning efforts and policy implementation in the Great Lakes.

Regional Modeling

- Production of statistically downscaled temperature and precipitation datasets for the region based on Climate Model Intercomparison Project Phase 5 (CMIP5) global simulations (*Byun and Hamlet 2017*).
- Development of an ensemble forecasting system driven by CMIP5 scenarios by the U.S. Army Corps of Engineers and NOAA Great Lakes Environmental Research Lab to meet the needs of power generation authorities.
- Examination of regional and global precipitation projections under high emissions scenarios found general increases, concentrated in heavy rain events in the spring (*Basile et al. 2017*).
- Wind speed changes may be as critical as air temperature changes when determining the impact of climate change on water temperatures and stratification (*Magee and Wu 2017*).
- Improved methodologies developed for linking dynamical models of the lakes and atmosphere (*Xue et al. 2017*).
- Results of dynamically downscaling future climate scenarios in the Great Lakes basin (*Wang et al. 2017*).

Natural Resources

- Review of previous research regarding responses of fish to climate change finding that if food supplies are adequate, fish growth rates will increase with warming (*Collingsworth et al. 2017*).
- Historically observed shift toward diatom types with smaller cell sizes may be due to warming water (*Bramburger et al. 2017*).
- Projected future climate trends lead to higher fire weather indices (i.e., greater risk of wildfires) in the Great Lakes region and northeastern U.S. (*Kerr et al. 2017*).
- Die-offs of water birds due to botulism occur episodically and are associated with warm water with low levels (*Princé et al. 2017*).
- Of migratory birds in the basin, eastern meadowlark and wood thrush are quite vulnerable to climate change, while the hooded warbler is less vulnerable (*Rempel and Hornseth 2017*).

Planning and Engagement

GLISA

• The United States Fourth National Climate Assessment held a regional engagement workshop in March 2017 for the Midwest region to provide stakeholders an opportunity to give input to and exchange ideas with the chapter author teams (USGCRP 2017).

- Under the Canada-Ontario Agreement Respecting the Great Lakes, the Ontario Ministry of Environment and Climate Change supported the Great Lakes Climate Change Adaptation Project 2016-18, led by ICLEI Canada. The project targeted municipal learning on climate change adaptation for 28 Ontario municipalities throughout the watershed. (ICLEI Canada)
- Strategies for introducing climate adaptation schemes in areas where political resistance may arise, using the Great Lakes region as a case study (*Rasmussen et al. 2017*).
- Public poll to find differences among communities in their attitude toward the threat of climate change based on their location (*Feltman et al. 2017*).
- Evaluation of potential financial consequences of climate change for hydropower producers and how to reduce risk, primarily those doing their generation on the Niagara River (*Meyer et al. 2017*).

For additional figures, information, and sources visit: glisa.umich.edu/resources/annual-climate-summary

About This Document

Coordinated by a partnership between climate services organizations in the U.S. and Canada, this product provides a synthesis report summarizing the previous years' climate trends, events, new research, assessments, and related activities in the Great Lakes Region. This product is a contribution to the U.S.-Canada Great Lakes Water Quality Agreement, through Annex 9 on Climate Change Impacts, and to the national climate assessment processes in the U.S. and Canada. It should be cited as: Environment and Climate Change Canada and the U.S. National Oceanic and Atmospheric Administration. 2017 Annual Climate Trends and Impacts Summary for the Great Lakes Basin. 2018. Available at binational.net.

Contributing Partners

Environment and Climate Change Canada canada.ca/en/environment-climate-change

Great Lakes Environmental Research Laboratory glerl.noaa.gov

Great Lakes Integrated Sciences and Assessments glisa.umich.edu

Great Lakes Water Quality Agreement binational.net

Midwestern Regional Climate Center mrcc.isws.illinois.edu

National Oceanic and Atmospheric Administration noaa.gov

Contact Information

Contact for NOAA:

➡ meredith.f.muth@noaa.gov

Contact for ECCC:

ec.enviroinfo.ec@canada.ca

3. CLIMATE CHANGE IN THE GREAT LAKES REGION AND CLEVELAND

A. Climate Change Profile for the Great Lakes Region

The climate of cities throughout the Great Lakes region is already changing. Rising temperatures are leading to more storm activity in our atmosphere, helping to fuel extreme weather and increased precipitation. While heat, drought, and other changes associated with climate change remain a concern for the future, many areas of the region are already facing challenges associated with more total precipitation and more frequent downpours.

Temperature

Great Lakes Regional Summary

- Average air temperature in the Great Lakes region has increased by 2.0°F since the 1900s.
- Average air temperature is expected to rise 1.8°F to 5.4°F by 2050.
- Total annual precipitation has increased by 11% since 1900 in the region with significant intraregional variation.
- The total volume of rain falling in the most extreme events has increased 37% since 1951.
- Total annual precipitation will likely increase in the future, though types of precipitation will vary (i.e., more winter precipitation in the form of rain).

Average annual temperatures in the Great Lakes region have increased by 2.0°F since the 1900s, faster than the global and national rates. Most of this warming has been observed during the late spring and early winter, and in overnight low temperatures. The average temperature for the Great Lakes region is projected to increase in the future (1.8°F to 5.4°F by 2050), and many of the northern parts of the region will likely experience the most change with increases ranging from 4.5 to 6.0°F. The region is projected to see increases in the number of hot and very hot days, with projections indicating the southern portions of the region will see 15 to 35 more days over 95°F in an average year compared to the late 20th century.

Precipitation

The Great Lakes region has experienced changes in the frequency, amount, and form of precipitation. Total precipitation has increased by 11% since 1900 across the region, though this change varies within the region. Therefore, more local data should be used where available. In addition, heavy precipitation has increased rapidly throughout the region. Days seeing moderately heavy (1.25" or more) precipitation events have become 37% more frequent since 1951. Much of the region is projected to experience more average annual precipitation with total amounts ranging from an additional 2 to 6 inches per year by the mid-21st century. In addition, the Great Lakes themselves are projected to contribute more water vapor to the air. This increase in moisture combined with rising temperatures, which are necessary for storm formation, will likely produce more intense storms in the future.

Climate change will likely accelerate in the future.

The observed trends in temperature, precipitation, and seasonality are projected to continue or accelerate into the future. The rate of warming has been fastest during the winter, with some locations experiencing twice the annual warming rate of the Great Lakes region. Temperatures will continue to warm at a pace near or faster than the current rate, and precipitation will likely continue to increase, though variability and multi-year dry periods should still be

anticipated. By mid-century, summer and spring temperatures may have greater increases compared to fall and winter.

Preparing for the next normal, not a new normal.

The climate system is dynamic and will continue to change rapidly due to greenhouse gas emissions and inherent feedback systems. The challenges, priorities, and risks of the current or next generation climate will continually change and will affect all sectors. Importantly, climate and weather conditions will not change to a new set of static conditions. This means long-term planning efforts in all departments should regularly evaluate climate and be as flexible and adaptable as possible. Assessing vulnerabilities of a city's assets is a first step toward this goal.

The following table summarizes how various climate risk factors in the Great Lakes region are expected to change in the future. The number and direction of arrows indicate the relative projected trend for mid-century and end of century. A single arrow indicates a projected moderate increase or decrease by mid-century, and two arrows indicate a substantial increase or decrease by end of century.

CLIMATE CHANGE IN THE GREAT LAKES REGION				
RISK	BY MID- CENTURY	BY END OF CENTURY	SUMMARY	
Convective Weather (Severe Winds, Lightning, Tornadoes, Hail)	Uncertain*	Uncertain*	While extreme precipitation has increased in the region, specific severe weather types (e.g., tornadoes and hail) have remained relatively stable over time.	
Severe Winter Weather (Ice/Sleet Storms, Snow Storms)	Uncertain*	₽	Warmer, shorter winters will reduce the length of winter and winter-related impacts. However, some areas may see more ice, sleet, freezing rain, and wet snow with slightly warmer winter temperatures.	
Extreme Heat	•		The number of extremely hot days, those over 95°F and 100°F, will likely increase, though not as fast as in areas farther south. Overnight lows have warmed faster than daytime highs, which may lessen opportunities for relief during heat waves.	
Extreme Cold	₽	**	The number of extremely cold days (i.e., days below 10°F) have decreased in the region and are projected to decrease even more in the future.	
Dam Failures	•		Stronger and more extreme precipitation events coupled with aging dam infrastructure will increase the probability of dam failure, if appropriate measures are not taken.	

