

RE: Case No. U-17601 - In the matter of the application of Consumer Energy Company for Authority to Reconcile Its 2013 Energy Optimization Plan Costs Associated With the Plan Approved in Case Nos. U-16670 and U-17138.

Dear Ms. Kunkle:
Included in this electronic file is Consumers Energy Company's "Application and Testimony and Exhibits of Company witnesses Alfred A. Alatalo, Katherine L. Allen, Robert D. Bordner, Laura M. Collins, M. Sami Khawaja, Richard A. Morgan, Benjamin M. Ruhl, James P. Schwanitz, and Theodore A. Ykimoff." Also included is a Proof of Service showing electronic service upon the parties to Case Nos. U-16670 and U-17138. This is a paperless filing and is therefore being filed only in a PDF format.

Sincerely,
Digitally signed by
Kelly M. Hall $\begin{aligned} & \text { Kelly M. Hall } \\ & \text { Date: 2014.0 }\end{aligned}$
Date: 2014.05.30
12:34:46-04'00'
Kelly M. Hall
cc: Parties to Case No. U-16670 and U-17138 per Attachment 1 to Proof of Service

BEFORE THE MICHIGAN PUBLIC SERVICE COMMISSION

In the matter of the application of Consumer)
Energy Company for Authority to Reconcile)
Its 2013 Energy Optimization Plan Costs)
Associated With the Plan Approved in)
Case Nos. U-16670 and U-17138.)

APPLICATION
Consumers Energy Company ("Consumers Energy" or the "Company") respectfully requests that the Michigan Public Service Commission ("MPSC" or the "Commission") review and approve the Company's implementation of its 2013 Energy Optimization ("EO") Plan and find that the Company has complied with the energy savings targets imposed by 2008 PA 295; MCL 460.1001 et seq. ("Act 295"), and approve the reconciliation of Consumers Energy’s 2013 EO Plan with the surcharges collected during that period. The Company also requests that the Commission determine that the Company has earned the incentive payment set forth in Act 295 for 2013. In support of this Application, Consumers Energy states as follows:

1. Consumers Energy is, among other things, engaged as a public utility in the business of generating, purchasing, distributing, and selling electricity to approximately 1.8 million retail customers and natural gas to approximately 1.7 million retail customers in the State of Michigan. The retail electric and gas systems of Consumers Energy are operated as a single utility system.
2. Consumers Energy's retail electric and natural gas business is subject to the jurisdiction of the Commission pursuant to various provisions of 1909 PA 106, as amended, MCL 460.551 et seq., 1919 PA 419, as amended, MCL 460.51 et seq., and 1939 PA 3, as amended, MCL 460.1, et seq. as well as other applicable law. Pursuant to these statutory
provisions, the Commission has jurisdiction to regulate Consumers Energy's retail electric and gas rates.
3. On October 6, 2008, the "Clean, Renewable, and Efficient Energy Act" (Act 295) was enacted into law. See MCL 460.1001 et seq. Act 295 required Consumers Energy, as well as other electric and natural gas providers, to file proposed EO Plans with the Commission for review and approval. MCL 460.1071; MCL 460.1073. Act 295 states that the overall goal of these plans is to reduce the future costs of providing electric and natural gas service to customers. According to Act 295, EO Plans must (i) propose a set of programs that will meet energy savings targets established by Act 295; (ii) include offerings for each customer class, including low-income residential; (iii) specify necessary funding levels; (iv) propose cost recovery mechanisms that will allow recovery of EO Plan costs; (v) demonstrate that the EO programs, excluding program offerings to low-income residential customers, will be cost effective; and (vi) provide for the practical and effective administration of the proposed programs. Act 295 also provides that the Commission may authorize a financial incentive for exceeding the EO performance standard. MCL 460.1075
4. Consumers Energy filed its Application for approval of its initial EO Plan on February 17, 2009. The Commission approved the Company's initial EO Plan in its Order dated May 26, 2009 in MPSC Case Nos. U-15805 and U-15889. On September 10, 2010 the Company filed an amended EO Plan, which was approved by the Commission in its Order dated December 2, 2010 in Case No. U-16412. On August 1, 2011 the Company filed an amended EO Plan, which was approved by the Commission in its Order dated April 17, 2012 in Case No. U-16670. On November 7, 2012 Consumers Energy filed an Application in Case No. U-17138 requesting authority to amend the Case No. U-16670 EO Plan, which the Commission approved
in Orders dated January 31 and February 28, 2013 in Case No. U-17138. The EO Plan approved in Case No. U-16670, as amended by Case No. U-17138, was in effect for the year 2013. ${ }^{1}$
5. In an Order dated February 20, 2014 in MPSC Case Nos. U-17600, et al., the Commission directed Consumers Energy to file its 2013 EO reconciliation on May 30, 2014.
6. As demonstrated by the attached testimony and exhibits of Company witnesses, which are incorporated herein by reference as though fully set forth herein, Consumers Energy successfully implemented the Company's 2013 electric and gas EO Plan. As demonstrated in the attached testimony of Company witness Benjamin M. Ruhl, the Company met its electric and gas energy savings targets for 2013 as certified by independent third parties also testifying in this proceeding. The Company's EO Plan was cost-effective as measured by industry-accepted standards and the Company believes that its 2013 EO performance has earned an incentive payment for both its electric and gas results as described more fully in the accompanying testimony.
7. Consumers Energy has also included a proposal for collection of the electric incentive and gas incentive as described by the accompanying testimony of Company witness Laura M. Collins.
8. This Application is supported by the testimony and exhibits of Benjamin M. Ruhl (2013 EO Results, Annual Report); Laura M. Collins (EO surcharge revenue and proposed mechanism for collecting incentive payments); Katherine L. Allen (accounting/Generally Accepted Accounting Principles); James P. Schwanitz (accounting support); Richard A. Morgan

[^0](benefits/costs); Theodore A. Ykimoff (residential portfolio); Alfred A. Alatalo (business portfolio); M. Sami Khawaja (residential certification); and Robert D. Bordner (business certification).

WHEREFORE, Consumers Energy respectfully requests the Commission to:
A. Determine that the Company's 2013 EO Plan reconciliation is reasonable and prudent and meets all relevant requirements under Act 295;
B. Approve the collection of an incentive payment for both the gas and electric EO Plan;
C. Grant such other and further relief as may be lawful and appropriate.

Dated: May 30, 2014

Kely M. Hall
Digitally signed by Kelly M. Hall

Date: 2014.05.30
12:39:40-04'00'

Respectfully submitted, CONSUMERS ENERGY COMPANY

By: Patraicia K. Poppe $\begin{aligned} & \text { Poppe } \\ & \text { Date: 2014.05.30 12:42:34-04'00' }\end{aligned}$
Patricia K. Poppe
Vice President Customer Experience, Rates and Regulation

John C. Shea (P36854)
Kelly M. Hall (P48083)
One Energy Plaza
Jackson, Michigan 49201
Attorneys for Consumers Energy Company (517) 788-2910

In the matter of the application of Consumer) Energy Company for Authority to Reconcile)
Its 2013 Energy Optimization Plan Costs)
Case No. U-17601
Associated With the Plan Approved in Case Nos. U-16670 and U-17138.

VERIFICATION

Patricia K. Poppe, states that she is Vice President of Customer Experience, Rates and Regulation of Consumers Energy Company; that she has executed the foregoing Application for and on behalf of Consumers Energy Company; that she has read the foregoing Application and is familiar with the contents thereof; that the facts contained therein are true, to the best of her knowledge and belief; and that she is duly authorized to execute such Application on behalf of Consumers Energy Company.

Dated: May 30, 2014

Patmici K. Poppe | Digitally signed by Patricia K. |
| :--- |
| Poppe |
| Date: 2014.05 .30 13:32:40 |
| $-04 ' 00 '$ |

Patricia K. Poppe
Vice President Customer Experience, Rates and Regulation, Consumers Energy Company

In the matter of the application of Consumer) Energy Company for Authority to Reconcile) Its 2013 Energy Optimization Plan Costs)
Associated With the Plan Approved in)
Case Nos. U-16670 and U-17138.)
\qquad

DIRECT TESTIMONY

OF
ALFRED A. ALATALO
ON BEHALF OF
CONSUMERS ENERGY COMPANY

May 2014

ALFRED A. ALATALO
 DIRECT TESTIMONY

Q. Please state your name and business address.
A. My name is Alfred A. Alatalo. My business address is One Energy Plaza, Jackson, Michigan 49201.
Q. Please describe your position and responsibilities.
A. As Business Energy Efficiency Operations Director, I am responsible for the development and implementation of Consumers Energy Company’s ("Consumers Energy" or the "Company") business electric and gas energy optimization ("EO") programs.
Q. Please describe your education and professional experience.
A. I hold a Bachelor's degree in Mechanical Engineering from Michigan Technological University and am licensed as a Professional Engineer in the State of Michigan. I have been employed at Consumers Energy since 1983, where I began my career as a Graduate Engineer in the Nuclear Plant Support Department. For the first ten years of my employment I held increasingly responsible positions in the nuclear generation area. In 1993, I transferred to the Demand Side Management area to manage gas energy efficiency programs for businesses. In 1997, I was transferred to Marketing, Services and Trading and provided heating, ventilation, and air conditioning ("HVAC") services to business customers. In 1999 I transferred to the Business Customer Management Department and continued to provide HVAC services until 2001. At that time I became a corporate account manager for the Mid-Michigan area. In this role I served as the main interface to Consumers Energy with business customers in such facets as billing, rates, reliability, and energy efficiency. In 2003 I was promoted to Southern Team Lead for the account management team and given the responsibility of managing all business

ALFRED A. ALATALO
 DIRECT TESTIMONY

customers from Kalamazoo to Detroit. In 2008 I moved to the Energy Efficiency area as Business Team Lead and was given responsibility for developing and implementing the business portfolio of energy efficiency programs. In 2011 I was promoted to my current position as Business Energy Efficiency Operations Director.
Q. Have you previously testified before the Michigan Public Service Commission ("MPSC" or the "Commission")?
A. Yes, I filed testimony on behalf of the Company in the following case:

- Case No. U-17351 regarding Consumers Energy’s 2014-2017 Amended EO Plan.
Q. What is the purpose of your testimony in this proceeding?
A. The purpose of my testimony is two-fold:

1. To provide an overview of the Company's business programs; and
2. To provide actual energy savings and investment for the business portfolio.
Q. Are you sponsoring any exhibits with your direct testimony?
A. No.
Q. What EO programs were available for businesses during 2013?
A. The following programs were available to businesses during 2013:
3. Comprehensive Business Solutions Program
a. Prescriptive
b. Custom
c. New Construction
d. Builder Operator Certification
e. Compressed Air
f. Smart Buildings (Retro-Commissioning)
4. Small Business Direct Install Program
5. Business Multi-Family Program

ALFRED A. ALATALO
 DIRECT TESTIMONY

Q. What pilot programs were available for businesses during 2013?
A. The following pilots were available for businesses in 2013:

1. Multiple Measure Bonus
2. Buy Michigan Bonus
3. Agriculture
4. Building Performance with ENERGY STAR ${ }^{\circledR}$
5. Refrigeration
6. Industrial Continuous Improvement
7. Energy Check
8. HVAC Quality Maintenance
Q. For each of the business programs and pilots listed above is their detailed information available in this filing?
A. Yes. Company witness Benjamin M. Ruhl's Exhibit A-11 (BMR-1), Consumers Energy: 2013 Energy Optimization Annual Report, is a 184-page comprehensive Report that reviews the Company’s 2013 EO performance that includes information on the three-business programs and eight-business pilots.
Q. What information is contained in this Report?
A. The Consumers Energy: 2013 Energy Optimization Annual Report is a comprehensive Report that reviews the Company's 2013 EO performance on its portfolio of programs. The Report provides detailed program sections that include program objective, target market, program duration, program description, program logic, incentive strategy, eligible measures, implementation strategy, marketing strategy, key milestones, evaluation strategy requirements, Consumers Energy administrative requirements,
participation, investment, energy saving, and benefit-cost test results. Detailed information on business programs and business pilot programs can be found beginning on page 93 of that document.
Q. From the business programs and business pilot programs that the Company implemented associated with this filing, what were the actual total annualized MWh, MW, and Mcf savings for 2013 ?
A. From the business programs and business pilot programs, the Company delivered 270,948 MWh, 42.5 MW, and 936,745 Mcf of energy savings in 2013, respectively. Individual business program energy saving results can be found in Exhibit A-11 (BMR-1), Consumers Energy: 2013 Energy Optimization Annual Report on page 14 in Table 4.5.
Q. Has the Company certified the business electric and gas energy savings?
A. Yes. As detailed in Company witness Ruhl's direct testimony, the Company engaged a team led by Energy Market Innovations, Inc. ("EMI"), which certified the business energy savings. Energy savings for pilots as well as education and awareness are done by calculation as detailed in Exhibit A-11 (BMR-1), Consumers Energy: 2013 Energy Optimization Annual Report in Section 4.2 Energy Savings for Pilots and Education and Awareness on page 14.
Q. What are EMI's qualifications for certifying the business energy savings?
A. The business evaluation team led by EMI includes several of the most reputable evaluation, research, and engineering firms in the energy industry. All the firms on the evaluation team have conducted independent impact, process, and engineering analyses for utilities and regulatory commissions throughout the United States for well over ten

ALFRED A. ALATALO
 DIRECT TESTIMONY

years. Evaluation team members have specific experience in evaluating the unique needs of the commercial and industrial energy efficiency programs.
Q. What were EMI's conclusions regarding the amount of 2013 business electric and gas savings?
A. EMI's conclusions regarding the amount of 2013 non-residential electric and gas savings are presented in the testimony and exhibits of Company witness Robert D. Bordner.
Q. Did the Company achieve its business electric savings within the Commission-approved spend in Case No. U-16670?
A. The Company established its 2013 business electric spend in Case No. U-16670 to be $\$ 38,871,381$. The Company actually spent $\$ 38,744,921$ as shown on Exhibit A-16 (JPS-1) EO Electric Investments \& Incentive Calculation.
Q. Did the Company achieve its business gas savings within the Commission-approved spend in Case No. U-16670?
A. The Company established its 2013 business gas spend in Case No. U-16670 to be $\$ 12,267,441$. The Company actually spent $\$ 12,265,360$ as shown on Exhibit A-17 (JPS-2) EO Gas Investments \& Incentive Calculation.
Q. Why do the actual electric and gas spends vary from the planned spends?
A. Due to the large number of programs and timing of program expenses it is not possible to exactly match planned spending with actual spending. It should be noted that the variance between planned spending and actual spending is a deminimus amount when compared to the total spending.
Q. Does that conclude your testimony?
A. Yes.