22

CLIMATE CHANGE IN THE GREAT LAKES REGION				
RISK	BY MID- CENTURY	BY END OF CENTURY	SUMMARY	
Flood Hazards			Stronger and more extreme precipitation events will be more likely to overwhelm stormwater infrastructure without appropriate adaptation efforts.	
Wildfires	Uncertain*		Summer drought and the number of consecutive dry days may increase in the future, despite more precipitation annually, increasing the risk of wildfires.	
Drought	Uncertain*		Summer drought and the number of consecutive dry days may increase in the future.	
Infestation	•	•	With shorter winters and longer growing seasons, conditions may become more suitable for invasive species and pests currently found elsewhere and distribute vector-borne illnesses.	

*Boxes labeled uncertain reflect either a lack of available data to discern a trend or no apparent trend from existing data.

The arrows in this table reflect a qualitative assessment made by the project team based on the best available data for the Great Lakes region. While these trends hold true for projections for most of the region, they should not be assumed to hold true for any particular location. Data used to make this assessment is provided by the NOAA Technical Report NESDIS 142-3 and the Third National Climate Assessment.

B. Climate Change Profile for the Cleveland City

Cleveland City Summary

- Average air temperature in Cleveland has increased by 2.4°F since the 1950s.
- Average air temperature is expected to rise 3°F to 7°F by 2050.
- Total annual precipitation has increased by 24.6% since 1951.
- The total volume of rainfall in extreme events has increased 32% since 1981.
- Total annual precipitation will likely increase in the future, though types of precipitation will vary (i.e., more winter precipitation in the form of rain).

The following chart is a characterization of climate change at the city level. There will be trends in cities that may match or deviate from regional trends. This allows cities to consider unique challenges, vulnerabilities and opportunities associated with climate change.

Climate Chan	ge in the	City of Clevela	nd		
	Historic (1951- 2014)	Mid-Century Projections (High Emissions)	End of Century Projections (High Emissions)	Change Mid-century/End of century	Percent Change* Mid-century/End of century
Average Temperature	50.8°F	53.8 to 57.8°F	55.8 to 61.8°F	3 to 7°F / 5 to 11°F	6 to 14% / 10 to 22%
Winter (1981-2010)	29.6°F	30.6 to 34.6°F	32.6 to 38.6°F	1 to 4°F / 3 to 9°F	3 to 14% / 10 to 30%
Spring (1981-2010)	48.6°F	49.6 to 55.6°F	51.6 to 59.6°F	1 to 7°F / 3 to 11°F	2 to 14% / 6 to 23%
Summer (1981-2010)	70.9°F	73.9 to 77.9°F	77.9 to 83.9°F	3 to 7°F / 7 to 13°F	4 to 10% / 10 to 18%
Fall (1981-2010)	53.6°F	56.6 to 60.6°F	58.6 to 66.6°F	3 to 7°F / 5 to 13°F	6 to 13% / 9 to 24%
Average Low Temperature	42.1°F	45.1 to 49.1°F	47.1 to 53.1°F	1 to 7ºF / 5 to 11°F	2 to 17% / 12 to 26%
Average High Temperature	59.4°F	60.4 to 66.4°F	64.4 to 70.4°F	1 to 7°F / 5 to 11°F	2 to 12% / 8 to 19%
Days/Year Greater than 90°F	7.4 Days	19 to 43 Days	37.4 to 49.4 Days	12 to 36 Days / 30 to 42 Days	162 to 487% / 405 to 568%
Days/Year Greater than 95°F	2-4 Days	16 to 18 Days	Not Available	14 Days	350 to 700%
Days/Year Less than 32°F	108.5 Days	78.5 to 81.5 Days	Not Available	-23 to -30 Days	-21 to -27%
Total Annual Precipitation	39.1 in.	38.1 to 46.1 in.	40.1 to 46.1 in.	-1 to 7 in. / 1 to 7 in.	-3 to 18% / 3 to 18%
Winter (1981- 2010)	8.2 in.	7.2 to 11.2 in.	7.2 to 12.2 in.	-1 to 3 in. / -1 to 4 in.	-12 to 37% / -12 to 49%
Spring (1981-2010)	10.1 in.	9.1 to 13.1 in.	8.1 to 14.1 in.	-1 to 3 in. / -2 to 4 in.	-10 to 30% / -20 to 40%
Summer (1981-2010)	10.4 in.	9.4 to 15.4 in.	8.4 to 14.4 in.	-1 to 5 in. / -2 to 4 in.	-10 to 48% / -19 to 39%
Fall (1981-2010)	10.5 in.	9.5 to 12.5 in.	9.5 to 12.5 in.	-1 to 2 in. / -1 to 2 in.	-10 to 19% / -10 to 19%
Heavy Precipitation Days(>1.25")	3.6 Days/Year	4.8 to 6.4 Days/Year	5.2 to 6.4 Days/Year	1.2 to 2.8 Days/Year / 1.6 to 2.8 Days/Year	33 to 78% / 44 to 78%

*Percent change is calculated as the difference between the projected values and the historic average, divided by the observation and multiplied by 100.

Data provided in this table is described in the "About the Data" section for "GHCN", "CMIP3", and "Dynamically Downscaling for the Midwest and Great Lakes Basin."

Temperature and Hot/Cold Extremes

Average Temperature

The average air temperature in Cleveland has risen since the 1950s, but has seen a moderate increase compared to other cities in the Great Lakes region. Annual average temperature has increased by 2.4°F from 1956 to 2012, with the current annual average temperature being 50.8°F. Average annual seasonal temperatures have also increased with spring experiencing the greatest increase of 1.7°F. Average temperatures in Cleveland are projected to increase 3.0 to 7.0°F by mid-century under a business as usual (i.e., high emissions) scenario, with the summer and fall having the greatest increases.

Hot Days

Days with temperature at or above 90°F are very common with multiple occurrences every year and no clear increasing or decreasing trend. Most years on record have experienced 2 to 4 consecutive days over 90°F, with events of 5 to 7 consecutive days occurring less frequently. By mid-century (i.e., 2050), models suggest an increase of anywhere from 12 to 36 more days per year over 90°F, and an increase of 30 to 42 more days per year over 90°F by end of century. Models are not able, however, to tell us if those days will be consecutive or not.

Days with high temperatures at or above 95°F have decreased since the 1930s. Events of consecutive days experiencing maximum temperatures over 95°F have seen very little change and generally only occur every few years. These types of events are typically limited to 2 to 4 consecutive days, with a few occurrences of longer periods. By mid-century (i.e., 2050), models suggest an increase of 5 to 8 days over 95 and -4 to 16 days per year over 100°F, and an increase of 8 to 28 days per year over 100°F by end of century. However, such hot days will not occur consecutively.

Heat waves can result from a combination of different drivers including high humidity, daily high temperatures, high nighttime temperatures, stagnant air movement, etc. In the future, models project an increase in the number of days experiencing high temperatures that could lead to additional heat waves, especially since air stagnation events are projected to increase. There is greater certainty that summer nighttime low temperatures will continue to increase, thereby making it more difficult to cool off at night during extended heat events. In addition, periods of future drought will also contribute to extreme heat

Cold Days

On average, Cleveland experiences 109 days per year that fall below freezing (32°F). Historical records show this number has decreased already. The city is projected to experience fewer nights below 32°F with decreases of 23 to 30 days by mid-century.

Days with temperatures at or below 10°F are very common, but experienced a slight decreasing trend in the 21st century. There are frequent occurrences of 2 to 6 consecutive days at or below 10°F, with some instances lasting 7 to 13 days less frequently. In the future, there are projected to be even fewer very cold days, so this type of event will be even rarer.

Precipitation and Flood/Drought Indicators

Average Precipitation

The amount of total annual precipitation in Cleveland has increased by 24.6% (8.7") from 1951 to 2014. An increase in precipitation was observed in all four seasons, with the winter seeing the greatest percentage increase of 23.4% (1.7"). Average precipitation in Cleveland is projected to increase by 2 to 4 inches by mid-century compared to current trends.

Precipitation - Historical

The frequency and intensity of severe storms has increased. Cleveland has seen a 16.3% increase in the number of heavy precipitation events (49 storms from 1961 to 1990 compared to 57 storms from 1981 to 2010). The northeastern part of Ohio is projected to experience on the order of 2 more days of heavy precipitation (events greater than 1.25") per year.

Flooding results when rainfall volumes exceed the capacity of natural and built infrastructure to handle precipitation. Stormwater managers look at several different "design" storms (inches falling over a certain length of time) when designing and managing their systems. These "design" storms are effectively the probability of any given amount of precipitation falling in a set period of time, based on historical experience. Monitoring over time shows that the volumes falling during these "design" storms are increasing. What this means is that the values used to build our existing infrastructure (Bulletin 71⁵⁶, used data through 1986, and NOAA Atlas 14⁵⁷ added 1987 to 2011) are dependent on fluctuating estimates of rainfall.