In the matter of the application of Consumer) Energy Company for Authority to Reconcile) Its 2013 Energy Optimization Plan Costs) Case No. U-17601
Associated With the Plan Approved in)
Case Nos. U-16670 and U-17138.)
\qquad

DIRECT TESTIMONY

OF
KATHERINE L. ALLEN

ON BEHALF OF
CONSUMERS ENERGY COMPANY

May 2014

DIRECT TESTIMONY

Q. Please state your name and business address.
A. My name is Katherine L. Allen. My business address is One Energy Plaza, Jackson, Michigan 49201.
Q. Please describe your position and responsibilities.
A. I am employed by Consumers Energy Company ("Consumers Energy" or the "Company") as the Director of Accounting in the General Accounting Department. I am responsible for accounting and analyzing financial results for the Company.
Q. Please describe your education and professional experience.
A. I received a Bachelor of Science in Business Administration degree in Accounting from Central Michigan University in 2002. In 2003, I began my career in public accounting and obtained my Certified Public Accountant ("CPA") license in 2004. In 2004, I began my career at CMS Energy. Between 2004 and 2007, I was employed by CMS Enterprises, a subsidiary of CMS Energy, as a General Accounting Analyst. In 2007, I transferred to the Consolidation Department of Consumers Energy. In 2009, I transferred to the General Accounting Department of Consumers Energy as the Manager of the Financial Results team. In 2014, I assumed the role as the Director of General Accounting.
Q. What is the purpose of your testimony?
A. The purpose of my testimony is to provide the methodology and calculation of the Company's accounting process associated with its electric and gas Energy Optimization ("EO") programs. Also, my testimony will discuss the EO earned performance incentive and the collection period for that incentive required under Generally Accepted Accounting Principles ("GAAP").

KATHERINE L. ALLEN
 DIRECT TESTIMONY

Q. Are you sponsoring any exhibits with your direct testimony?
A. Yes, I am sponsoring four exhibits:

- Exhibit A-1 (KLA-1): EO Electric Cumulative Over/Under Recovery
- Exhibit A-2 (KLA-2): EO Gas Cumulative Over/Under Recovery
- Exhibit A-3 (KLA-3): 2010 EO Performance Incentive Cumulative Over/Under Recovery
- Exhibit A-4 (KLA-4): 2011 EO Performance Incentive Cumulative Over/Under Recovery
Q. Have these exhibits been prepared by you or under your supervision?
A. Yes.
Q. What information is provided in these exhibits?
A. Exhibits A-1 (KLA-1) and A-2 (KLA-2) provide accounting data (by month and customer class) for the electric and gas EO programs including surcharges billed, costs incurred, and over/under recovery balances with carrying costs. Exhibit A-3 (KLA-3) provides the 2010 EO incentive amount accrued, amount collected, and the over/under recovery balance. Exhibit A-4 (KLA-4) provides the 2011 EO incentive amount accrued, amount collected, and the over/under recovery balance.
Q. What surcharge amounts were billed to customers in 2013?
A. In accordance with the tariff sheets on file with the Michigan Public Service Commission ("MPSC" or the "Commission"), the Company began billing customers in June 2009 for EO surcharges. In 2013, the Company billed $\$ 66,092,183$ in total to electric customers (Exhibit A-1 (KLA-1), page 1, line 1). These surcharges are split between Residential and Commercial and Industrial ("C\&I") classes in the amounts of \$27,763,991 and $\$ 38,328,192$, respectively. In 2013, the Company billed $\$ 47,959,596$ in total to gas

DIRECT TESTIMONY

customers (Exhibit A-2 (KLA-2), page 1, line 1). These surcharges are split between Residential and C\&I customer classes in the amounts of \$34,563,229 and \$13,396,367, respectively.
Q. What program costs were booked in 2013?
A. In 2013, the Company booked $\$ 69,169,718$ of program costs for the electric EO program (Exhibit A-1 (KLA-1), page 1, line 2). These costs are split between Residential and C\&I customer classes in the amounts of $\$ 30,306,431$ and $\$ 38,863,287$, respectively. In 2013, the Company booked $\$ 47,787,238$ of program costs for the gas EO program (Exhibit A-2 (KLA-2), page 1, line 2). These costs are split between Residential and C\&I customer classes in the amounts of $\$ 35,550,775$ and $\$ 12,236,463$, respectively.
Q. Why do total booked costs in your testimony differ from the amounts provided by Company witness James P. Schwanitz in his direct testimony in this proceeding?
A. The costs, as stated in Mr. Schwanitz's testimony, reflect actual costs for the year while the booked costs I reference include estimated accruals. At the end of each year, the Company accrues costs that have been incurred, but are not yet invoiced, on an estimated basis.
Q. How are over/under recovery amounts calculated?
A. The incremental over/under recovery amount is the difference between lines 1 and 2 (Exhibits A-1 (KLA-1) and A-2 (KLA-2), page 1, line 3). This difference is added to the prior year-end over/under recovery amount calculated in the same manner plus the prior year interest recorded on the over/under recovery balance. If, since program inception, the Company has collected more in total surcharges than costs incurred, the Company has over-recovered. In that case, excess revenues are deferred and a regulatory liability is

KATHERINE L. ALLEN

DIRECT TESTIMONY

recorded. Conversely, if since program inception the Company has incurred more costs than surcharges collected, the Company has under-recovered its costs. In that case, excess costs are deferred, and a regulatory asset is recorded.
Q. What are the over/under balances in the regulatory asset and/or regulatory liability accounts associated with the EO program as of December 31, 2013 ?
A. In the electric EO program, for the 2013 reconciliation period, total booked costs exceeded total surcharges resulting in an under-recovery in all customer classes in the amount of \$3,077,535 (Exhibit A-1 (KLA-1), page 1, line 3) split between Residential and C\&I in the amounts of $\$ 2,542,440$ and $\$ 535,095$, respectively. The prior year over-recovery balance and interest carried forward into 2013 was \$28,364,797 and \$215,086 (Exhibit A-1 (KLA-1), page 1, lines 4 and 5). As a result, the total over-recovery balance as of year-end 2013 is $\$ 25,502,348$ (Exhibit A-1 (KLA-1), page 1, line 7) split between Residential and C\&I in the amounts of $\$ 7,299,689$ and $\$ 18,202,659$, respectively.

In the gas EO program, 2013 total surcharges exceeded booked costs resulting in an over-recovery in the amount of $\$ 172,358$ (Exhibit A-2 (KLA-2), page 1, line 3). The C\&I program resulted in an over-recovery in the amount of $\$ 1,159,904$, and the Residential program resulted in an under-recovery in the amount of $\$ 987,546$. The prior year over-recovery balance and interest carried forward into 2013 was \$5,485,928 and \$89,108 (Exhibit A-2 (KLA-2), page 1, lines 4 and 5). As a result, the total over-recovery balance as of year-end 2013 is $\$ 5,747,394$ (Exhibit A-2 (KLA-2), page 1, line 7) split between an under-recovery of $\$ 7,217,900$ associated with the Residential program and an over-recovery of $\$ 12,965,294$ associated with the C\&I program.
Q. Have carrying costs on over/under recovery balances been recorded and at what interest rate?
A. Yes, the Company records carrying costs on over/under recovery balances per the Commission’s Order in Case No. U-15805. The carrying cost rate used for both overand under-recovery balances is the Company's short-term borrowing rate. In 2013, carrying costs were recorded for the electric EO program in the amount of $\$ 96,585$ (Exhibit A-1 (KLA-1), page 1, line 8). In 2013, carrying costs were recorded for the gas EO program in the amount of \$31,059 (Exhibit A-2 (KLA-2), page 1, line 8).
Q. Was an EO incentive recorded based on program costs in 2013?
A. Yes, a financial incentive was recorded equal to 15% of total spend in 2013. The calculation uses total program expenses by electric and gas, \$69,169,718 and \$47,787,238 (Exhibits A-1 (KLA-1) and A-2 (KLA-2), page 1, line 2), respectively, and multiplies that number by 15%. In the electric and gas EO programs, incentives were recorded equal to $\$ 10,375,458$ and $\$ 7,168,086$, respectively.
Q. Is the EO incentive revenue classified as normal revenue?
A. No, the EO incentive revenue falls under an alternative revenue program according to ASC 980-605-25 ("ASC 605").
Q. What are the normal revenue recognition criteria?
A. ASC 605, Revenue Recognition, states that revenue should be recognized when it is realized or realizable and earned. Generally, the following criteria need to be met: (i) pervasive evidence of arrangements exists; (ii) delivery has occurred or services rendered; (iii) the seller's price to the buyer is fixed or determinable; and (iv) collectability is reasonably assured.

KATHERINE L. ALLEN

DIRECT TESTIMONY

Q. What is an alternative revenue program?
A. An alternative revenue program is specific GAAP for regulated utilities with alternative revenue.
Q. What is alternative revenue?
A. Alternative revenue is generally segregated into two programs. The first program adjusts billings for the effects of abnormal weather patterns, energy conservations efforts, or from broad external factors such as a general recession. Revenue recorded through decoupling falls under this program. The second program provides for additional billings if the utility achieves certain objectives, such as reducing costs, reaching specified milestones, or improving customer service. Revenue recorded through the EO incentive falls under this latter program.
Q. What are the alternative revenue recognition criteria?
A. ASC 605 states that revenue recognition is appropriate when all of the following criteria are met:

- Criteria A: The program is established by an order from the utility's regulatory commission that allows for automatic adjustment of future rates. Verification of the adjustment of future rates by the regulator does not preclude the adjustment from being considered automatic.
- Criteria B: The amount of additional revenues for the period is objectively determinable and recovery is probable.
- Criteria C: The additional revenues will be collected within the 24 months following the end of the annual period in which they are recognized.
Q. Does the EO incentive in this proceeding meet Criteria A?
A. Yes, Criteria A has been met. The Order in Case No. U-15800 issued by the Commission on December 4, 2008 authorizes Consumers Energy to receive a financial incentive for meeting the energy reduction goals identified in the Company's approved EO Plan.

KATHERINE L. ALLEN

DIRECT TESTIMONY
Q. Does the EO incentive in this proceeding meet Criteria B?
A. Yes, the EO incentive recorded is objectively determinable.
Q. Does the EO incentive in this proceeding meet Criteria C?
A. Yes, but only if the collection of the EO incentive occurs within 24 months from the period the incentive was recognized.
Q. What is the Company's proposed collection period for the EO incentive revenue of \$17.5 million?
A. The EO incentive revenue was recognized on Consumers Energy's books in December 2013. In order to comply with the 24 -month collection requirement, Criteria C, the EO incentive of $\$ 17.5$ million needs to be fully collected by December 31, 2015.
Q. Why is it important to record the incentive revenue in the year it is associated with?
A. It is important to record the incentive revenue in the same period that the EO expenses are incurred to present a better picture of the true economics of the program. It also allows for consistent financial reporting as incentives will not be allocated over various financial reporting periods.
Q. What are the implications if the revenue is not fully collected by December 31, 2015?
A. If the EO incentive is not fully collected by December 31, 2015, GAAP would require a determination that the revenue was recorded out of period and should have been recognized when actually billed to the customer. The requirements of ASC 605 stipulate that the revenue must be collected within 24 months and allow no flexibility. This would then require a reversal of the EO incentive revenue that was already recognized by the Company in 2013.