The table below helps illustrate this point by showing precipitation volumes in inches for both Bulletin 71 and Atlas 14 (Bulletin 71/Atlas 14) along with percent change between the two in brackets. This data shows how the "design" storm has changed over time.

Please note: this table does not show projections for how the design storm may change in the future due to climate change.

PRECIPITATION FREQUENCIES FOR THE CITY OF CLEVELAND							
	1-YR	2-YR	5-YR	10-YR	25-YR	50-YR	100-YR
1-hr	0.96/0.984	1.17/1.2	1.46/1.51	1.69/1.75	2.06/2.07	2.40/2.33	2.77/2.60
	[2%]	[3%]	[3%]	[4%]	[5%]	[-3%]	[-7%]
12-hr	1.77/1.68	2.17/2.01	2.70/2.52	3.13/2.94	3.82/3.57	4.45/4.11	5.12/4.68
	[-5%]	[-8%]	[-7%]	[-7%]	[-7%]	[-8%]	[-9%]
24-hr	2.04/1.96	2.50/2.35	3.10/2.94	3.60/3.42	4.39/4.11	5.11/4.69	5.89/5.31
	[-4%]	[-6%]	[-5%]	[-5%]	[-7%]	[-9%]	[-11%]

Precipitation – Future

In the Great Lakes region, projected changes in seasonal mean precipitation span a range of increases and decreases. In the winter and spring, the region is projected to experience wetter conditions as the global climate warms. By mid-century, some of this precipitation may manifest in the form of increasing snowfall, but projected warmer conditions by end of century suggests such precipitation events will most likely be in the form of rainfall (USGCRP, 2017).

Heavy precipitation events of more than 2" in a day (i.e., 24-hour period) are projected to increase by no more than one day (0.25 to 1 days) by mid-century and increase by slightly more (0.75 to 1.25 days) by end of century. Precipitation events of more than 3" in a day are projected to increase by less than half a day (0.15 to 0.45 days) by mid-century and increase by slightly more (0.3 to 0.75 days) by end of century.

There has been a slight decreasing trend in historic heavy hourly snowfall (events with snowfall over 1") with varying year-to-year conditions, and little to no change in hourly snowfall exceeding 2". Warmer temperatures in the future will cause some winter precipitation to transition from snow to rain over time. Annual snowfall is projected to decrease by 5" to 25" by mid-century, and decrease by 15" to 35" by end of century.

Drought, defined here as periods of 3 weeks with less than 0.45" of rainfall, has been highly variable year-to-year, with slight decreasing trends in summer and fall events and a slight increasing trend in spring events. In the future, even though more annual precipitation is projected overall, more is anticipated to fall in shorter, extreme events. Thus, there will be longer periods of time that experience no rainfall, increasing the potential for drought.

In the following chapter we look a local landscape features that influence our exposure and overall vulnerability to climate change in Cleveland

About the Climate Change in the Great Lakes Region and Cleveland Data

Coupled Model Intercomparison Project (CMIP) Version 3. The future (mid-century) climate projections for Cleveland are based on the Coupled Model Intercomparison Project Version 3 (CMIP3) A2 emissions scenario, representing "business as usual" high emissions scenario. These data were selected because they were used in the Third National Climate Assessment (Melillo et. al., 2014). More information is available at: https://www.wcrp-climate.org/wgcm-cmip

"Dynamical Downscaling for the Midwest and Great Lakes Basin." Future projections are based on the dynamically downscaled data set for the Great Lakes region developed by experts at the University of Wisconsin-Madison. There are a total of six downscaled models that represent how a variety of different variables are projected to change (mid-century, 2040-2059, compared to the recent past, 1980-1999). The ranges are comprised of the lowest and highest values from all six dynamically downscaled data sets. The regional data are available for download at: <u>http://nelson.wisc.edu/ccr/resources/dynamical-downscaling/index.php</u>.

National Oceanic and Atmospheric Administration National Centers for Environmental Information Global Historical Climatology Network Station Observations (GHCN). More information about this station located in Ann Arbor, MI from 1981-2010 is available at: <u>https://glisa.umich.edu/station/c00200230</u>

"National Oceanic and Atmospheric Administration ThreadEx Long-Term Station Extremes for America". ThreadEx is a data set of extreme daily temperature and precipitation values for 270 locations in the United States. For each day of the year at each station, ThreadEx provides the top 3 record high and low daily maximum temperatures, the top 3 record high and low daily minimum temperatures, the top 3 daily precipitation totals, along with the years the records were set for the date (NCAR, 2013). ThreadEx data for the Detroit area from 1966 to 2016: <u>http://threadex.rcc-acis.org/</u>

Michigan Extreme Precipitation

Summary

Intensity

The intensity of severe storms across the Great Lakes region has increased (Figure 1). In the State of Michigan, intensification of extreme precipitation events has been more pronounced over the Lower Peninsula (LP) compared to the Upper Peninsula (UP). Intensification of extreme precipitation events will likely continue in the future as the effects of climate change become more pronounced.

The amount of precipitation falling in the heaviest 1% of daily storms increased by 24% in the Great Lakes region from 1950-2010.

The amount of precipitation falling during multi-day events has increased dramatically over Michigan's LP.

Frequency

The frequency of severe storms across the Great Lakes region has increased. In the future, the frequency of heavier storms is projected to increase at a faster rate than storms that are less intense.

In the future, there may be a greater chance of both increased extreme precipitation events and prolonged dry periods.

Seasonality

Precipitation totals over Michigan's LP during the fall and spring have increased in most locations, while summer and winter precipitation totals have remained relatively stable. In Michigan's UP, fall precipitation has increased while all other seasons have experienced a decrease in precipitation.

Form

Annual lake effect snow has increased downwind of Lakes Superior and Michigan, and in the future lake effect precipitation is projected to increase although the LP may experience more rain than snow.

Historical data are based on NOAA's climate division data, US/Canadian weather station observations, and Kunkel, K.E., K. Andsager, and D.R. Easterling, 1999: Long-Term Trends in Extreme Precipitation Events over the Conterminous United States and Canada. J. Climate, 12, 2515–2527.

Historical Extreme Precipitation

Precipitation—especially extreme precipitation—observations can vary greatly over very short distances from one another making it difficult to collect a continuous record in space and time. In the map below, the circles represent locations of weather stations where the data records pass GLISA's quality control standards. The color of the circle indicates whether extreme precipitation events have become more (red) or less (blue) intense. The size of the circle indicates the magnitude of that change (bigger = greater change). Most stations across the LP indicate small to moderate increases in the amount of precipitation falling during the most extreme events. A few stations across central and in southwest MI observed larger increases, and the UP stations report very small decreases.

Figure 1: The change (%) in precipitation intensity (defined here as the amount of precipitation falling in one day) of the top 1% of heaviest precipitation days is mapped for the eight Great Lake states and Ontario at select weather station locations. Positive (negative) changes indicate daily extreme precipitation events have become even more extreme.

Glossary of Terms

Ensemble - A set of several climate model projections

Ensemble Mean - The average of several climate models

Precipitation Intensity - Rainfall rate measuring amount of

rainfall over a given time period

Projection - Data representative of the future climate from a climate model simulation

Very Heavy Precipitation - The heaviest 1% of all daily precipitation events

3+ Inches

-8 to 8

Projected Change in Days with 2+ Inches Precipitation

题

Future Extreme Precipitation

In the future, more extreme precipitation events are anticipated. The change in days receiving one, two, and three-inches of precipitation by the mid-21st century are presented here. Since extreme events are, by definition, uncommon the numbers reported are in units of days per decade to avoid reporting fractions of a day.

The maps (Figure 2) of future projections are based on the average of an ensemble of six regional climate models.¹ The lower and upper range of the ensemble, which characterizes the difference between models, is reported in Table 1 for Michigan.

Ensemble Mear W 40 32

24

8 0

Days per Decade 16

-24 -32 -40 Fastern UP -8 to 8 (up to 16 in -8 to 24 -8 to 8 far east) Northern LP -8 to 24 -8 to 8 -8 to 8 Southern LP -8 to 24 (up to 40 -8 to 16 -8 to 8 in southeast)

at least one model projected a decrease in the number of days.