DIRECT TESTIMONY

Q. Have previous EO incentives been collected within the 24-month required time period, Criteria C?
A. The 2009 EO incentive exceeded the required collection period mandated by ASC 605. The Company's external auditors concluded in their 2011 audit that we did not account for the 2009 EO incentive in the proper period as we did not collect the 2009 EO incentive within the 24-month time frame. The 2010 EO incentive also exceeded the required collection period mandated by ASC 605. The amount not collected within the 24-month period was adjusted in December 2012. The total adjustment recorded amounted to $\$ 4.2$ million. The 2011 EO incentive was collected within the period required by ASC 605. The 2012 EO incentive is projected to be collected within the 24-month required collection period, as the Commission authorized collection in Case No. U-17281 to occur by December 2014.
Q. What do you mean by proper period?
A. Proper period means that the revenue was reported in Consumers Energy's financial statements in the incorrect accounting period. Specifically, with respect to the 2009 EO incentive, the Company should have recognized 7 months of incentive revenue in 2009 and 5 months of incentive revenue in 2012. This demonstrates the issue faced by the Company, basically a time discrepancy between when the incentive is earned, when it is collected and when it can be recognized.
Q. Did you record any adjustments related to the revenue that was recorded in the incorrect period related to the 2009 and 2010 incentive?
A. Yes, a $\$ 4.2$ million adjustment was recorded in 2012 reducing revenue for the portion of the 2010 EO incentive which was not collected by the end of 2012. For the

KATHERINE L. ALLEN

DIRECT TESTIMONY

2009 incentive, the potential revenue adjustment totaled $\$ 2$ million. An adjustment was not recorded due to the amount being determined immaterial in nature. However, the EO incentives going forward will not be immaterial, thus having a larger impact on the financial statements, which could force the Company to restate the financial statements for those periods if the incentives are not collected within the required 24-month time periods.
Q. What are the financial implications if the revenue is reported out of period?
A. The EO incentive recorded in prior financial periods would need to be removed in the accounting period in which an order is received. In future periods, customers would be billed for the EO incentive and revenue would be recognized, thus shifting revenue between financial years. This occurred with the 2010 EO incentive resulting in $\$ 4.2$ million of revenue being reduced in 2012 with corresponding revenue being recognized in 2013 when the customers are billed. This is why it is necessary for the Commission to allow the Company to fully recover the EO incentive in this case by no later than December 31, 2015.
Q. Did you have an over/under collection of any previous incentives that should be reconciled as a part of this case?
A. Yes, as shown in Exhibit A-3 (KLA-3) the 2010 EO incentive recorded totaled $\$ 8,483,795$, consisting of $\$ 5,076,731$ for electric and $\$ 3,407,064$ for gas. The amount collected for the 2010 EO incentive totaled $\$ 8,829,181$, consisting of $\$ 5,318,459$ for electric and $\$ 3,510,722$ for gas. The total over-recovery for the 2010 EO incentive totaled $\$ 345,386$, consisting of an over-recovery of $\$ 241,728$ for electric and $\$ 103,658$ for gas. Also, as shown in Exhibit A-4 (KLA-4) the 2011 EO incentive recorded totaled
$\$ 14,593,977$, consisting of $\$ 7,281,670$ for electric and $\$ 7,312,307$ for gas. The amount collected for the 2011 EO incentive totaled \$15,202,081, consisting of \$7,556,529 for electric and $\$ 7,645,552$ for gas. The total over-recovery for the 2011 EO incentive totaled $\$ 608,104$, consisting of an over-recovery of $\$ 274,859$ for electric and $\$ 333,245$ for gas.
Q. How do you propose to handle the over-recovered balance for the 2010 and 2011 EO incentives?
A. We propose to offset the over-recovered balance of \$953,490 for the 2010 and 2011 EO incentives with the collection of the 2013 EO incentive by December 31, 2015, as discussed by Company witness Laura M. Collins in her testimony.
Q. Does this conclude your testimony?
A. Yes.

In the matter of the application of Consumer)
Energy Company for Authority to Reconcile)
Its 2013 Energy Optimization Plan Costs)
Case No. U-17601
Associated With the Plan Approved in) Case Nos. U-16670 and U-17138.

EXHIBITS

OF
KATHERINE L. ALLEN
ON BEHALF OF
CONSUMERS ENERGY COMPANY

May 2014

Consumers Energy
EO Electric Cummulative Over (Under) Recovery (By Class and Total)
๔

©
(ธ)

96,585
$25,598,933$

0.31% | $\stackrel{\circ}{3}$ |
| :---: |
| $\stackrel{3}{3}$ |

EO Electric Cummulative Over (Under) Recovery (C\&I by Month)

	(a)		(b)		(c)		(d)
Line	Description		Jan		Feb		Mar
C\&1							
1	Surcharge Revenue	\$	3,255,889	\$	3,255,229	\$	3,222
2	Program Expenses	\$	2,379,111	\$	2,520,121	\$	2,671
3	Change in Over (Under) Recovery	\$	876,778	\$	735,108	\$	550
	Program Over/(Under) Recovery						
4	Over (Under) Recovery Beg.Bal.	\$	18,593,091	\$	19,614,532	\$	20,34
5	Prior Year Carrying Charges		144,663				
6	Change in Balance		876,778		735,108		550
7	Over (Under) Recovery Ending Bal.	\$	19,614,532	\$	20,349,640	\$	20,900
8	Over (Under) Recovery Average Bal.	\$	19,176,143	\$	19,982,086	\$	20,624
	Carrying Charges						
9	Carrying Charges, Monthly	\$	9,049	\$	5,079	\$	
10	Carrying Charges, Cumulative	\$	9,049	\$	14,128	\$	
11	Cumulative Over (Under) Recovery	\$	19,623,581	\$	20,363,768	\$	20,9
12	Annual Interest Rate		0.57\%		0.31\%		
13	Monthly Interest Rate		0.0475\%		0.0258\%		0.0

Consumers Energy

2010 EO Incentive Cummulative (Over)/Under Recovery

Month	Year	Current Month Collection	Prior Month Cumulative (Over)/Under Collection
(a)	(b)	(c)	(d)
2010 EO Incentive Regulatory Asset Balance			8,483,795
1 June	2012	$(529,629)$	7,954,166
2 July	2012	$(563,578)$	7,390,588
3 August	2012	$(539,130)$	6,851,458
4 September	2012	$(525,112)$	6,326,346
5 October	2012	$(544,569)$	5,781,777
6 November	2012	$(679,674)$	5,102,103
7 December	2012	$(859,336)$	4,242,767
8 January	2013	$(1,034,358)$	3,208,409
9 February	2013	$(1,059,774)$	2,148,635
10 March	2013	$(999,740)$	1,148,895
11 April	2013	$(901,158)$	247,737
12 May	2013	$(667,953)$	-420,216
13 June	2013	-	-420,216
14 July	2013	-	-420,216
15 August	2013	35,374	-384,842
16 September	2013	18,098	-366,744
17 October	2013	6,744	-360,000
18 November	2013	6,091	-353,909
19 December	2013	2,480	-351,429
20 January	2014	1,144	-350,285
21 February	2014	2,186	-348,099
22 March	2014	2,713	-345,386

$(8,829,181)$

2010 EO Electric Incentive Cummulative (Over)/Under Recovery

Month	Year	Current Month Collection	Prior Month Cumulative (Over)/Under Collection
(a)	(b)	(c)	(d)
2010 EO Incentive Regulatory Asset Balance			5,076,731
1 June	2012	$(428,083)$	4,648,648
2 July	2012	$(484,738)$	4,163,910
3 August	2012	$(472,433)$	3,691,477
4 September	2012	$(447,421)$	3,244,056
5 October	2012	$(417,998)$	2,826,058
6 November	2012	$(421,130)$	2,404,928
7 December	2012	$(444,101)$	1,960,827
8 January	2013	$(472,276)$	1,488,551
9 February	2013	$(454,143)$	1,034,408
10 March	2013	$(445,368)$	589,040
11 April	2013	$(442,509)$	146,531
12 May	2013	$(429,287)$	$(282,756)$
13 June	2013	-	$(282,756)$
14 July	2013	-	$(282,756)$
15 August	2013	17,312	$(265,444)$
16 September	2013	12,506	$(252,938)$
17 October	2013	2,961	$(249,977)$
18 November	2013	1,958	$(248,019)$
19 December	2013	1,809	$(246,210)$
20 January	2014	584	$(245,626)$
21 February	2014	1,521	$(244,105)$
22 March	2014	2,377	$(241,728)$

2010 EO Gas Incentive Cummulative (Over)/Under Recovery

Month	Year	Current Month Collection	Prior Month Cumulative (Over)/Under Collection
(a)	(b)	(c)	(d)
2010 EO Incentive Regulatory Asset Balance			3,407,064
1 June	2012	$(101,546)$	3,305,518
2 July	2012	$(78,840)$	3,226,678
3 August	2012	$(66,697)$	3,159,981
4 September	2012	$(77,691)$	3,082,290
5 October	2012	$(126,571)$	2,955,719
6 November	2012	$(258,544)$	2,697,175
7 December	2012	$(415,235)$	2,281,940
8 January	2013	$(562,082)$	1,719,858
9 February	2013	$(605,631)$	1,114,227
10 March	2013	$(554,372)$	559,855
11 April	2013	$(458,649)$	101,206
12 May	2013	$(238,666)$	-137,460
13 June	2013	-	-137,460
14 July	2013	-	-137,460
15 August	2013	18,062	-119,398
16 September	2013	5,592	-113,806
17 October	2013	3,783	-110,023
18 November	2013	4,133	-105,890
19 December	2013	671	-105,219
20 January	2014	560	-104,659
21 February	2014	665	-103,994
22 March	2014	336	-103,658

[^1]
2011 EO Incentive Cummulative (Over)/Under Recovery

Month	Year	Current Month Collection	Prior Month Cumulative (Over)/Under Collection
(a)	(b)	(c)	(d)
2011 EO Incentive Regulatory Asset Balance	$14,593,977$		
1 June	2013	$(1,744,037)$	$12,849,940$
2 July	2013	$(1,634,273)$	$11,215,667$
3 August	2013	$(1,591,264)$	$9,624,403$
4 September	2013	$(1,605,232)$	$8,019,171$
5 October	2013	$(1,651,761)$	$6,367,410$
6 November	2013	$(2,667,382)$	$3,700,028$
7 December	2013	$(4,268,013)$	$-567,985$
8 January	2014	$(34,307)$	$-602,292$
9 February	2014	$(2,107)$	$-604,399$
10 March	2014	$(3,705)$	$-608,104$

$(15,202,081)$

2011 EO Electric Incentive Cummulative (Over)/Under Recovery

Month	Year	Current Month Collection	Prior Month Cumulative (Over)/Under Collection
(a)	(b)	(c)	(d)
2011 EO Incentive Regulatory Asset Balance			7,281,670
1 June	2013	$(1,033,297)$	6,248,373
2 July	2013	$(1,151,388)$	5,096,985
3 August	2013	$(1,110,418)$	3,986,567
4 September	2013	$(1,109,734)$	2,876,833
5 October	2013	$(1,005,258)$	1,871,575
6 November	2013	$(1,020,891)$	850,684
7 December	2013	$(1,106,088)$	$(255,404)$
8 January	2014	$(15,505)$	$(270,909)$
9 February	2014	$(1,389)$	$(272,298)$
10 March	2014	$(2,561)$	$(274,859)$

2011 EO Gas Incentive Cummulative (Over)/Under Recovery

Month	Year	Current Month Collection	Prior Month Cumulative (Over)/Under Collection
(a)	(b)	(c)	(d)
2011 EO Incentive Regulatory Asset Balance			7,312,307
1 June	2013	$(710,740)$	6,601,567
2 July	2013	$(482,885)$	6,118,682
3 August	2013	$(480,846)$	5,637,836
4 September	2013	$(495,498)$	5,142,338
5 October	2013	$(646,503)$	4,495,835
6 November	2013	$(1,646,491)$	2,849,344
7 December	2013	$(3,161,925)$	-312,581
8 January	2014	$(18,802)$	-331,383
9 February	2014	(718)	-332,101
10 March	2014	$(1,144)$	-333,245

In the matter of the application of Consumer) Energy Company for Authority to Reconcile) Its 2013 Energy Optimization Plan Costs)
Associated With the Plan Approved in)
Case Nos. U-16670 and U-17138.)
\qquad

DIRECT TESTIMONY

OF

ROBERT D. BORDNER
 ON BEHALF OF

CONSUMERS ENERGY COMPANY

DIRECT TESTIMONY

Q. Please state your name and business address.
A. My name is Robert D. Bordner. My business address is 83 Columbia Street, Suite 400, Seattle, Washington 98104.
Q. Please describe your position and responsibilities.
A. I currently serve as the President and Chief Executive Officer ("CEO") of Energy Market Innovations, Inc. ("EMI"), a research-based consulting firm with 27 staff specializing in renewable energy, energy efficiency, and demand response. My responsibilities include overall corporate management and leadership, as well as technical direction on several of our key projects. I oversee the team that conducts evaluation research for all of the commercial and industrial ("C\&I") programs in Consumers Energy Company's ("Consumers Energy" or the "Company") Energy Optimization ("EO") portfolio. This includes (i) process evaluations to assess customer perceptions of program delivery; (ii) impact evaluations to assess energy savings, verify installation and operation, and estimate net-to-gross ratios; and (iii) market assessments to identify baseline characteristics and assess changes in the marketplace stimulated by the offering of EO programs.
Q. Please describe your education and professional experience.
A. I hold a Bachelor's degree in Economics and Public Policy Analysis from Pomona College and completed graduate coursework in Energy Management \& Policy from the University of Pennsylvania. I have a broad perspective of energy systems that draws upon the disciplines of economics, engineering, law, and behavioral sciences. I began my career in the energy industry working for a wind energy development company, conducting financial analyses and negotiating power purchase agreements for projects in

DIRECT TESTIMONY

New England. After attending graduate school, I began my consulting career with Synergic Resources Corporation, a pioneer in least cost planning, demand side management planning, and program evaluation.

I founded EMI in 1995, and I currently serve as the President and CEO. The firm has since grown to a full-time staff of 25, including staff with Masters and Doctorate degrees in Mechanical Engineering, Economics, Urban Planning, Energy Policy, Education, Psychology, and Program Evaluation. We have completed over 180 engagements related to energy efficiency strategy, program design, and program evaluation. My areas of specialty include program evaluation (process impact and market), regulatory economics, energy policy, and emerging technology assessment. We are currently working on program evaluation projects in jurisdictions across the United States, including Maine, Connecticut, Ohio, Michigan, Utah, Wyoming, Montana, California, New York, Washington, and Hawaii. I have over 26 years of experience in the energy industry, during which time I have worked with energy companies and non-profit organizations throughout the United States, Australia, and New Zealand. I have regularly presented papers, and moderated panels and presentations at professional conferences sponsored by the American Council for an Energy Efficient Economy ("ACEEE") and the International Energy Program Evaluation Conference ("IEPEC").
Q. What is the purpose of your testimony in this proceeding?
A. The purpose of my testimony is to present EMI's certification of the C\&I energy savings presented by Consumers Energy for the 2013 program year.