-8 to 32 (days/decade)

1+ Inches

Western UP

Table 1: Future change in number of days (per decade) with over 1, 2, and 3

inches of precipitation by mid-century for MI sub-regions. The reported range spans the lower to upper bound of projections in the ensemble. In every region

2+ Inches

-8 to 16

Changes in Days/Decade with 1+ Inches Precipitation On average, the State of Michigan is projected to experience more days with 1+ inches of precipitation by mid-century. In most parts of the State, 8 to 16 more days/decade are projected. In the northern LP and south western LP increases may be smaller (0 to 8 more days/decade). The western UP is one particular region where some models diverge - two of the six models project over 24 more days/decade receiving 1+ inches of precipitation, and one model projects a slight decrease (0 to 8 fewer days/decade).

Changes in Days/Decade with 2+ Inches Precipitation

On average, the State of Michigan is projected to experience up to 8 more days/decade of 2+ inches of precipitation by mid-century. Individual models indicate slightly more extreme precipitation in small pockets of the State, particularly southeast MI. Parts of the central LP show decreases and increases depending on the model.

Ensemble Mean Projected Change in Days with 3+ Inches Precipitation 40 Sa. 32 8 24 16 8 Days per Decade 0 -8 -16 -24 -32 -40

Figure 2: Maps of the projected change in days with 1+, 2+, and 3+ inches of precipitation by the mid-21st century (2040-2059 compared to 1980-1999). The Ensemble mean (average of 6 high-resolution regional climate models) is mapped.

Changes in Days/Decade with 3+ Inches Precipitation On average, the State of Michigan is projected to experience up to 8 more days/decade of 3+ inches of precipitation by midcentury. There is very little variability among individual models indicating all would suggest a similar future change in extreme precipitation at the 3+ inches/day threshold. Two models suggest slight decreases of 3+ inch precipitation days in the central LP.

¹The six models are the dynamically downdownscaled projections for the Great Lakes region available from the Center for Climatic Research, Nelson Institute, University of Wisconsin-Madison (http://nelson.wisc.edu/ccr/resources/dynamical-downscaling/index.php)

Extreme Precipitation & Impact Scenarios

GLISA and the Inter-Tribal Council of Michigan developed a set of extreme precipitation events and accompanying environmental conditions, as described in the four scenarios below, as a resource for the Tribes to use when thinking about how extreme precipitation may impact people and the environment at specific locations/regions. A list of general Tribal impacts is provided, and there is space for new impacts to be added to each scenario as specific concerns, issues, systems, etc. are considered.

Scenario 1 Extreme Precipitation Event During Dry Period in Spring/Summer

Event Description

The previous season experienced less than normal precipitation, and the ground is dry when the extreme rain or snow (in Spring) event occurs. The rain event may be an intense 1-day event or multi-day rain event with extremely high rain totals.

Scenario 2 Extreme Precipitation **Event During Wet Period** in Spring/Summer

Event Description The previous season

experienced more than normal precipitation, and the ground is saturated when the extreme rain event occurs. The rain event may be an intense 1-day event or multi-day rain event with extremely high rain totals.

Scenario 3 Extreme Rain Event Over Bare, Frozen Ground

Event Description

Scenario 4 Extreme Rain Event Over **Deep Snowpack**

Event Description	Event Description
Winter conditions leave the	The ground is covered in
ground frozen but without	moderate to deep snow at
snowpack at the time of	the time of an extreme rain
an extreme rain event.	event. The rain event may
The rain event may be	be an intense 1-day event
an intense 1-day event or	or multi-day rain event with
multi-day rain event with	extremely high rain totals.
extremely high rain totals.	

Specific Impacts	Specific Impacts	Specific Impacts	Specific Impacts

General Impacts for All Scenarios

- Increased flooding & associated risks with infrastructure, damage to vegetation
- Erosion major issue with coastal communities & developed areas, water quality, aquatic fish/plants/mussels Sedimentation & nutrient loading in surface waters, decrease water quality, cascading impacts on aquatic
- communities Interruption of pollination and food/medicine gathering, destroy gardens & wild gathered foods (depending on
 - timing) Damage to budding vegetation, interruption of food/medicine gathering, interruption of pollination, reduced production wild/gathered foods, interruption in wildlife cycles, poor breeding outcomes among wildlife
 - Stress on cold water fisheries
 - Blockage or washout of main roads, inability to access healthcare (extreme case with dialysis), groceries, childcare/ work
 - Seiche on Great Lakes degrade shorelines, docks, buildings, parking lots, roads, gathering areas/beaches
 - Risk of mold in homes

Case Studies of Climate Adaptation in Tribal Communities

Logan Dreher July 2017

Climate change represents both a distinct challenge and opportunity for indigenous Tribes in the United States. Though most scholarship and literature often focus on the heightened vulnerability of Native American communities, Tribes are also uniquely equipped to adapt to a shifting and unstable environment. Indigenous communities in North America have weathered, and continue to resist, the long-reaching impacts of colonization. As a result, many Tribes have extremely resilient and adaptive cultures, practices, and knowledge systems.

Tribal communities have already emerged as domestic leaders in climate adaptation action, drawing on intergenerational environmental knowledge, "deep interpersonal and interspecies networks" and a seventh-generation mindset, where current leaders consider the impact of their decisions on seven generations into the future (Norgaard 2016). Federallyrecognized Tribes can also leverage their sovereignty to act as laboratories to implement smallscale adaptation efforts, and to pressure a more robust national response to the warming climate.

This research intended to catalogue past and ongoing climate adaptation initiatives in Tribal communities in the State of Michigan in preparation for a climate adaptation workshop with the Great Lakes Integrated Sciences and Assessments (GLISA) and the Inter-Tribal Council of Michigan in the fall of 2017. Additionally, this report highlights particularly successful adaptation projects in four Tribal communities across the country to inform this workshop. These communities have not just responded to climate change, but used it as an opportunity to strengthen their government, restore traditional resource management practices, and encourage a re-examination of Western environmental practices and beliefs. Three of the case studies represent three broad categories of common adaptation projects: infrastructure, natural resource management, and comprehensive planning. The remaining example demonstrates how adaptation projects can integrate aspects of all three categories.

These four case studies identify successful strategies, tools, and funding opportunities potentially applicable to future adaptation efforts in the twelve federally-recognized Tribes in Michigan. The Michigan Tribal community has already demonstrated their resiliency through the diversity of their responses to the impacts of climate change in the region.¹ The success of Tribal governments in Michigan and across the country in spite of their limited capacity and ability to govern non-trust lands is exemplary of the determination of Native communities in the United States (US).

¹ While it is too lengthy to detail the breadth of projects here, see Appendix A for a more thorough discussion of adaptation efforts in Tribal communities across Michigan, and in other Great Lakes states.

Infrastructure

Energy Sovereignty: White Earth Nation (Minnesota)

Many Tribes have developed renewable energy technologies, which act as a mitigation tactic to decrease greenhouse gas emissions on Indian reservations. Green energy projects are also an adaptation strategy, as they provide a more resilient energy system during extreme weather and other emergency events. In addition, indigenous-owned energy projects are a way for Tribes to reinforce their sovereignty and better self-govern their land by controlling their own energy source and reducing reliance on fossil fuel produced off site. Tribal-owned renewable energy projects also have the potential to generate a profit through the sale of excess energy to surrounding public utility districts.

In the Great Lakes region, several Tribes have committed to a greener future by adopting the Kyoto Protocol, developing strategic energy use plans, improving energy efficiency, and conducting feasibility studies for the installation of renewable technologies (see Appendix A). One regional leader in renewable energy is White Earth Nation of Chippewa Indians in North-Central Minnesota, which was the first Tribe in the US to install wind turbines on an Indian reservation in 2003 (*White Earth Nation*). The Tribe estimates that members spend approximately one half of their income on food and energy costs, which are outsourced to off-reservation companies; by localizing both their energy and food system, White Earth Nation hopes to reinvigorate its economy while strengthening the reservation's resiliency to climate change (LaDuke et al. 2012). The Tribe also reinvests profits from green energy projects in local food initiatives to further stimulate its economy and preserve traditional ecological practices (LaDuke et al. 2012). Another distinctive aspect of White Earth's renewable energy initiative is their partnership with TWN Wind Power, a green energy company owned by a Canadian First Nation, the Tseil-Wauthuh Nation (White Earth Nation).

Figure 1. A child from White Earth Nation at a wind turbine construction site (Photo Courtesy of Honor the Earth).