DIRECT TESTIMONY

Q. Are you sponsoring any exhibits with your direct testimony?
A. Yes, I am sponsoring one exhibit - Exhibit A-5 (RDB-1) - Certification of Reported Savings: Consumers Energy C\&I Energy Optimization Programs, Program Year 2013. This is an 81-page Report produced by EMI that audits and certifies the 2013 C\&I electric and gas energy savings achieved by the Company’s EO Plan.
Q. Was this exhibit prepared by you or under your supervision?
A. Yes.
Q. How has EMI certified energy savings for the Company?
A. EMI employed a rigorous process to certify energy savings for the Company's C\&I EO programs that included:

- Comparison of reported savings results to data maintained by Consumers Energy and implementation contractor tracking systems to ensure utilization of an accurate process for calculating total savings values by measure, program, and the total portfolio;
- Confirmation that the equipment specified on the incentive applications and logged in the tracking system met program incentive requirements;
- Review of a random, statistically significant sample of incentive applications for each program to determine that data were consistently and accurately represented in the tracking systems;
- Verification that correct factors were used to calculate savings, including: (i) Michigan Energy Measures Database ("MEMD") saving values; (ii) evaluation derived installation rates and engineering adjustments; (iii) appropriate net-to gross factors; and (iv) the application of savings bonus for measures with lives greater than ten years.
Q. Has EMI reviewed other performance metrics related to the Company's C\&I EO program?
A. Yes. EMI verified gas savings from 2013 New Construction projects and compared those to the New Construction verified gas savings from the 2012 program year. In addition,

DIRECT TESTIMONY

EMI verified the number of electric and gas Multi-Measure projects and compared those metrics to the numbers verified for the 2012 program year.
Q. What are EMI's qualifications for certifying the nonresidential energy savings and other performance metrics?
A. The C\&I evaluation team led by EMI includes our own staff, plus several of the most reputable evaluation, research, and engineering firms in the energy industry. These include Evergreen Economics, Research Into Action, Inc., Michaels Energy, Wirtshafter Associates, and PWP Consulting. All firms on the evaluation team have conducted independent impact, process, and engineering analyses for utilities and regulatory commissions throughout the United States for well over ten years. Evaluation team members have specific experience in evaluating the unique needs of C\&I energy efficiency utility programs.
Q. What were EMI's conclusions regarding the amount of electric energy savings for 2013 nonresidential programs?
A. EMI's conclusions are set forth in Exhibit A-5 (RDB-1), which is EMI's certification report. Table 1-1 in that report shows that the Company calculated 240,551,436 kWh (240,551.4 MWh) of net nonresidential electric energy savings without the Long-Life Equipment Savings Multiplier, or $255,533,683 \mathrm{kWh}(255,533.7 \mathrm{MWh})$ of net nonresidential electric energy savings with the Long-Life Equipment Savings Multiplier. Table 1-7 of the report shows that the Company planned for 5,936,000 kWh (5,936 MWh) of electric savings from its customers who implemented self-directed EO Plans.

DIRECT TESTIMONY

Q. What were EMI's conclusions regarding the amount of 2013 nonresidential electric demand savings?
A. Exhibit A-5 (RDB 1), Table 1-2 shows that the Company calculated $40,479 \mathrm{~kW}$ of net nonresidential electric energy savings without the Long-Life Equipment Savings Multiplier, or 42,549 kW of net nonresidential electric energy savings with the Long-Life Equipment Savings Multiplier.
Q. What are EMI's conclusions regarding the amount of 2013 nonresidential gas savings?
A. Exhibit A-5 (RDB-1), Table 1-3 shows that the Company calculated $862,155 \mathrm{Mcf}$ of net nonresidential electric energy savings without the Long-Life Equipment Savings Multiplier, or 913,711 Mcf of net nonresidential electric energy savings with the Long-Life Equipment Savings Multiplier.
Q. What were EMI's conclusions regarding the number of electric Multi-Measure projects?
A. Exhibit A-5 (RDB-1), Table 1-9 shows that EMI verified 82 electric Multi-Measure projects were completed in 2013. This compares to 47 electric Multi-Measure projects in 2012. Participation in 2013 represents a 74.5% increase over 2012 participation.
Q. What were EMI's conclusions regarding the number of gas Multi-Measure projects?
A. Exhibit A-5 (RDB-1), Table 1-9 shows that EMI verified 35 gas Multi-Measure projects were completed in 2013. This compares to 22 gas Multi-Measure projects in 2012. Participation in 2013 represents a 59.1\% increase over 2012 participation.
Q. What were EMI's conclusions regarding gas New Construction savings?
A. Exhibit A-5 (RDB-1), Table 1-9 shows that EMI verified 29,113 Mcf of New Construction gas savings in 2013. This compares to 10,372 Mcf of New Construction
gas savings in 2012. Participation in 2013 represents a 280.7\% increase over 2012 participation.
Q. Does that conclude your testimony?
A. Yes.

In the matter of the application of Consumer)
Energy Company for Authority to Reconcile)
Its 2013 Energy Optimization Plan Costs)
Case No. U-17601
Associated With the Plan Approved in) Case Nos. U-16670 and U-17138.

EXHIBIT

OF
ROBERT D. BORDNER
ON BEHALF OF

CONSUMERS ENERGY COMPANY

May 2014

Certification of Reported Savings: Consumers Energy C\&I Energy Optimization Programs

Certification of Reported Savings: Program Year 2013

Presented To:

Presented By:

Energy Market Innovations, Inc. 83 Columbia Street | Suite 400

Seattle, WA 98104

This report is a deliverable submitted to Consumers Energy as part of a multi-year, independent evaluation contract to conduct impact, process, and market assessment studies relating to the nonresidential sector programs administered by Consumers Energy.

The independent evaluation team includes the following firms:
Energy Market Innovations, Inc. (EMI), Contract Lead
Evergreen Economics, Inc.
Michaels Energy
Wirtshafter Associates
PWP, Inc.

Table of Contents

Certification Letter iv

1. Overview 1
1.1 Objectives and Scope 1
1.2 Summary of Certified Savings 3
Measure Life and Lifetime Savings 8
Performance Incentive Mechanism Metrics 8
2. Methodology 10
2.1 Compare Per-unit Savings Values in Program Tracking Database with MEMD 10
2.2 Review of Project Applications for Transcription Errors 11
2.3 Calculate Adjusted Reported Gross Savings 13
2.4 Application of Adjustment Factors 14
2.5 Application of Long Life Equipment Savings Multiplier. 16
2.6 Verification of Performance Incentive Metrics 16
3. Summary of Savings Variances 18
3.1 Certification of Per-unit Savings 18
Business Solutions Program 18
Small Business Solutions 33
Multi-Family Program 36
4. Application Certification 38
Business Solutions Program 39
New Construction Program 42
Direct Install - Core Program 43
Programmable Thermostat Program 44
Hospitality Initiative 46
Furnace Tune-Up Initiative 47
Multi-Family Program 48
5. Certified Savings 50
Business Solutions Program 50
Small Business Solutions Program 56
Multi-Family Program 64
6. Performance Incentive Mechanism 76
6.1 Multi-measure C\&I projects 76
6.2 New Construction C\&I gas savings 77
7. Savings Verification Summary 79
List of Tables
Table 1-1. PY2013 Certified Electric Energy (kWh) Savings by Program 4
Table 1-2. PY2013 Certified Electric Demand (kW) Savings by Program 5
Table 1-3. PY2013 Certified Natural Gas (Mcf) Savings by Program 6
Table 1-4. 2013 Percent of Reported Net kWh Savings Verified 7
Table 1-5. 2013 Percent of Reported Net kW Savings Verified 7

Case No.: U-17601
Exhibit: A-5 (RDB-1)
Witness: RDBordner

Table 1-6. 2013 Percent of Reported Net Mcf Savings Verified 7
Table 1-7. 2103 Savings from Self-Direct Projects 8
Table 1-8. Lifetime Savings and Weighted Average Measure Life 8
Table 1-9. PY2013 Performance Metric Certification. 9
Table 2-1. Application Review Sample Sizes by Program/Subprogram 12
Table 2-2. PY2013 Average Gross kWh, kW, MCF and Net-to-Gross Adjustment Factors ${ }^{\text {a }}$ 15
Table 2-3. PY2013 Gross Adjustment Factor Impact Evaluation Sources 15
Table 3-1. PY2013 Business Solutions Program Per-Unit Electric Energy (kWh) Savings Variances 20
Table 3-2. PY2013 Business Solutions Program Per-Unit Electric Demand (kW) Savings Variances. 24
Table 3-3. PY2013 Business Solutions Program Per-Unit Natural Gas (Mcf) Savings Variances 28
Table 3-4. Business Solutions Program Measures with Additional Performance Savings 30
Table 3-5. PY2013 Business Solutions Program Variances for Measures with Additional kWh Performance savings 31
Table 3-6. PY2013 Business Solutions Program Variances for Measures with Additional kW Performance savings 31
Table 3-7. Business Solutions Program Measures with Additional Efficiency Savings 32
Table 3-8. Business Solutions Program Measures with Additional Size Savings 32
Table 3-9. PY2013 Small Business Solutions Program Per-Unit Electric Energy (kWh) Savings Variances 34
Table 3-10. PY2013 Small Business Solutions Program Per-Unit Electric Demand (kW) Savings Variances 34
Table 3-11. PY2013 Small Business Solutions Program Per-Unit Natural Gas (Mcf) Savings Variances. 35
Table 3-12. PY2013 Multi-Family Program Per-Unit Electric Demand (kW) Savings Variances 36
Table 3-13. PY2013 Multi-Family Program Per-Unit Gas (Mcf) Savings Variances 37
Table 4-1. PY2013 Business Solutions Program, Application Variances at the Customer-Level 41
Table 4-2. PY2013 Business Solutions Program Measure-Level Application Variances 42
Table 4-3. PY2013 New Construction Program Variances at Customer Level. 43
Table 4-4. PY2013 Direct Install - Core Program Application Variances at Customer-Level. 44
Table 4-5. PY2013 Programmable Thermostat Variances at Customer Level 45
Table 4-6. PY2013 Programmable Thermostat Measure-Level Application Variances 45
Table 4-7. PY2013 Hospitality Initiative Application Variances at Customer Level 46
Table 4-8. PY2013 Hospitality Initiative Application Variances at Measure Level 47
Table 4-9. PY2013 Furnace Tune-up Initiative Variances at Customer Level 48
Table 4-10. PY2013 Multi-Family Program Application Variances at Customer Level 49
Table 4-11. PY2013 Multi-Family Program Application Variances at Measure Level. 49
Table 5-1. PY2013 Business Solutions Program—Electric Energy (kWh) Certified Savings by Measure End Use Category ${ }^{\text {a,b }}$ 51
Table 5-2. PY2013 Business Solutions Program—Electric Demand (kW) Certified Savings by Measure End Use Category ${ }^{\text {a,b }}$ 53
Table 5-3. PY2013 Business Solutions Program - Natural Gas (Mcf) Certified Savings by Measure End Use Category ${ }^{\text {a,b }}$ 55
Table 5-4. PY2013 Small Business Solutions Program Electric Energy (kWh) Certified Savings by Measure ${ }^{\text {a }}$ 57
Table 5-5. PY2013 Small Business Solutions Program Electric Demand (kW) Certified Savings by Measure ${ }^{\text {a }}$. 60
Table 5-6. PY2013 Small Business Solutions Program Natural Gas (Mcf) Certified Savings by Measure ${ }^{\text {a }}$ 63
Table 5-7. PY2013 Multi-Family Program Electric Energy (kWh) Certified Savings by Measure 65
Table 5-8. PY2013 Multi-Family Program Electric Demand (kW) Certified Savings by Measure 70
Table 5-9. PY2013 Multi-Family Program Gas (Mcf) Certified Savings by Measure 73
Table 6-1. Multiple Measures Projects: Targets 76
Table 6-2. Multiple Measures Projects: Achieved 77
Table 6-3. Gas New Construction Savings: Targets 77

Table 6-4. New Construction Gas Savings: Achieved .. 78
Table 7-1. PY2013 Certified Electric Energy (kWh) Savings by Program ... 80
Table 7-2. PY2013 Certified Electric Demand (kW) Savings by Program ... 81
Table 7-3. PY2013 Certified Natural Gas (Mcf) Savings by Program .. 82
Table 7-4. PY2013 Performance Metric Certification... 82

Appendices
Appendix A: Savings Values of Validated Measures .. A-1
Appendix B: Validated Savings... B-1
Appendix C: Application Variances.. C-1

Certification Letter

May 31, 2014
Consumers Energy Company
1 Energy Plaza Drive
Jackson, MI 49201-2357

RE: PY2013 Verification of Net Savings of the Consumers Energy Commercial \& Industrial Energy Optimization Programs

This document reports the verified net electric energy, electric demand, and natural gas savings for the Consumers Energy Commercial and Industrial (C\&I) Energy Optimization Programs for Program Year 2013. The verification of net savings was conducted by the independent certification team led by Energy Market Innovations, Inc. (EMI).

The objective of this verification was to review the accuracy of the electric energy (kWh), electric demand (kW), and natural gas (Mcf) savings of the 2013 C\&I programs offered by Consumers Energy. As indicated in the attached report, the EMI team hereby verifies the following:

- Verified net electric energy savings of $240,551,436 \mathrm{kWh}$ for all Consumers Energy C\&I programs for Program Year 2013, plus an additional $14,982,247 \mathrm{kWh}$ with the Long-Life Equipment Savings Multiplier, for an overall total of $255,533,683 \mathrm{kWh}$ electric savings.
- Verified net electric demand savings of $40,479 \mathrm{~kW}$ for all Consumers Energy C\&I programs for Program Year 2013, plus an additional $2,070 \mathrm{~kW}$ with the Long-Life Equipment Savings Multiplier, for an overall total of $42,549 \mathrm{~kW}$ demand savings.
- Verified net natural gas savings of 862,155 Mcf for all Consumers Energy C\&I programs for Program Year 2013, plus an additional 51,556 Mcf with the Long-Life Equipment Savings Multiplier, for an overall total of $\mathbf{9 1 3 , 7 1 1}$ Mcf of natural gas savings.
- Between 2012 and 2013, Consumers Energy achieved a 75\% increase in electric MultiMeasure projects, a 59% increase in gas Multi-Measure projects, and a 281% increase in verified net gas New Construction savings.

The validation did not include the evaluation of the achieved energy impacts resulting from the 2013 C\&I programs. Results of the comprehensive impact evaluation will be documented in subsequent reports submitted under separate cover.

Sincerely,

Robert D. Bordner
President

1. Overview

This report documents the energy savings certification of the Commercial and Industrial (C\&I) Energy Optimization (EO) Programs administered by Consumers Energy for Program Year 2013. This certification was conducted in February through May of 2014 by the independent certification team led by Energy Market Innovations, Inc. (EMI) as part of a comprehensive evaluation effort covering all of the Consumers Energy C\&I programs.

1.1 Objectives and Scope

The purpose of the savings certification was to review the Program Year 2013 reported gross electric energy (kWh), electric demand (kW), and natural gas (Mcf) savings tracked by Consumers Energy and its implementation contractors for the C\&I energy efficiency programs and initiatives. For the first time, this certification also assesses the various metrics included in Consumers Energy's new performance incentive mechanism (PIM).

Throughout this report, most certification results are presented at the C\&I program level, though some results are presented at the subprogram level where appropriate. The C\&I programs and subprograms covered by this certification effort include the following:

1. Business Solutions Program
a. Business Solutions Program - Prescriptive
b. Business Solutions Program - Custom
c. Building Operator Certification (BOC)
d. New Construction Program (Whole Building and Major Retrofit)
2. Small Business Solutions Program
a. Direct Install Program (Direct Install - Core Program)
b. Programmable Thermostat Program
c. Hospitality Initiative
d. Drop Ship Lighting Initiative
e. Buydown Lighting Initiative
f. Furnace Tune-up Initiative
3. Multi-Family Program

In conjunction with Consumers Energy and the statewide Energy Efficiency Collaborative, the EMI team identified the following tasks to certify Program Year 2013 savings:

1. Verify that the per-unit savings values for each measure entered by Consumers Energy in the program tracking database, eTracker, match those included in the Michigan Energy Measures Database (MEMD) or other relevant supporting documentation.
2. Review a sample of project applications to check for systematic transcription errors affecting program/initiative savings.
3. Verify the calculation of the claimed savings (reported gross savings) in the Consumers Energy eTracker database.
4. Apply appropriate adjustment factors derived from separate impact evaluations to the verified savings results.
5. Verify the appropriate calculation and application of the Long-Life Equipment Savings Multiplier.

To certify net savings, the certification team first completed Tasks 1 and 3 to estimate "adjusted reported gross savings," which are equal to Consumers Energy's reported savings after adjusting for any misapplication of deemed savings values or miscalculation of energy savings. In the first two years of Consumers Energy's C\&I programs, when no impact adjustment factors were applied (Task 4), the certification team also included an adjustment from Task 2 when calculating adjusted reported gross savings values. However, as the review of project applications listed as part of Task 2 happens as part of impact evaluations, the adjustment factors resulting from those evaluations applied in Task 4 preclude the need to include these tasks when calculating adjusted reported savings. Doing so would, in essence, adjust the gross savings twice for any errors found.

To complete Task 4, the certification team applied two adjustment factors to the adjusted reported gross savings, including: (1) verified gross savings adjustment factors, and (2) net-togross adjustment factors. The verified gross savings adjustment factors incorporate installation rates and, where applicable, engineering adjustment factors derived from previous program evaluations. The net-to-gross adjustment factor was a constant 0.900 across all programs as mandated by a recent MPSC ruling. ${ }^{1}$ These adjustment factors are discussed in more detail in the next chapter.

In addition to Tasks 1-4, beginning this year for Program Year 2013, the certification team also included calculation of the Long-Life Equipment Savings Multiplier (LLESM) as part of the certification process. The LLESM is part of the new performance incentive mechanism (PIM) as outlined by the Michigan Public Service Commission (MPSC). ${ }^{2}$ In an effort to bolster the installation of longer-lasting measures, the LLESM is a 10% savings multiplier awarded to measures installed through the C\&I programs with a measure life of 10 years or more.

In addition to the tasks involved with certifying program savings, the certification team also certified additional metrics associated with Consumers Energy's performance incentive mechanism (PIM). This included reviewing program tracking data and hard copy documentation to assess the number of Multi-Measure projects and New Construction gas savings.

[^2]
1.2 Summary of Certified Savings

Table 1-1 summarizes the verified electric energy (kWh) savings for each program. As shown, for the 2013 program year, the certification team derived total verified net electric energy savings of $240,551,436 \mathrm{kWh}$ across all programs resulting in an overall kWh savings realization rate of 0.876 . Almost two-thirds of total verified net electric energy savings (64.13% or $154,270,443 \mathrm{kWh}$) resulted from the Business Solutions Program; about one-third (33.72% or $81,963,790 \mathrm{kWh})$ resulted from the Small Business Solutions Program; only 1.76% (4,317,203 kWh) arose from the Multi-Family Program. The LLESM for electric energy savings totaled $14,982,247 \mathrm{kWh}$ for an overall PY2013 kWh savings of 255,533,683.

Table 1-2 summarizes the verified electric demand (kW) savings for each program. As shown, for the 2013 program year, the certification team derived total verified net electric demand savings of $40,479 \mathrm{~kW}$ across all programs resulting in an overall kW savings realization rate of 0.818 . The Business Solutions Program represented the greatest proportion of total electric demand savings (58.96% or $23,865 \mathrm{~kW}$), followed the Small Business Solutions Program at $40.06 \%(16,216 \mathrm{~kW})$ and the Multi-Family Program (0.98% or 398 kW). The LLESM for electric demand savings totaled $2,070 \mathrm{~kW}$ for an overall PY2013 kW savings of 42,549.

Table 1-3 summarizes the verified natural gas (Mcf) savings for each program. For the 2013 program year, the certification team derived total verified net gas savings of $862,1550 \mathrm{Mcf}$ across all programs resulting in an overall gas realization rate of 0.844 . The Business Solutions Program accounted for the greatest proportion of verified net gas savings (81.48%) with 702,517 Mcf. Next was the Small Business Solutions Program with 15.24% of verified net gas savings ($131,420 \mathrm{Mcf}$); the Multi-Family Program accounted for 3.27% of verified net gas savings (28,218 Mcf). The LLESM for natural gas savings totaled 51,556 Mcf for an overall PY2013 Mcf savings of 913,711.

Table 1-4, Table 1-5, and Table 1-6 present the reported net savings, verified net savings, and percent of reported net savings verified through the 2013 certification process for electric energy, electric demand, and natural gas, respectively. All of these savings values include the LLESM. Table 1-4 shows no major deviations for reported-to-verified net electric (kWh) savings, with 99.30% of reported net savings being verified. Table 1-5 presents several reported-toverified net deviations for demand (kW) savings, where 101.41% of reported net savings were verified. Table 1-6 presents no notable reported-to-verified net deviations for gas (Mcf) savings, with 100.39% of reported net savings being verified.

The remainder of this report provides additional detail on the savings certification methods and results.
Table 1-1. PY2013 Certified Electric Energy (kWh) Savings by Program

Program	2013 Reported Gross kWh Savings [A]	2013 Adjusted Reported Gross kWh Savings [B]	2012 Verified Gross kWh Savings Adjustment Factor ${ }^{\text {a }}$ [C]	2013 Verified Gross kWh Savings $[D]=[B \times C]$	Deemed kWh NTG Adjustment Factor ${ }^{\text {b }}$ [E]	2013 Verified Net kWh Savings $[F]=[D \times E]$	2013 kWh Realization Rate $[G]=[F / A]$	2013 Verified Net kWh Savings Including Long Life Equipment Savings Multiplier (LLESM) $[H]=\left[\begin{array}{lll} F & x & 1.1 \end{array}\right]^{c}$
Business Solutions Program ${ }^{\text {d }}$	177,331,024	176,778,028	0.970	171,414,710	0.900	154,270,443	0.870	166,773,674
Small Business Solutions Program ${ }^{\text {e }}$	92,393,647	92,393,647	0.986	91,070,877	0.900	81,963,790	0.887	84,184,243
Multi-Family Program	4,821,077	4,821,077	0.995	4,796,908	0.900	4,317,203	0.895	4,575,765
TOTAL	274,545,749	273,992,753	0.976	267,282,495	0.900	240,551,436	0.876	255,533,683

a) Note that the verified gross adjustment factors were derived from prior-year impact evaluations (see Section 2.4).
c) The verified net savings including the Long Life Equipment Savings Multiplier (LLESM) are equal to the verified net savings plus a 10% multiplier for all measures installed under each program that have a measure of 10 years or more.
d) The Business Solutions Program is comprised of the Business
e) The Small Business Solutions Program is comprised of the Direct Install-Core, Programmable Thermostat, Hospitality, Furnace Tune-up, CFL-Drop Ship, and CFL-Buydown Programs.
Table 1-2. PY2013 Certified Electric Demand (kW) Savings by Program

Program	2013 Reported Gross kW Savings [A]	2013 Adjusted Reported Gross kW Savings [B]	2012 Verified Gross kW Savings Adjustment Factor ${ }^{\text {a }}$ [C]	2013 Verified Gross kW Savings $[\mathrm{D}]=[\mathrm{B} \times \mathrm{C}]$	Deemed kW NTG Adjustment Factor ${ }^{b}$ [E]	2013 Verified Net kW Savings $[F]=[\mathrm{D} \times \mathrm{E}]$	2013 kW Realization Rate $[\mathrm{G}]=[\mathrm{F} / \mathrm{A}]$	2013 Verified Net kW Savings Including Long Life Equipment Savings Multiplier (LLESM) $[H]=\left[\begin{array}{lll}F & \times 1.1\end{array}{ }^{c}\right.$
Business Solutions Program ${ }^{\text {d }}$	29,264	28,959	0.916	26,517	0.900	23,865	0.816	25,592
Small Business Solutions Program ${ }^{\text {e }}$	19,743	19,104	0.943	18,017	0.900	16,216	0.821	16,545
Multi-Family Program	463	445	0.994	442	0.900	398	0.859	412
TOTAL	49,470	48,507	0.927	44,976	0.900	40,479	0.818	42,549

Columns may not sum to total due to rounding.
a) Note that the verified gross adjustment factors were derived from prior-year impact evaluations (see Section 2.4).
a) Note that the verified gross adjustment factors were derived from prior-year impact evaluations (see
b) The net-to-gross adjustment factor was deemed at 0.900 for all programs/initiatives by the MPSC

[^3]Columns may not sum to total due to rounding.
a) Note that the verified gross adjustment factor
a) Note that the verified gross adjustment factors were derived from prior-year impact evaluations (see Section 2.4). b) The net-to-gross adjustment factor was deemed at 0.900 for all programs/initiatives by the MPSC.
c) The verified net savings including the Long Life Equipment Savings Multiplier (LLESM) are equal to
c) The verified net savings including the Long Life Equipment Savings Multiplier (LLESM) are equal to the verified net savings plus a 10% multiplier for all measures installed
under each program that have a measure of 10 years or more..
d) The Business Solutions Program is comprised of the Business Solutions-Custom, Business Solutions-Prescriptive, Building Operator Certification, and New Construction e) The The Sma

[^4]Table 1-4. 2013 Percent of Reported Net kWh Savings Verified

	2013 Reported Net kWh Savings Including LLESM	2013 Verified Net kWh Savings Including LLESM	2013 Percent of Reported Net kWh Savings Verified
Program/Initiative	$165,101,200$	$166,773,674$	99.00%
Business Solutions Program $^{\text {a }}$	$84,044,151$	$84,184,243$	99.83%
Small Business Solutions Program			
b	$4,606,004$	$4,575,765$	100.66%
Total	$253,751,354$	$\mathbf{2 5 5 , 5 3 3 , 6 8 2}$	$\mathbf{9 9 . 3 0 \%}$

a) The Business Solutions Program is comprised of the Business Solutions-Custom, Business Solutions-Prescriptive, Building Operator Certification, and New Construction projects.
b) The Small Business Solutions Program is comprised of the Direct Install-Core, Programmable Thermostat, Hospitality, Furnace Tune-up, CFL-Drop Ship, and CFL-Buydown Programs.

Table 1-5. 2013 Percent of Reported Net kW Savings Verified

	2013 Reported Net kW Savings Including LLESM	2013 Verified Net kW Savings Including LLESM	2013 Percent of Reported Net kW Savings Verified
Program/Initiative	25,742	25,592	100.59%
Business Solutions Program $^{\text {a }}$	16,969	16,545	102.56%
Small Business Solutions Program $^{\text {b }}$	437	412	106.15%
Multi-Family Program	$\mathbf{4 3 , 1 4 8}$	$\mathbf{4 2 , 5 4 9}$	$\mathbf{1 0 1 . 4 1 \%}$
Total			

a) The Business Solutions Program is comprised of the Business Solutions-Custom, Business Solutions-Prescriptive, Building Operator Certification, and New Construction projects.
b) The Small Business Solutions Program is comprised of the Direct Install-Core, Programmable Thermostat, Hospitality, Furnace Tune-up, CFL-Drop Ship, and CFL-Buydown Programs.