Since the installation of its first wind turbine in 2003, White Earth Nation has completed two additional wind turbines and expanded to solar energy projects to develop a diverse portfolio of renewable energy technologies ("White Earth Nation"). Currently, the Tribe is installing solar photovoltaic systems in three community buildings, which will keep an estimated \$8,000 of otherwise exported funds within the local economy, reduce annual energy costs by almost 30% and train four tribal members for employment in the renewable energy industry ("White Earth Reservation"). Throughout its renewable energy program, White Earth Nation has sustained a focus on training Tribal members to install and maintain its energy projects; in 2012, the Tribe trained ten members in wind-smithing and 25 others on solar panel installation (LaDuke et al. 2012). These trainings expand the Tribe's self-sufficiency to maintain their solar and wind energy facilities and improves the employability of individual Tribal members in the growing green energy industry.

In addition, White Earth Nation has begun to tackle both its members limited ability to purchase energy and the need for more efficient energy by providing solar thermal panels to residences free of charge. This decreases the cost of heating homes in the winter (LaDuke et al. 2013). In 2013, the Tribe began a feasibility study for a solar/wind hybrid distributed energy system, which is intended to provide power for the southwestern portion of the reservation (LaDuke et al. 2013). Once completed, excess energy from the hybrid system will be sold to a local power company. White Earth hopes to use the revenue to increase the scale of their sustainable agriculture programs (LaDuke et al. 2013).

Beyond its extensive renewable energy program, White Earth Nation has also been involved in the fight against the development of new fossil fuel infrastructure in the region. In 2013, the Tribe began a campaign against the construction of a new oil pipeline in Minnesota, which would run through wild rice lakes and other culturally important resources in treaty territories in the state (*Stop Line 3*). Along with the five other Minnesota Chippewa Tribes,

White Earth is in the process of conducting an environmental impact assessment of the proposed pipeline to highlight the failure of the state to include indigenous voices in its own assessment ("Support the Tribal EIS"). White Earth also filed a petition to act as a formal intervening party in the permitting process of the pipeline (*Stop Line 3*). Both actions put pressure on the State of Minnesota to consider the specific impacts of the pipeline to Tribal communities and asserts the self-determination of Tribal governments. White Earth Nation's involvement in the permitting process spurred momentum for environmental groups and city governments to publicly oppose the construction as well, including the city of Grand Rapids, MN, the Sierra Club, and a group of 36 state legislators (*Stop Line 3*).

Effective Strategies	Funding Sources
Employable skill training for Tribal members	 USDA Rural Business Development
to increase Tribal capacity	Grants and Rural Business Opportunity
	Grants
	• Clean Energy Resource Teams Grants
Involvement in green economy through	 USDA Rural Business Development
installation of renewable energy facilities on	Grants
reservation	• Department of Energy Anemometer Loan
	Program/Tribal Energy Grant
	 Congressional Appropriations
	 Blandin Foundation
Addressing energy poverty and high heating	• Department of Energy Tribal Energy
costs through installation of renewable energy	Grant
technologies	 Northwest Area Foundation
Intervening in permit process of fossil fuel	• Honor the Earth
infrastructure	
Inter-Tribal Collaboration	• Honor the Earth
Synergistic adaptation projects	N/A

Table I. White Earth Nation Strategies and Funding Sources

Natural Resource Management

Eco-Cultural Resource Management: The Karuk Tribe (California)

The Karuk Tribe is located in the Klamath Basin in Northern California, where they lack a formal reservation and hold less than one square mile of land in trust with the federal government (Diver 2016). Though the Tribe never agreed to cede their lands, as many other Tribal governments did through treaty negotiations in the nineteenth century, the US Forest Service acts as the primary manager of over 1.48 million acres of forestland that the Karuk claim as their ancestral land (Diver 2016). Today's Tribal members continue to harvest food for subsistence, hold cultural ceremonies, and conduct traditional resource management practices in the area, although their authority to do so most often goes unrecognized (Diver 2016).

In the face of their limited governance over the land in the Klamath Basin, the Karuk Tribe has worked to leverage federal trust responsibility to facilitate the use of traditional resource management practices and increase their involvement in regional environmental decisions (Norgaard 2014).² The Tribe has also asserted their right as co-tenants and co-trustees of the forest along with the federal government, a standing that court cases have granted to other Tribes who collaboratively manage fisheries with state governments (Norgaard 2014). Throughout the 1990s, the Karuk Tribe staged direct action protests on culturally important and sacred sites to assert their authority as resource managers to the US Forest Service (Diver 2016).

Figure 2. Map of Karuk Tribe land (Photo Courtesy of Diver, "Co-Management as a Catalyst").

In an attempt to reduce the conflict between the two parties, Tribal land managers and local Forest Service employees began to hold monthly meetings to discuss land management practices in the Klamath Basin (Diver 2016). In 1995, these meetings resulted in the creation of "cultural management areas" in which resource managers were required to adhere to the culture and customs of the Karuk Tribe. These requirements paved the way for increased Tribal involvement in forest management practices in the region. Throughout the late 1990s, Karuk Tribal land managers participated in the planning process for restoration projects in cultural management areas and acted as co-leads during their implementation. These co-management projects, which were authorized by an Interagency Agreement between the US Forest Service and the Bureau of Indian Affairs, allowed the Karuk Tribe to implement traditional ecological practices, particularly prescribed burns, while working with the US Forest Service (Diver 2016). Though co-management projects allowed the Karuk Tribe to deploy traditional land management practices, recently the Tribe has been hindered by turnover in local Forest Service employees, who have not had consistent interest in continuing such projects (Diver 2016). Therefore, the

² Federal trust is a legally enforceable obligation of the US to protect Tribal treaty rights, land, assets and resources based on promises the US government made in treaties with Tribal governments to protect land and resources for future generations (Norgaard 2014).

Tribe considers participation in co-management projects to be an interim strategy that builds Tribal capacity while the Karuk Tribe also works through other avenues to regain rightful authority over ancestral lands.

The Karuk Tribe has also worked extensively to research and publish institutional and legal barriers to Tribal participation and the inclusion of traditional ecological knowledge resource management. Partnering with the University of California Berkeley to increase their capacity for researching such topics, the Tribe published regional and national recommendations for improving intergovernmental cooperation between federal resource managers and Tribal authorities, as well as mechanisms to increase Tribal management of non-trust lands (Norgaard 2014). The Karuk Tribe's abundant research and scholarship on the topic emphasizes the importance of traditional practices as climate adaptation strategies, as they often help to stabilize and improve the resiliency of ecosystems. Prescribed burns, for instance, promote biodiversity, manage culturally important species, and limit the threat of uncontrollable wildfires by reducing the availability of forest fuels (Norgaard 2016). Other fire suppression methods are also often significantly more costly than prescribed burns (Norgaard 2014). In 2016, the Tribe also conducted a climate vulnerability assessment that focused on the importance of prescribed burns as an adaptation strategy to the impacts of climate change in the region (Norgaard 2016).

Figure 3. A forest floor after a prescribed burn (Photo courtesy of Lisa Hillman, Karuk Tribe).

The Karuk Tribe has been involved in a successful campaign to remove the Klamath River Hydro Project, a dam that blocks fish passage to their spawning grounds. The Tribe attempted to negotiate for better environmental regulations with the dam's operator, Pacific Corp, when the dam's operating license came up for renewal in 2007. When Pacific Corp did not address the concerns in their new licensing submission, the Tribe embarked on an intense media campaign to "Bring the Salmon Home" to educate the surrounding community on the importance of salmon to the ecosystem and to their culture (Hormel and Norgaard 2009). The Tribe gained the support of the then California Governor Arnold Schwarzenegger, as well Friends of the River, the Pacific Coast Federation of Fishermen's Association, and other environmental organizations in the state. Tribal members also travelled to Scotland to protest the stakeholder's meeting of the parent company of Pacific Corp where they dressed in traditional clothing, sang, chanted, and drummed to demonstrate the threat the dam poses to their culture (Hormel and Norgaard 2009).

The media scrutiny resulting from the Tribe's campaign eventually convinced the company that the dam was too costly to continue operation (Hormel and Norgaard 2009; Tucker 2017). Currently the dam is slated to be removed by 2020, and Pacific Corp awaiting approval for the removal from the Federal Energy Regulatory Commission (Tucker 2017). The Karuk Tribe's "Bring the Salmon Home" campaign is an example of the success of highly visible activism in Tribal communities, as well as the benefit of involving the larger community in protecting culturally important resources in Tribal communities.