Table 1-6. 2013 Percent of Reported Net Mcf Savings Verified

Program/Initiative	2013 Reported Net Mcf Savings Including LLESM	2013 Verified Net Mcf Savings Including LLESM	2013 Percent of Reported Net Mcf Savings Verified
Business Solutions Program ${ }^{\text {a }}$	753,954	750,276	100.49%
Small Business Solutions Program	b	132,614	132,612

a) The Business Solutions Program is comprised of the Business Solutions-Custom, Business Solutions-Prescriptive, Building Operator Certification, and New Construction projects.
b) The Small Business Solutions Program is comprised of the Direct Install-Core, Programmable Thermostat, Hospitality, Furnace Tune-up, CFL-Drop Ship, and CFL-Buydown Programs.

In addition to these programs funded through the EO surcharge, qualifying customers had the choice to opt out of paying the EO surcharge and implement their own energy efficiency projects. A summary of the reported savings for the "self-direct" projects is provided in Table 1-7. The savings numbers were provided by Consumers Energy and were not reviewed as part of this certification process.

Table 1-7. 2103 Savings from Self-Direct Projects

Program	2012 Reported Gross MWh Savings
Self-Direct Projects	5,936

Measure Life and Lifetime Savings

At the request of the MPSC, the certification team calculated lifetime savings and the weighted average measure life for each program. To do so, the certification team verified that appropriate measure lifetime values from the MEMD were used for each prescriptive measure. ${ }^{3}$ Table 1-8 summarizes the lifetime kWh and Mcf savings for each program and provides the weighted average measure life by fuel type, where each project's measure life is weighted by project net first year savings.

Table 1-8. Lifetime Savings and Weighted Average Measure Life

Program	Net Lifetime Savings - kWh	Net Lifetime Savings - Mcf	Average kWh Measure Life (in Years) ${ }^{\text {a }}$	Average Mcf Measure Life (In Years) ${ }^{\text {a }}$
Business Solutions Program ${ }^{\text {d }}$	1,932,456,235	8,396,337	12.53	11.95
Small Business Solutions Program ${ }^{\text {e }}$	536,499,170	1,194,696	6.55	9.09
Multi-Family Program	42,596,284	390,865	9.87	13.85
TOTAL	2,511,551,690	9,981,899	10.44	11.58

a. Weighted average measure life values computed by each project's net first year savings as the weights (without inclusion of the LLESM).

Performance Incentive Mechanism Metrics

Table 1-9 summarizes the three new performance incentive mechanism (PIM) metrics that the certification teamed certified for PY2013. These metrics include growth in MultiMeasure electric projects, which increased by 74.5\% between 2012 and 2013; growth in Multi-Measure gas projects, which increased by 59.1\% between 2012 and 2013; and growth in New Construction gas savings, which increased by 280.7\% between 2012 and 2013.

[^5]Table 1-9. PY2013 Performance Metric Certification

Multiple Measures Projects	2012 Metric	2013 Metric	Percent Change in Metric
Multi-Measures Electric Projects	47 Projects	82 Projects	74.5%
Multi-Measures Gas Projects	22 Projects	35 Projects	59.1%
New Construction Gas Savings	10,372 MCF	29,113 MCF	280.7%

2. Methodology

The certification team identified the following tasks to be conducted for this certification:

1. Verify that the per-unit savings values for each measure entered by Consumers Energy match those included in the MEMD or other relevant supporting documentation. ${ }^{4,5}$
2. Review a sample of project applications to check for systematic transcription errors affecting program/initiative savings.
3. Verify the calculation of the claimed savings (reported gross savings) in the Consumers Energy tracking database.
4. Apply appropriate adjustment factors derived from separate impact evaluations to the verified savings results.
5. Apply the 10% Long Life Equipment Savings Multiplier (LLESM) to all C\&I measures with a measure life of 10 years or greater.

Details on each of these tasks are discussed below.

2.1 Compare Per-unit Savings Values in Program Tracking Database with MEMD

The first task in the certification process involved comparing the reported per-unit savings value of each measure found in the Consumers Energy program-tracking database (eTracker) with the values contained in the MEMD or other relevant supporting documentation. This was not a sampling effort and instead entailed a line-by-line assessment of the entire Consumers Energy tracking database (eTracker) for each measure for each program. The database included records for all measures installed through the following energy efficiency programs and subprograms:

[^6]1. Business Solutions Program
a. Business Solutions Program - Prescriptive
b. Business Solutions Program - Custom
c. Building Operator Certification (BOC)
d. New Construction Program (Whole Building and Major Retrofit)
2. Small Business Solutions Program
a. Direct Install Program (Direct Install - Core Program)
b. Programmable Thermostat Program
c. Hospitality Initiative
d. Drop Ship Lighting Initiative
e. Buydown Lighting Initiative
f. Furnace Tune-up Initiative
3. Multi-Family Program

The certification team verified all savings values for all the measures to the accuracy of four significant digits to the right of the decimal place. However, results in some tables throughout this report are rounded to the nearest whole number to allow tables to fit on the page.

2.2 Review of Project Applications for Transcription Errors

To assess how accurately the information from project applications had been transferred to the Consumers Energy tracking database (eTracker), the certification team compared the tracking data with the information contained on the original applications for a sample of projects. The certification team conducted this application review for the Business Solutions, Small Business Solutions, and Multi-Family Programs; however, results are summarized by subprograms, where applicable, because of differences in the available application materials, the program implementers, and the application processes. The certification team conducted and summarized the application review for the following:

- Business Solutions Program (includes Business Solutions-Prescriptive, Business Solutions-Custom, and Building Operator Certification)
- New Construction Program (includes New Construction-Major Retrofit and New Construction-Whole Building)
- Direct Install-Core Program
- Programmable Thermostat Program
- Hospitality Program
- Furnace Tune-up
- Multi-Family

No paper records were available for the Drop Ship Lighting or Buydown Lighting Initiatives so the application review was not conducted for these initiatives.

The certification team reviewed each application to confirm that customer- and measurelevel information was transferred correctly to the tracking database. Fields certified at the customer level included project identifier, account number, customer name, address, city, zip code, phone, and customer type (electric only, gas only, or combination). At the measure level, the certification team checked applications for accuracy to ensure the correct measure type and measure quantities were transferred to the tracking databases and that the correct savings type (kWh and/or Mcf) was claimed for the appropriate customer type (i.e. electric savings for electric only customers; gas savings for gas only customers; electric and gas savings - for applicable measures - for combination customers).

For the document review, sampling was used with the goal of attaining a 90% level of confidence at the 10% level of relative precision at the program/subprogram level. The exception to this is with the Business Solutions Program, where for efficiency, the applications reviewed included all the projects that were part of last year's impact evaluation because the documentation materials were already on-hand. Thus, for the Business Solutions Program the number of applications reviewed was larger than needed to attain $90 / 10$. Table 2-1 shows the total number of application reviewed for each program/subprogram.

Table 2-1. Application Review Sample Sizes by Program/Subprogram

Program/Subprogram	Sample Size
Business Solutions	153
New Construction Program	10
Direct Install-Core	76
Programmable	77
Thermostats	73
Hospitality	72
Furnace Tune-up	56
Multi-Family	

The samples were drawn to develop a reliable estimate of the proportion of applications that contained an error either in the customer contact information or the information on installed measures. To draw the sample, the certification team randomly selected projects from each program's database. The certification team then obtained an electronic copy of each application to conduct the certification review.

The results of the documentation reviews are provided for informational purposes only and adjustments resulting from any variances found during the reviews are not applied to the certified savings. Differences in quantity installed or any issues related to energy savings are derived from the more rigorous impact evaluations. Thus, applying an adjustment factor derived from the application review along with the verified gross savings adjustment factors would effectively "double-count" the adjustment. As such, the results of the
application review are provided herein to be consistent with past year's reports, but the results were not applied to savings in any way. ${ }^{6}$

2.3 Calculate Adjusted Reported Gross Savings

The third task in the certification process involved replicating the calculations used to derive reported gross savings for each measure for each program, based on the information from Task 1. These calculations result in the adjusted reported gross savings.

For measures installed through the Programmable Thermostat, Hospitality, Drop Ship Lighting, Buydown Lighting, and Furnace Tune-up Programs, as well as the vast majority of the Multi-Family Program measures, this calculation simply involved multiplying the installed quantity by the verified MEMD or workpaper per-unit savings value from Task 1, because all measures installed under these subprograms used deemed savings. Most measures installed through the Business Solutions - Prescriptive, Building Operator Certification, and New Construction Programs used the same method, however, several measures use performance, efficiency, or quantity adjustments to compute the final energy savings (these measures are discussed in more detail in Chapter 3 of this report).

For any custom measure (e.g. Business Solution-Custom, custom measures installed under the Multi-Family Program, and Direct Install - Core Program measures, which are based on project-specific, individualized energy savings calculations), the certification team assumed the adjusted reported gross savings for each measure were the same as the reported gross savings. This approach has been taken since the PY2012 certification, to avoid the potential threat of double counting errors. That is, an error that would be captured as a difference between this year's reported gross savings and adjusted reported gross savings in the certification process could also be captured in next year's verified gross savings adjustment factor derived through the program evaluations. ${ }^{7}$ Thus, to avoid this potential double counting, the certification team no longer recalculates the individualized measure savings using the energy savings equations for Direct Install - Core Program measures, but instead, considers the adjusted reported gross savings to be the same as the reported gross savings for the purposes of certification. This approach is now also more consistent with the treatment of other programs in the certification process (i.e., Business Solutions - Custom), where the information needed to recalculate savings is not contained in the tracking data, and the actual savings estimates are verified through the annual evaluations. In general, the rule is that if the computation can be reproduced based on the information present in the tracking data, it is included as part of the certification process; if not, it is not included because it is captured through the annual evaluations.

[^7]
2.4 Application of Adjustment Factors

Following Task 3, the certification team applied two adjustment factors to derive verified net saving: (1) the verified gross savings adjustment factor, and (2) the net-to-gross adjustment factor. In accordance with the decision of the MPSC Evaluation Collaborative, the verified gross savings adjustment factors are derived from previous years impact evaluations, while the net-to-gross adjustment factors are a constant 0.900 across all measures (see discussion below).

The first adjustment factor, the verified gross savings adjustment factor, incorporates the installation adjustment factors and, where applicable, engineering adjustment factors for each program resulting from previous years program evaluations.

The installation adjustment factors account for issues such as, but not limited to:

- Incented measures that were not installed
- Measures that were installed but later removed
- Measures that were improperly installed or no longer operable
- Measures that did not match those identified in the EO provider's tracking system
- Measures that were installed but were not eligible according to program guidelines

The engineering adjustment factors take into account factors such as:

- Incorrect assumptions used to estimate project impacts (e.g. coincidence factor, baseline specifications, operating characteristics, operating hours, efficiency performance specifications, capacity, and load)
- Errors in the algorithm used to estimate reported impacts

The derivation of the verified gross adjustment factors differs for custom and prescriptive measures. For measures with custom calculated savings, the verified gross savings adjustment factors incorporate the program level installation adjustment factors and engineering adjustment factors; for prescriptive measures, the measure savings are all deemed and only installation adjustment factors are required (i.e. no engineering adjustments are applied). Thus, for prescriptive measures, the verified gross savings adjustment factors are the same as the installation adjustment factors derived from the impact evaluations; for custom measures, the verified gross savings adjustment factors are equal to the installation adjustment factors times the engineering adjustment factors.

Gross adjustment factors differ by measure and are applied at the measure level before aggregating results to the program level. Table 2-2 shows the average gross $\mathrm{kWh}, \mathrm{kW}, \mathrm{Mcf}$, and net-to-gross adjustment factors used in this Program Year 2013 certification.

Table 2-2. PY2013 Average Gross kWh, kW, MCF and Net-to-Gross Adjustment Factors a

Program	Gross kWh Adjustment Factor	Gross kW Adjustment Factor	Gross Mcf Adjustment Factor	Net-to-Gross Adjustment Factor
Business Solutions Program	0.970	0.916	0.926	0.900
Small Business Solutions Program	0.986	0.943	0.994	0.900
Multi-Family Program	0.995	0.994	1.000	0.900

a) The adjustment factors shown in this table are average adjustment factors. Gross adjustment factors vary by measure and measures within the same program often have different gross adjustment factors based on specific impact evaluation findings from prior years.

The impact evaluation sources for the gross adjustment factors are shown in Table 2-3.
Table 2-3. PY2013 Gross Adjustment Factor Impact Evaluation Sources

Subprogram	Source				
Business Solutions - Prescriptive	2012 Business Solutions Impact Evaluation and 2011 Business Solutions Impact Evaluation for measures not rebated in 2012				
Business Solutions - Custom	2012 Business Solutions Impact Evaluation				
Direct Install - Core	2011 Consumers Energy Direct Install Program Impact Evaluation				
Programmable Thermostat	2012 Small Business Solutions Impact Evaluation				
Hospitality	2012 Small Business Solutions Impact Evaluation	$	$	New Construction	2012 Business Solutions Impact Evaluation and 2011 Business Solutions Impact Evaluation for measures not rebated in 2012
:---	:---				
Multi-Family	The Cadmus Group. Consumers Energy 2011 Evaluation Activity and Summary Report, May 18, 2012.				
Drop Ship Lighting	No GAF because reported gross savings include installation adjustment from 2009 Drop Ship Lighting Impact Evaluation				
Buydown Lighting	The Cadmus Group. Consumers Energy 2011 Evaluation Activity and Summary Report, May 18, 2012.				
Furnace Tune-up	New program - no impact evaluation results				

For each measure, j, in each program, i, the appropriate verified gross savings adjustment factors were applied to 2013 adjusted reported gross savings to derive 2013 verified gross savings in accordance with the following:

```
    2 0 1 3 \text { Verified Gross Savings } i _ { i , j }
= 2013 Adjusted Reported Gross Savingsi,j}< x Verified Gross Savings Adjustement Factor i,
```

The second adjustment factor applied to these certification results was the net-to-gross adjustment factor. For this 2013 certification effort, the net-to-gross adjustment factor was a constant 0.900 across all programs, as mandated by a recent MPSC ruling. ${ }^{8}$ The deemed net-

[^8]to-gross adjustment factor was applied to verified gross savings to derive verified net savings:
\[

$$
\begin{aligned}
& 2013 \text { Verified Net Savings }_{i, j} \\
& =2013 \text { Verified Gross Savings }_{i, j} \times \text { Deemed NTG Adjustment Factor }_{i, j}
\end{aligned}
$$
\]

The final 2013 realization rates are equal to the 2013 verified net savings divided by the 2013 reported gross savings:

$$
2013{\text { Realization } \text { Rate }_{i, j}}=\frac{2013 \text { Verified Net Savings }_{i, j}}{2013 \text { Reported Gross } \text { Savings }_{i, j}}
$$

All calculations were conducted at the measure level and then aggregated to the program or subprogram level for reporting purposes.

2.5 Application of Long Life Equipment Savings Multiplier

Beginning this year for Program Year 2013, the certification team also included the calculation of the Long Life Equipment Savings Multiplier (LLESM) as part of the certification process. The LLESM is part of the new performance incentive mechanism (PIM) as outlined by the MPSC. ${ }^{9}$ In an effort to bolster the installation of longer-lasting measures, the LLESM is a 10% savings multiplier awarded to all measures installed through the C\&I programs with a measure life of 10 years or more. The certification team relied on the measure lives contained in the MEMD or relevant workpapers for determining eligible longlife measures. As such, a 1.1 multiplier was applied to net savings for each appropriate measure, j, in each program, i, as shown in the following:

2013 Verified Net Savings Including LLESM ${ }_{i, j}=2013$ Verified Gross Savings ${ }_{i, j} x 1.1$
In the body of the report results are shown as aggregated to the program level; complete measure level results are shown in Appendix A.

2.6 Verification of Performance Incentive Metrics

In January 2013, the MPSC outlined a new performance incentive mechanism (PIM) for Consumers Energy's EO programs in Case No. U-17138, which was then updated in Case No. U-17531. ${ }^{10}$ This new PIM includes a series of metrics that contribute towards Consumers Energy's total performance incentive, such as increases in multi-measure projects and new construction savings. Beginning this year for Program Year 2013, the certification team also verified the various metrics that contribute towards Consumers Energy's performance

[^9]incentive. In addition to the demand (kW) and long-life savings included in this report, Consumers Energy's (PIM) include the following:

- Multi-measure C\&I electric projects
- Multi-measure C\&I gas projects
- New Construction C\&I gas savings

To certify the number of multi-measure projects, the certification team reviewed the invoices for multi-measure bonuses paid by Consumers Energy in PY2012 and PY2013. To certify the level of New Construction gas savings, the certification team verified program tracking data values. Details of this PIM certification are included in Chapter 6 of this report.

3. Summary of Savings Variances

This section summarizes the results of the independent certification of adjusted reported gross savings as compared to reported gross savings, focusing on variances found associated with per-unit savings. All calculations were conducted using per-unit and total savings values rounded to four decimal places; ${ }^{11}$ adjustment factors are rounded to three decimal places.

3.1 Certification of Per-unit Savings

This step of the certification process involved comparing the reported per-unit electric energy (kWh), electric demand (kW), and natural gas (Mcf) savings values for each prescriptive measure contained in the program tracking databases to the appropriate deemed savings values from the master non-weather sensitive MEMD, ${ }^{12}$ the weather-sensitive-weighted MEMD results, ${ }^{13}$ or other supporting documentation (i.e. measure workpapers). All custom projects installed under the Business Solutions and Multi-Family Programs, and most lighting measures installed under Direct Install-Core Program, are calculated individually based on the operational characteristic of each project installation and are captured under impact evaluation efforts, so an assessment of per-unit savings for these are precluded. The following sections summarize variances found for the measures using MEMD or workpaper savings values for the Business Solutions Program, Small Business Solutions Program, and the Multifamily Program, respectively. Because some measure were installed across multiple subprograms and results may vary between subprograms, where applicable, tabular results also indicate which installations of the measure by subprogram were associated with the variance.

Business Solutions Program

The results presented in this section of the report present variances found by the certification team associated with the prescriptive measures installed through the Program Year 2013 Business Solutions Program. Most prescriptive measures installed through the Business Solutions Program fall into two main types: (1) measures that use deemed savings values obtained from the master MEMD, or (2) weather-sensitive-weighted measures that

[^10]rely on savings values taken from the weather-sensitive-weighted MEMD. ${ }^{14}$ However, in some cases, prescriptive measures were not contained in the MEMD, and instead work paper savings values were used. ${ }^{15}$ In addition, some other measures use performance or size adjustments and require additional computations to verify savings - these are discussed later in this section of the report.

Table 3-1 summarizes these variances for electric energy (kWh) savings, Table 3-2 summarizes the variances detected by the certification team for electric demand (kW), and Table 3-3 summarizes the variances detected by the certification team for natural gas (Mcf) savings.

Details of all measures installed under the Business Solutions Program are included in Appendix A.

[^11]Table 3-1. PY2013 Business Solutions Program Per-Unit Electric Energy (kWh) Savings Variances

Subprogram	Measure Category	Measure Code	Measure Description	UOM	Install Quantity	Per Unit kWh - MEMD	Effect on Reported kWh	Variance Description
Business Solutions - Prescriptive	Compressed Air	CAE0004	Low-Pressure Drop Air Filter	SCFM	800.0	24.9600	7,984.0000	eTtracker reported per unit kWh = 14.9800; should be 24.9600 kWh
Business Solutions - Prescriptive	Compressed Air	CAE0005	Zero Loss Condensate Drain	Units	20.0	1,914.0000	-10,080.0000	eTtracker reported per unit $k W h=2418.0000$; should be 1914.0000 kWh
Business Solutions - Prescriptive	Compressed Air	CAE0007	Compressed Air Energy Audit	Units	5,263.2	624.0000	1.9472	eTracker reported incorrect kWh savings for 7 projects (values vary)
Business Solutions - Prescriptive	Compressed Air	CAE0008	Air Compressor Outdoor Air Intake	HP	100.0	89.8600	300.0000	eTracker reported per unit kWh = 86.8600; should be 89.8600 kWh
Business Solutions - Prescriptive	Lighting Retrofit Fixtures	CFE0005	Parking Garage LED/Induction Lighting Retrofit	Watts Removed	277,007.0	8.7600	0.0002	kWh rounding issue
Business Solutions - Prescriptive	LED or Induction Fixtures	CFE0010	LED Replacing Incandescent Candelabra and Globe	Units	623.0	118.0000	-5,607.0000	eTracker reported per unit kWh = 127.0000; should be 118.0000 kWh
Business Solutions - Prescriptive	T8 Fluorescent	CFE0012	8 -foot T12 to Two (2) 4-ft HP/RW T8	Units	4,160.0	39.3000	0.0021	kWh rounding issue
Business Solutions - Prescriptive	Unitary/Split HVAC	CHE0001	AC < 65,000 Btuh (5.4 tons)	Tons	318.1	46.9503	-0.0001	kWh rounding issue
Business Solutions - Prescriptive	Room AC / PTAC	CHE0008	Package Terminal AC - $A C>=10 \%$	Tons	88.8	68.3707	-0.0001	kWh rounding issues

2013 C\&I Certification Report

	Drives		$\begin{aligned} & \text { Pumping, <= } \\ & 50 \mathrm{HP} \end{aligned}$					
Business Solutions - Prescriptive	Variable Frequency Drives	CME0007	VFD/HVAC Fans and Pumps < 100HP Electric Customers	HP	2,476.8	846.2031	-0.0002	kWh rounding issue
Business Solutions - Prescriptive	Variable Frequency Drives	CME0025	VFD on HVAC Fans (<100 HP)	HP	1,727.3	1,012.1021	-0.0004	kWh rounding issues
Business Solutions - Prescriptive	Variable Frequency Drives	CME0027	VFD on HVAC Pumps (< 100 HP)	HP	969.8	2,499.2531	-0.0002	kWh rounding issue
Business Solutions - Prescriptive	Kitchen and Refrigeration	CSE0028	Electric Dishwasher (High Temp; Under Counter)	Units	3.0	1,136.0000	-0.0723	eTracker reported per unit kWh = 1136.0241; should be 1136.0000
Business Solutions - Prescriptive	Other	CSE0042	UPS - Single Normal Mode - VI ($\mathrm{P}>10$ kW)	kW	960.0	92.2000	9,495.9360	eTracker reported per unit kWh = 82.3084; should be 92.2000 kWh
Business Solutions - Prescriptive	Kitchen and Refrigeration	CSE0078	Electric Dishwasher (High Temp; Multi Tank)	Units	1.0	7,778.0000	0.3873	eTracker reported per unit kWh = 7777.6127; should be 7778.0000 kWh
Business Solutions - Prescriptive	Kitchen and Refrigeration	CSE0079	Electric Dishwasher (Low Temp; Single Tank)	Units	1.0	3,017.0000	0.0193	eTracker reported per unit kWh = 3016.9807; should be 3017.0000 kWh
Business Solutions - Prescriptive	Kitchen and Refrigeration	CSE0080	Electric Dishwasher (High Temp; Single Tank)	Units	1.0	7,120.0000	-0.2650	eTracker reported per unit kWh = 7120.2650; should be 7120.0000 kWh
Business Solutions - Prescriptive	Kitchen and Refrigeration	CSE0082	Electric Dishwasher (Low Temp; Door)	Units	1.0	3,567.0000	0.1813	eTracker reported per unit kWh = 3566.8187; should be 3567.0000 kWh
New Construction Major Renovation 2013	Unitary/Split HVAC	CHE0001	AC < 65,000 Btuh (5.4 tons)	Tons	98.1	46.9503	-0.0001	kWh rounding issues
New Construction -	Unitary/Split	CHE0029	AC Units >	Tons	178.6	62.5513	0.0001	kWh rounding issue

EMI
Table 3-3. PY2013 Business Solutions Program Per-Unit Natural Gas (Mcf) Savings Variances

Subprogram	Measure Category	Measure Code	Measure Description	UOM	Install Quantity	Per Unit MCF MEMD	Effect on Reported Mcf	Variance Description
BOC	Other	CSC0042	BOC (Combo Customer)	Units	11.00	152.0203	-0.0055	eTracker reported per unit MCF = 15.0208; should be 15.0203 MCF
BOC	Other	CSG0027	BOC (Gas Customer)	Units	8.00	152.0203	-0.0040	eTracker reported per unit MCF = 15.0208; should be 15.0203 MCF
Business Solutions Prescriptive	HVAC Controls	CHE0065	Chilled Water Reset Retrofit (10 degrees) Electric	Tons	438.00	0.0639	-0.4080	eTracker reported per unit MCF $=0.0699$ for 1 project; should be 0.0639 MCF.
Business Solutions Prescriptive	Boilers and Boiler Controls	CHG0025	Boiler Tune-up Level 3 ($>=1200$ kbtu/h)	Units	539.00	0.0317	-0.0001	MCF rounding issue
Business Solutions Prescriptive	Steam Traps	CHG0102	Leaking Steam Trap Repair or Replacement -Special Incentive	Units	1,370.00	28.9655	-0.1370	eTracker reported per unit MCF = 29.9656; should be 29.9655 MCF
Business Solutions Prescriptive	Boilers and Boiler Controls	CHG0207	Optimized Boiler Plant Sequencing (Process)	MBH	61,946.00	0.0545	-235.3948	eTracker reported per unit MCF $=0.0583$; should be 0.0545 MCF
Business Solutions Prescriptive	Kitchen and Refrigeration	CSE0043	Night Covers (Combo)	Linear Feet	204.00	0.0000	-32.4768	eTracker reported per unit MCF $=0.1592$; there is no MEMD gas savings for this measure
Business Solutions Prescriptive	Other	CSG0002	Truck Loading Dock Seals	Units	22.00	39.0743	-0.0022	eTracker reported per unit MCF = 39.0744; should be 39.0743 MCF
Business Solutions Prescriptive	Other	CSG0003	Truck Loading Dock Leveler Ramp Seals	Units	25.00	25.4663	-0.0025	eTracker reported per unit MCF = 25.4664; should be 25.4663 MCF
Business Solutions Prescriptive	Kitchen and Refrigeration	CSG0009	Commercial Conveyer Oven (>25"" Conveyor	Units	1.00	85.9245	-0.0003	eTracker reported per unit MCF = 85.9248; should be 85.9245 MCF

While the majority of Business Solutions Program prescriptive measures used master MEMD, weather-sensitive-weighted MEMD, or workpaper savings values, savings calculations for some other measures relied on additional adjustments to account for size or performance of the measure installed. The certification team recalculated savings using the appropriate equations to ensure the correct measure savings were reported; we did not assess the other variables in the equations as they are assessed through the periodic impact evaluations.