Effective Strategies	Funding Sources
Strengthening relationships with local	• Supported by internal funds
resource managers	
Education and outreach in local community	• Fundraising
Public pressure and highly visible activism	• Fundraising
Engagement with local universities for	• USDA National Institute of Food and
research	Agriculture: Agriculture and Food
	Research Initiative Food Security Grant
Using traditional ecological practices as	• North Pacific Landscape Conservation
adaptation strategies	Cooperative
	• US Bureau of Indian Affairs Tribal
	Climate Resilience Program
	 Humboldt Area Foundation
Assertion of co-trustee rights	• US Bureau of Indian Affairs Tribal
	Climate Resilience Program

Table II. Karuk Tribe Strategies and Funding Sources

Comprehensive Planning

A Holistic Approach: The Columbia River Tribes (Idaho, Oregon, and Washington)

The efforts of the Columbia River Inter-Tribal Fish Commission (CRITFC) illustrate the way in which the unique culture of Tribal communities can motivate successful environmental action when little has been done in the outside community. The CRITFC is a collaboration of four of the tribes located along the Columbia River: the Nez Perce Tribe, the Confederated Tribes and Bands of the Yakama Nation, the Confederated Tribes of the Umatilla Indian Reservation, and the Confederated Tribes of the Warm Springs Reservation of Oregon.

Figure 4. Map of CRITFC member territories (Photo Courtesy of CRITFC Website).

Salmon populations have declined dramatically in the Columbia River, as they have throughout the Pacific Northwest, throughout the twentieth century. Prior to European contact, 15-20 million fish were estimated to pass through the Columbia River annually; by 1995 there were 500,000 ("Spirit of the Salmon"). With little being done in the outside community, the CRITFC created the Wy-Kan-Ush-Mi Wa-Kish-Wit, or the Spirit of the Salmon Plan, to not only restore salmon and other fish in the region, but to strengthen its member Tribes' treaty rights, and to improve the health of the river system as a whole.

The cultural importance of salmon was at the heart of this action, and at the heart of the Tribal communities themselves. To the Tribes living along the Columbia River, salmon fishing is not a job, but a way of life handed down from generation to generation which makes the Tribes who they are (*Chinook Trilogy*). Among the Tribes salmon is considered a gift from the Creator that has cared for them since time immemorial. Spiritual leaders likened giving up on salmon to abandoning a family member in a time of need, and urged the region to care for the salmon as it had cared for them in the past ("Climate Change").

This cultural relationship motivated the Commission's initial action and undergirds the Plan's holistic approach to salmon restoration ("Climate Change"). The 1995 Plan blended traditional ecological knowledge and Western sciences through a "gravel-to-gravel" management plan where policies considered the needs of each habitat a salmon passes through in its lifecycle ("Spirit of the Salmon"). The inclusion of traditional knowledge also encouraged integrating the health of the entire ecosystem, rather than narrowly focusing on a single species; in Tribal

culture, salmon cannot be divorced from the rest of its ecosystem, and is fundamentally in relationship with other organisms (*Chinook Trilogy*).³

Figure 5. A visual representation of gravel-to-gravel management (Photo Courtesy of CRITFC 1995 Spirit of the Salmon Plan).

The Spirit of the Salmon Plan provided technical, institutional, and legal recommendations for governments and organizations within the Columbia Basin, which became a framework for other Tribal, state, and federal action in the region (*2014 Update*). The Plan's successful implementation hinged on coordination between state and federal wildlife authorities, local universities, environmental groups, the Columbia River Tribes, and other resource managers. Some of the critical outcomes of the plan include: the development of over 23 subbasin watershed plans by state and federal fish and wildlife authorities with input and collaboration from CRITFC member Tribes; the creation of a formal dispute resolution process for CRITFC Tribes to address concerns about land and water use; new harvest regulations to more equitably share the salmon harvest between Native and non-native fisheries; revisions to Clean Water Act Standards for toxic chemicals to reflect the high fish consumption rates in Tribal communities; increased access to traditional fishing sites for Tribal members; and new employment opportunities in the fishing industry for Tribal members.

Most importantly, the implementation of the Spirit of the Salmon Plan successfully stopped the decline of salmon populations in the Columbia River in the twenty years since its adoption. In fact, data from the CRITFC indicates that salmon population is currently on an upward trend (*2014 Update*).⁴ The plan's efforts to reduce existing stressors on salmon populations has also increased the species resiliency to the future impacts of climate change.

³ See Table 1. in Appendix B for additional information on the application of traditional knowledge in the CRITFC's management plan.

⁴ See Figure 8 in Appendix B.

The CRITFC has also worked to protect and secure floodplain and watershed habitats to better address the impacts of climate change on water ecosystems in the region (Gephart 2009). Increasing Tribal ownership of riparian zones ensures more consistent management practices and reduces the risk of development. The CRITFC identified their highest priority river corridors to purchase, using funding from a National Oceanic and Atmospheric Administration (NOAA) Fisheries grant and mitigation funding from a local power company. Between 2000 and 2008, the Commission acquired 3896 hectares of land to return to wetlands (Gephart 2009).

In a 2014 update to the Spirit of the Salmon plan, the CRITFC further addressed the impacts of climate change in the region. The update identified specific research needs, assessed the success of the recommendations of the previous plan, and issued new recommendations to local institutions and member Tribes. These include conducting a technical analysis of changes in water temperatures and flows to inform future water resource planning, tracking regional legislation related to climate change, and drafting a Strategic Climate Adaptation Plan for the Columbia River Basin (*2014 Update*). Since the update, two of the member Tribes have completed climate adaptation plans ("Climate Change"). In 2014, the CRITFC also participated in a review of the Columbia River Treaty, an agreement on hydropower and flood control between the US and Canada, to advocate for the inclusion of Tribal needs for climate adaptation planning in the renegotiation of the Treaty (*2014 Update*).

Additionally, in 2008 the CRITFC signed onto the Columbia Basin Fish Accords, an agreement between the Bonneville Power Administration, the US Bureau of Reclamation, and the US Army Corp of Engineers that dedicated \$600 Million to salmon restoration on the condition that Tribal governments would not pursue litigation against hydropower and river operations for the next decade (*2014 Update*). By coordinating between regional governments and stakeholders, the Tribes were able to channel funding that would have otherwise gone into litigation directly into salmon restoration projects.

Effective Strategies	Funding Sources
Land Acquisition for consistent land	 NOAA Fisheries Pacific Coast Salmon
management practices	Fund
	 Bonneville Power Administration
Comprehensive planning and resource	 Bonneville Power Administration
management	• County public utility districts in Columbia
	Basin
	• US Bureau of Reclamation
	 Congressional appropriation
Litigation to pursue federal trust rights	 Supported by internal funds
Integration of traditional ecological	N/A
knowledge and Western science in	
management practices	
Partnerships with local institutions	N/A

Table III. CRITFC Strategies and Funding Sources

Integrating Adaptation Strategies

Innovative Partnerships: Tulalip Tribes (Washington)

The Tulalip Tribes, a 22,000-acre Indian community in northern Washington composed of several smaller Tribal groups, are another example of the success of green energy projects in Tribal communities, as well as the power of integrating adaptation strategies to address multiple concerns ("*Tulalip Tribes*").

Throughout the late twentieth century, the Tulalip Tribes were concerned about the impact of runoff and groundwater contamination from local dairy farms on declining salmon populations in the region (*"Tulalip Tribes"*). Like other Tribal communities in the Pacific Northwest, the annual salmon runs are an integral part of the Tribe's culture and food security. As a result, the Tribes had a contentious relationship with local farmers, who in turn often felt that the Tribes' treaty regulations inhibited their work and raised operating costs (Tulalip Tribe). However, after a series of floods in the region in 1990 inundated farmland across the region, a cattle rancher approached the Northwest Chinook Recovery, a non-profit dedicated to recovering salmon populations, for technical assistance in restoring a wetland on his property (Thompson 2012). A restored wetland would both minimize the threat of flooding during future storms and create a habitat for salmon to rear young (Thompson 2012; *"Tulalip Tribes"*). Positive press from the completed project in 1999 encouraged farmers and the Tribes to stop seeing each other as adversaries and instead seek additional mutually beneficial initiatives (Thompson 2012).

The resulting partnership spawned Qualco Energy in 2000, a nonprofit cooperatively managed by both the Tulalip Tribes, Northwest Chinook Recovery, and Sno/Sky Agricultural Alliance, an organization of farmers in the region. The shared energy collective diverts the manure produced on dairy farms from local water systems to power an anaerobic bio-digester, which generates methane gas that is burned and sold to the county's public utility district ("Tulalip Tribe"). The bio-digester facility began operating in 2008, and today generates a profit from what had otherwise been harmful waste threatening the salmon population (Thompson 2012; "Tulalip Tribe").

Figure 7. The bio-digester at Qualco Energy (Photo Courtesy of Qualco Energy).

The success of Qualco Energy became a foundation for further partnerships between the Tulalip Tribes and farm owners. More recently, the Tulalip Tribes helped to develop the Sustainable Lands Strategy, a partnership between the Tribes, Sno/Sky Agricultural Alliance, and other regional stakeholders dedicated to building regional resilience to flooding ("Tulalip Tribe"). The Sustainable Lands Strategy coordinated the creation of a comprehensive floodplain map that identified farmland at risk of flooding. As a result, farmers began to voluntarily sell or swap flood-prone land so that it could be returned to healthy riparian zones ("Tulalip Tribe"). Consequently, the initiative has implemented a novel approach to flood protection through work with Floodplains By Design, a public-private partnership in Washington State ("What is Floodplains"). The approach maximizes the benefits of natural infrastructure, utilizing setback levee systems that restore wetlands and marshes as riparian buffers and provide a habitat for wildlife. Coordinated planning between landowners and the Tribes in the region also led to the creation of flood bypasses and diversion channels in the case of extreme flooding events when dams and levees may potentially fail ("What is Floodplains"). By ensuring that regional environmental decisions were made through consensus, Sustainable Lands Strategy made a more diverse portfolio of resource management tools available.

As these projects illustrate, creative adaptation strategies can address multiple impacts of climate change simultaneously. Through work with the Sno/Sky Agricultural Alliance, the Tribes protected local wildlife, increased the resiliency of the region to future flooding, and developed a local source of green energy.

1 0	8
Effective Strategies	Funding Sources
Involvement in the green economy	 USDA Rural Development grant
	 Department of Energy Tribal Energy
	Program National Renewable Energy
	Laboratory Grant
	 Sandia National Laboratories
	• Land donation from the State of
	Washington
	• US Department of Housing and Urban
	Development Native American Programs
Detailed floodplain mapping	• Supported by internal funds
Voluntary buy-outs or land swaps to restore	N/A
riparian buffers	
Floodplains by Design integrated floodplain	N/A
management approach	
Strong local partnerships	N/A
Consensus in environmental decision-making	N/A

Table IV. Tulalip Tribes Strategies and Funding Sources

Conclusion

Though these examples and traditional knowledge systems are place-based, they illuminate successful strategies that could be applicable to climate adaptation initiatives in Tribal communities in the Great Lakes region. Federally-recognized Tribes in the US face common barriers in the adaptation planning process, particularly related to their limited governance over

cultural and environmental resources on non-trust lands. Additionally, small Tribal government departments are often overburdened and limited in their capacity to address climate change in addition to the more immediate needs of their communities.

These case studies also shared some common threads, one of which was the importance of strengthening partnerships between local stakeholders and Tribal governments. As illustrated by the Sustainable Lands Strategy in Washington, and co-management projects between the Karuk Tribe and US Forest Service, building trust between Tribal governments and local stakeholders can grant Tribes greater input in regional environmental decisions. The CRITFC demonstrated that more comprehensive and coordinated management efforts require the participation of regional institutions and organizations, as well as the state and federal government. Education and outreach are essential tools in this process to strengthen relationships with regional stakeholders and facilitate a better understanding of Tribal culture.

An additional takeaway from these four case studies is the importance of traditional ecological knowledge in climate adaptation initiatives. Both the Karuk Tribe's traditional prescribed burns and the understanding of salmon in Tribal communities in the Pacific Northwest supported more successful and sustainable resource management. Traditional ecological practices such as these should be considered adaptation strategies, as they create more resilient habitats and ecosystems.

Climate adaptation projects within Tribal communities may not take the shape of traditional adaptation work. The ability of Tribal governments to respond to the challenges of climate change is reliant on a greater control of natural resources and more robust recognition of Tribal sovereignty. Addressing seemingly unrelated concerns such as chronic unemployment or poor health on the reservation allows Tribal governments to devote more time to consider the long-term impacts of climate change. The most successful adaptations strategies will address both problems simultaneously, as demonstrated by White Earth Nation's renewable energy projects.

Furthermore, it is important to note that the onus of responsibility cannot be on Tribes alone, as indigenous communities must also have better support and recognition from the US government to adequately adapt to climate change. Non-Tribal resource managers must also invest in identifying and removing barriers to Tribal participation in environmental decision-making processes to promote successful adaptation planning and implementation in Native American communities (See Resource 10 in Appendix C).

References

Chinook Trilogy. Columbia River Inter-Tribal Fish Commission, 1994. Youtube,

www.critfc.org/for-kids-home/public-resources/chinook-trilogy/. Accessed 10 July 2017.
"Climate Change." *Columbia River Inter-Tribal Fish Commission*, www.critfc.org/fish-and-watersheds/climate/. Accessed 12 July 2017.Diver, Sibyl. "Co-Management as a Catalyst: Pathways to Post-colonial Forestry in the Klamath Basin, California." *Human Ecology*, vol. 44, no. 5, Oct. 2016, pp. 533-46, doi:10.1007/s10745-016-9851-8. Accessed 6 July 2017.

Eco-Cultural Resources Management Plan. Karuk Tribe Department of Natural Resources, 15 June 2010, karuk.us/images/docs/dnr/ECRMP_6-15-10_doc.pdf.

"Floodplains by Design: Nuts and Bolts." *The Nature Conservancy*, www.nature.org/ourinitiatives/habitats/riverslakes/floodplains-by-design-feature.xml. Accessed 12 July 2017.

Gephart, Laura. "Tribal Salmon Restoration and Climate Change in the Pacific Northwest." *Ecological Restoration*, vol. 27, no. 3, Sept. 2009, pp. 263-66. Accessed 10 July 2017.

Hormel, Leontina M., and Kari M. Norgaard. "Bring the Salmon Home! Karuk Challenges to the Capitalist Incorporation." *Critical Sociology*, vol. 35, no. 3, 2009, pp. 343-66, doi:10.1177/0896920508101502. Accessed 6 July 2017.

LaDuke, Winona, et al., compilers. *White Earth Land Recovery Project: 2012 Annual Report*. Mar. 2013. *White Earth Land Recovery Project*, welrp.org. Accessed 10 July 2017.

- ---, compilers. White Earth Land Recovery Project: 2013 Annual Report. Mar. 2014. White Earth Land Recovery Project, welrp.org. Accessed 10 July 2017.
- "Line 3." *Honor the Earth*, www.honorearth.org/sandpiper_line_3_corridor. Accessed 11 July 2017.
- Norgaard, Kari Marie. *Karuk Traditional Ecological Knowledge and the Need for Knowledge Sovereignty*. Karuk Tribe Department of Natural Resources, 2014, karuktribeclimatechangeprojects.files.wordpress.com/2016/05/final-pt-1-karuk-tek-and-the-need-for-knowledge-sovereignty.pdf. Accessed 6 July 2017.
- ---, compiler. *Karuk Tribe Climate Vulnerability Assessment*. Karuk Tribe Department of Natural Resources, 2016, karuktribeclimatechangeprojects.files.wordpress.com/2016/11/final-karuk-climate-assessment1.pdf. Accessed 6 July 2017.

---. *Retaining Knowledge Sovereignty*. Karuk Tribe Department of Natural Resources, 2014, karuktribeclimatechangeprojects.files.wordpress.com/2016/05/final-pt-ii-retaining-knowledge-sovereignty.pdf. Accessed 6 July 2017.

- Quam, Paula. "Wind Energy Blows into White Earth." *Red Lake Nation News*, 13 Jan. 2014. Accessed 12 July 2017.
- Ray, Mahala. *Karuk Tribe: Integrating Traditional Ecological Knowledge within Resource Management*. Pacific Northwest Tribal Climate Change Profile.
- "Spirit of the Salmon: 1995 Tribal Restoration Plan." *Spirit of the Salmon: Wy-Kan-Ush-Mi Wa-Kish-Wit*, Columbia River Inter-Tribal Fish Commission, plan.critfc.org/vol-1/. Accessed 10 July 2017.

Stop Line 3. Honor the Earth, www.stopline3.org/. Accessed 11 July 2017.

"Support the Tribal EIS for Line 3." *Honor the Earth*, honorearth.nationbuilder.com/tribalEIS. Accessed 11 July 2017.

- Thompson, Stephen. "Spawning a Solution: Farmers, Indian Tribes, Environmentalists Form Co-Op to Restore Washington Salmon Run." *Rural Cooperatives*, May-June 2012, pp. 4-7, www.rd.usda.gov/files/RD_RCoopsMag_MayJune12.pdf. Accessed 10 July 2017.
- Tucker, Craig. Bring the Salmon Home: The Karuk Tribe's Effort to Remove Klamath Dams. Karuk Tribe of California Department of Natural Resources, www.nijc.org/pdfs/Subject%20Matter%20Articles/Environment/Bring%20the%20Salmo n%20Home.pdf. Accessed 10 July 2017.
- ---. "Klamath Update: Dam Removal." *Karuk Tribe Newsletter*, Summer 2017, pp. 14-15, www.karuk.us/images/57963_Karuk_Summer_17.pdf. Accessed 6 July 2017.
- Tulalip Tribes. www.tulaliptribes-nsn.gov/. Accessed 10 July 2017.
- "Tulalip Tribe: Saving Their Sacred Salmon." U.S. Climate Resilience Toolkit, NOAA Climate Program, 17 Jan. 2017, toolkit.climate.gov/case-studies/tulalip-tribes-saving-their-sacred-salmon. Accessed 10 July 2017.
- 2014 Update: Spirit of the Salmon Plan. Columbia River Inter-Tribal Fish Commission, 2014. Columbia River Inter-Tribal Fish Commission, plan.critfc.org/assets/wy-kan-update.pdf. Accessed 10 July 2017.
- "What Is Floodplains by Design?" *The Nature Conservancy*, 2013, www.nature.org/photos-and-video/video/what-is-floodplains-by-design. Accessed 12 July 2017.
- White Earth Anishinaabe Tribal Food Policy Draft. White Earth Land Recovery Project, 2012, welrp.org/food-sovereignty. Accessed 11 July 2017.
- White Earth Nation. www.whiteearth.com. Accessed 10 July 2017.
- "White Earth Nation Installs Turbines: A Wind Powering America Success Story." WINDExchange, U.S. Department of Energy, 11 Feb. 2013. Accessed 12 July 2017.
- "White Earth Reservation Tribal Council 2016 Project." *Office of Indian Energy Policy and Programs*, U.S. Department of Energy. Accessed 12 July 2017.

STATE OF MICHIGAN

BEFORE THE MICHIGAN PUBLIC SERVICE COMMISSION

In the matter of the Application of) DTE ELECTRIC COMPANY for) approval of its Integrated Resource Plan) pursuant to MCL 460.6t, and for other relief.)

Case No. U-20471

PROOF OF SERVICE

STATE OF MICHIGAN)) ss. COUNTY OF INGHAM)

Sarah E. Jackinchuk, the undersigned, being first duly sworn, deposes and says that she is a Legal Secretary at Varnum LLP and that on the 21st day of August, 2019 she served a copy of the City of Ann Arbor, Michigan's Direct Testimony, Exhibits and Proof of Service upon those individuals listed on the attached Service List via email at their last known addresses.

Sarah E. Jackinchuk

15286612_1.docx

SERVICE LIST MPSC CASE NO U-20471

Administrative

Law Judge Hon. Sally Wallace Administrative Law Judge Michigan Public Service Comm. 7109 W. Saginaw Hwy., 3rd Floor Lansing, MI 48917 Wallaces2@michigan.gov

Counsel for DTE Electric Company

Lauren D. Donofrio One Detroit Plaza, 688 WCB Detroit, MI 48826 <u>lauren.donofrio@dteenergy.com</u> <u>mpscfilings@dteenergy.com</u>

Counsel for MPSC Staff

Heather M.S. Durian Daniel E. Sonneveldt Benjamin J. Holwerda Amit T. Singh 7109 W. Saginaw Hwy., 3rd Floor Lansing, MI 48919 <u>durianh@michigan.gov</u> <u>sonneveldtd@michigan.gov</u> <u>holwerdab@michigan.gov</u> <u>singha9@michigan.gov</u>

Counsel for Michigan Environmental Council; Natural Resources Defense; Sierra Club; Soulardarity

Christopher M. Bzdok Tracy Jane Andrews Olson, Bzdok & Howard, P.C. 420 E. Front St. Traverse City, MI 49686 <u>chris@envlaw.com</u> <u>tjandrews@envlaw.com</u> <u>lydia@envlaw.com</u> <u>karla@envlaw.com</u> <u>kimberly@envlaw.com</u> <u>breanna@envlaw.com</u>

Counsel for the Great Lakes Renewable Energy Association Don L. Keskey Brian W. Coyer Public Law Resource Center PLLC 333 Albert Avenue, Suite 425 East Lansing, MI 48823 donkeskey@publiclawresourcecenter.com bwcoyer@publiclawresourcecenter.com

Counsel for ITC Transmission

Richard J. Aaron Dykema Gossett PLLC 201 Townsend St., Ste. 900 Lansing, MI 48933 <u>RAaron@dykema.com</u>

Counsel for Environmental Law & Policy Center

Margrethe Kearney Environmental Law & Policy Center 1514 Wealthy Street, SE, Ste. 256 Grand Rapids, MI 49506 <u>mkearney@elpc.org</u> <u>MPSCDocket@elpc.org</u>

Counsel for Attorney General

Joel B. King Assistant Attorney General G. Mennen Williams Bldg., 6th Floor 525 W. Ottawa St. Lansing, MI 48909 <u>KingJ38@michigan.gov</u> <u>ag-enra-spec-lit@michigan.gov</u>

Counsel for ABATE

Bryan A. Brandenburg Michael J. Pattwell Clark Hill PLC 212 East César E. Chávez Ave. Lansing, MI 4890 <u>mpattwell@clarkhill.com</u> <u>bbrandenburg@clarkhill.com</u>

SERVICE LIST MPSC CASE NO U-20471

Counsel for Heelstone Development, LLC; Midland Cogeneration Venture LP

Jason Hanselman John A. Janiszewski Dykema Gossett PLLC 201 Townsend St., Ste. 900 Lansing, MI 48933 jhanselman@dykema.com jjaniszewski@dykema.com

Counsel for Cypress Creek Renewables

Jennifer Utter Heston Fraser Trebilcock Davis & Dunlap, P.C. 124 W. Allegan, Ste. 1000 Lansing, MI 48933 jheston@fraserlawfirm.com ababbitt@fraserlawfirm.com

Convergen Energy, LLC

Tim Lundgren Laura Chappelle The Victor Center, Suite 910 201 N. Washington Square Lansing, MI 48933 tjlundgren@varnumlaw.com lachappelle@varnumlaw.com

Energy Michigan, Inc.

Timothy J. Lundgren Laura Chappelle Varnum LLP 201 N. Washington Square, Suite 910 Lansing, MI 48933 tjlundgren@varnumlaw.com lachappelle@varnumlaw.com Justin K. Ooms Varnum LLP 333 Bridge Street NW Grand Rapids, MI 49504 jkooms@varnumlaw.com

City of Ann Arbor; Geronimo Energy

Timothy J. Lundgren Varnum LLP 201 N. Washington Square, Suite 910 Lansing, MI 48933 tjlundgren@varnumlaw.com lachappelle@varnumlaw.com Justin K. Ooms Varnum LLP 333 Bridge Street NW Grand Rapids, MI 49504 jkooms@varnumlaw.com

Missy Stults MStults@a2gov.org

International Transmission Company DBA ITC Transmission Richard J. Aaron Courtney F. Kissel Dykema Gossett PLLC 201 Townsend St., Suite 900 Lansing, Michigan 48933 raaron@dykema.com ckissel@dykema.com

Michigan Energy Innovation Business Council and The Institute for Energy Innovation Laura A. Chappelle The Victor Center 201 N. Washington Square, Ste. 910 Lansing, MI 48933 lachappelle@varnumlaw.com Toni L. Newell 333 Bridge St. NW Grand Rapids, MI 49504 tlnewell@varnumlaw.com

SERVICE LIST MPSC CASE NO U-20471

Jean-Luc Kreitner Environmental Law & Policy Center 35 E. Wacker Drive, Suite 1600 Chicago, IL 60601 jkreitner@elpc.org adunham@elpc.org

Soulardarity

(Lead Counsel) Mark Templeton Robert Weinstock Rebecca Boyd University of Chicago Law School – Abrams Environmental Law Clinic 6020 South University Avenue Chicago, IL 60637 templeton@uchicago.edu rweinstock@uchicago.edu rebecca.j.boyd@gmail.com

MICHIGAN PUBLIC POWER AGENCY Peter H. Ellsworth Nolan J. Moody 215 S. Washington Square, Suite 200 Lansing, MI 48933 pellsworth@dickinsonwright.com nmoody@dickinsonwright.com

Sarah Mullkoff Mullkoffs1@michigan.gov