Performance adjustments were used for some measures to account for efficiency levels that differ from that of the equipment used to determine the baseline or deemed savings value in the MEMD. The formula used to calculate total savings for measures receiving a performance adjustment of additional kWh or kW per ton reduction is:

$$
\operatorname{Sav}_{t}=Q \times \operatorname{Sav}_{d}+Q \times\left[\left(\frac{E f f-E f f_{b}}{P I}\right) \times \operatorname{Sav}_{i}\right]
$$

where:
$\mathrm{Sav}_{\mathrm{t}}=$ Calculated annual $\mathrm{kWh} / \mathrm{kW}$ savings
$Q=$ Quantity of units installed
$\operatorname{Sav}_{\mathrm{d}}=$ Deemed annual $\mathrm{kWh} / \mathrm{kW}$ savings
Eff $=$ Efficiency of installed measure
Eff $_{b}=$ Efficiency of baseline measure
PI $=$ Performance Incremental
$\mathrm{Sav}_{\mathrm{i}}=$ Incremental annual performance $\mathrm{kWh} / \mathrm{kW}$ savings
The measures using this methodology are shown in Table 3-4:

Table 3-4. Business Solutions Program Measures with Additional Performance Savings

Measure Code	Measure Description
CHE0012	Air-cooled Chiller $-1.04 \mathrm{~kW} /$ ton IPLV
CHE0037	Water Cooled Chillers- Centrifugal
CHE0038	Water Cooled Chillers- Centrifugal >300 tons and $<=600$ tons, IPLV $=$ 0.49
CHE0039	Water-Cooled Chillers- Centrifugal >600 tons, IPLV $=0.49$
CHE0041	Water-Cooled Chillers- Reciprocating >150 tons and $<=300$ tons, IPLV $=0.52$

Table 3-5 shows the variances found by the certification team associated with electric energy (kWh) savings and Table 3-6 shows the variances found associated with electric demand (kW).

Table 3-5. PY2013 Business Solutions Program Variances for Measures with Additional kWh Performance savings
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Subprogram } & \begin{array}{l}\text { Measure } \\ \text { Category }\end{array} & \begin{array}{c}\text { Measure } \\ \text { Code }\end{array} & \begin{array}{c}\text { Measure } \\ \text { Description }\end{array} & \text { UOM } & \begin{array}{c}\text { Install } \\ \text { Quantity }\end{array} & \begin{array}{c}\text { Effect on } \\ \text { Reported } \\ \text { kWh }\end{array} & \begin{array}{c}\text { Variance } \\ \text { Description }\end{array} \\ \hline \begin{array}{l}\text { Business } \\ \text { Solutions - } \\ \text { Prescriptive }\end{array} & \text { Chiller } & \text { CHE0012 } & \begin{array}{l}\text { Air-cooled } \\ \text { Chiller-1.04 } \\ \text { kW/ton IPLV }\end{array} & \text { Tons } & 4,000.4 & -130.4808 & \begin{array}{l}\text { For 6 projects the } \\ \text { performance kWh } \\ \text { calculations in }\end{array} \\ \text { eTracker are } \\ \text { incorrect }\end{array}\right]$

Table 3-6. PY2013 Business Solutions Program Variances for Measures with Additional kW Performance savings

Subprogram	Measure Category	Measure Code	Measure Description	UOM	Install Quantity	Effect on Reported kW	Variance Description
Business Solutions - Prescriptive	Chiller	CHE0012	Air-cooled Chiller-1.04 kW/ton IPLV	Tons	4,000.4	-0.0384	For 6 projects the performance kW calculations in eTracker are incorrect
New Construction - Major Renovation 2013	Chiller	CHE0012	Air-cooled Chiller-1.04 kW/ton IPLV	Tons	726.5	-0.0257	For 1 project the performance kW calculation in eTracker is incorrect
TOTAL						-0.0641	

The formula used to calculate total savings for measures receiving a performance adjustment associated with kBTUh or MBH is:

$$
\operatorname{Sav}_{t}=Q \times\left(E f f-E f f_{b}\right) \times \operatorname{Sav}_{i}
$$

where:
$\mathrm{Sav}_{\mathrm{t}}=$ Calculated annual MCF savings
$\mathrm{Q}=\mathrm{Quantity}$ of units installed
Eff = Efficiency of installed measure

Eff $_{b}=$ Efficiency of baseline measure
$\mathrm{Sav}_{\mathrm{i}}=$ Incremental annual performance MCF savings
The measures using this methodology are shown in Table 3-7:
Table 3-7. Business Solutions Program Measures with Additional Efficiency Savings

Measure Code	Measure Description
CWG0016	Domestic Water Heater Tune-Up (199-499 MBH)
CWG0017	Domestic Water Heater Tune-Up (500-1,199 MBH)
CWG0019	Domestic Water Heater Tune-Up (>=1200 MBH)

No variances were found with any of these three measures.
Another adjustment is used to account for differing sizes for certain measures. The formula used to calculate savings for these measures is:

$$
\operatorname{Sav}_{t}=Q \times \operatorname{Sav}_{d} \times \operatorname{Size}
$$

where:
$\mathrm{Sav}_{\mathrm{t}}=$ Calculated annual $\mathrm{kWh} /$ Mcf savings
$\mathrm{Q}=\mathrm{Quantity}$ of units installed
$\mathrm{Sav}_{\mathrm{d}}=$ Deemed annual $\mathrm{kWh} /$ Mcf savings
Size $=$ Size of installed measure
The measures using this methodology are shown in Table 3-8:
Table 3-8. Business Solutions Program Measures with Additional Size Savings

Measure Code	Measure Description
CHE0043	Air and Water-Cooled Chiller Tune-up
CHG0019	Gas Furnace or RTU Tune-up (>=40 and
CHG0021	Gas Furnace or RTU Tune-up (>=300 MBH)
CHG0023	Boiler Tune-up Level 1 (>=110 and 500 kbtu/h)
CHG0024	Boiler Tune-up Level $2(>=500$ and
CHG0025	Boiler Tune-up Level 3 (>=1200 kbtu/h)
CHG0026	High Efficiency Process Boiler Replacement (Water)
CHG0028	Process Boilers Tune-up >= $1200 \mathrm{kbtu} / \mathrm{h}$
CHG0029	Process Boiler Tune-up Level $5(>=500$ and
CHG0030	Process Boiler Tune-up Level 4 (>=300 and

No variances were found with any of these 10 measures.

Small Business Solutions

The results presented in this section of the report summarize variances found by the certification team associated with the Program Year 2013 Small Business Solutions Program. Most measures installed through the Small Business Solutions Program fall into two main types: (1) measures that use deemed savings values obtained from the master non-weather sensitive MEMD, or (2) weather-sensitive-weighted measures that rely on savings values taken from the weather-sensitive-weighted MEMD. However, two measures were not contained in either MEMD and per-unit savings were taken from the following workpapers:

- DecorativeLEDWorkpaper_062713.docx (CDE0090)
- LED_LinearT12Workpaper_11082013_IS.docx (CFE0014)

In addition, the two measures installed thorough the Furnace Tune-up subprogram - CDG0011 and CDG0012 - use performance adjustments, which are discussed later in this section.

As discussed earlier, lighting measures installed through the Direct Install-Core Program are not assessed here as they rely on project-specific calculations to derive energy savings, which are covered as part of the annual impact evaluations.

Table 3-9 summarizes these variances for electric energy (kWh) savings; Table 3-10 summarizes the variances detected by the certification team for electric demand (kW); Table 3-11 shows the variance found associated with natural gas (Mcf) savings.

Appendix A includes the complete listing of all measures installed through the Small Business Solutions Program in Program Year 2013.
Table 3-10. PY2013 Small Business Solutions Program Per-Unit Electric Demand (kW) Savings Variances

Program	Measure Category	Measure Code	Measure Description	Uo M	Install Quantity	Per Unit kW - MEMD	Effect on Reported kW
Variance Description							

The only natural gas (Mcf) variances associated with the Small Business Solutions Program were associated with a measure installed through the Furnace Tune-up subprogram. The formula used to calculate total savings for the two measure measures installed through the Furnace Tune-up subprogram (CDG0011 and CDG0012) used a performance adjustment:

$$
\operatorname{Sav}_{t}=Q \times E f f \times \operatorname{Sav}_{i}
$$

where:
$\mathrm{Sav}_{\mathrm{t}}=$ Calculated annual MCF savings
Q = Quantity of units installed
Eff = Efficiency of installed measure
Savi $_{i}=$ Incremental annual performance MCF savings
Table 3-11 shows the variances found by the certification team associated with natural gas (Mcf) savings for the Small Business Solutions Program.

Table 3-11. PY2013 Small Business Solutions Program Per-Unit Natural Gas (Mcf) Savings Variances

Program	Measure Category	Measure Code	Measure Description	UOM	Install Quantity	Per Unit MCF - MEMD	Effect on Reported Mcf	Variance Description
Furnace Tune-up	Direct Install Nonlighting	CDG0011	DI - Gas Furnace or RTU Tune-up (>=40 and <300 MBH)	Units	2,402	0.0309	-2.0394	1 project has incorrect computed MCF performance savings in eTracker
TOTAL							-2.0394	

Multi-Family Program

The results presented in this section of the report summarize variances found by the certification team associated with the Program Year 2013 Multi-Family Program. Nearly all measures installed through the Multi-Family Program used deemed savings values obtained from the master MEMD or the weather-sensitive-weighted MEMD. However, a few measures were not contained in either MEMD and per-unit savings for these were taken from the following workpapers:

- FES-C11a DHW Pipe Insulation Michigan 073013.doc (CTG0052)
- LED and CFL Candelabra Style Lamps in Multifamily_0737.doc (CTE0139, CTE0143, CTE0144, CTE0145, and CTE0146)
- Low Flow 1.5gpm Kitchen and 1.0gpm Bath Aerators.doc (CTE0019, CTE0172, CTG0014, CTG0114, and CTG0141)

The certification team found no variances associated with electric energy (kWh) savings for this program. Table 3-12 shows the variances associated with electric demand (kW) savings; Table 3-13 shows the variances associated with natural gas (Mcf) Savings.

Appendix A includes the complete listing of all measures installed through the Multi-Family Program in Program Year 2013.

Table 3-12. PY2013 Multi-Family Program Per-Unit Electric Demand (kW) Savings Variances

Measure Category	Measure Code	Measure Description	UOM	Install Quantity	Per Unit kW - MEMD	Effect on Reported kW	Variance Description
C\&I Multifamily	CTE0019	Low Flow Kitchen Faucet Aerators- Electric - DI	Units	76.00	0.0239	-0.0076	eTracker reported per unit kW = 0.0240; should be 0.0239 kW
C\&I Multifamily	CTE0172	Low Flow Bath Faucet Aerators 1.0 gpm - Electric - DI	Units	28.00	0.0234	0.1260	eTracker reported per unit kW = 0.0189; should be 0.0234 kW
C\&I Multifamily	CTE0174	DI - LED Candelabra Lamp (3-5W) -In-Unit - DI	Units	612.00	0.0010	-16.7076	eTracker reported per unit kW = 0.0283 ; should be 0.0010 kW
C\&I Multifamily	CTE0175	DI - CFL Candelabra Lamp (5-13W) -In-Unit - DI	Units	67.00	0.0053	-1.9229	eTracker reported per unit kW = 0.0340; should be 0.0053 kW
TOTAL						-18.5121	

Table 3-13. PY2013 Multi-Family Program Per-Unit Gas (Mcf) Savings Variances

Measure Category	Measure Code	Measure Description	UOM	Install Quantity	Per Unit MCF MEMD	Diff Mcf	Variance Description
C\&I Multifamily	CTG0052	Pipe Wrap - DHW - Common-DI	Linear Feet	7,896.00	0.2431	-7.8960	eTracker reported per unit MCF = 0.2441 ; should be 0.2431 MCF
C\&I Multifamily	CTG0131	In-Direct Water Heater (e90\% Eff)	MBH	3,510.00	0.2412	-0.3510	eTracker reported per unit MCF= 0.2413 ; should be 0.2412 MCF
TOTAL						-8.2470	

4. Application Certification

This section of the report provides the results of the application review conducted for the Program Year 2013 Consumer Energy C\&I certification process. As noted elsewhere in this report, the results of this review were not used to estimate verified net savings this year. Because the gross adjustment factors derived through the impact evaluations could also capture errors in the tracking database, applying these results in addition to the gross adjustment factors could double count tracking data errors. Instead, these results are presented for consistency with previous years' certification reports and informative purposes.

Also note that in this section of the report, findings are presented by subprogram. The reason for this is that the application process and materials often vary by subprogram within a program, and the certification team sought to ensure consistency across the different results. More specifically, the results in this section are summarized according to the following groupings:

- Business Solutions Program (includes Business Solutions-Prescriptive, Business Solutions-Custom, and Building Operator Certification)
- New Construction Program (includes New Construction-Major Retrofit and New Construction-Whole Building)
- Direct Install-Core Program
- Programmable Thermostat Program
- Hospitality Program
- Furnace Tune-up
- Multi-Family

No paper records were available for the Drop Ship Lighting or Buydown Lighting Initiatives so the application review was not conducted for these initiatives.

In order to conduct this review, the certification team obtained copies of applications for a random selection of participants for each of the programs, and entries in the tracking database were then compared to the same entries in the application. The document review identified variances between the eTracker database and the paper record. Fields missing in either the Consumer Energy tracking database or the paper application were considered variances, since they could not be verified against each other. While the results of this review are provided for informational purposes, it is important to preface these with the fact that the customer-level variances presented herein do not necessarily reflect actual data problems.

When implementation staff, customers, or contractors fill out an application, much of the information they enter is collected directly from a contact person at the facility. Many companies have multiple phone numbers and contact staff, so variances in contact person or phone number may simply be due to the wrong name or number being provided. Similarly, billing address information may have been provided instead of the address of the physical location, so variances in address, city, and/or state are not necessarily reflective of errors either. In terms of customer name variances, the results will show that many were the result of a
person's name being entered on the application when it should have been a company, or no name was provided at all. Another issue is that many customers have multiple account numbers due to factors such as multiple gas and electric accounts, multiple locations, and/or multiple buildings at a location. Discussions with the program staff revealed that often an initial account number was assigned based on a tracking system search, but it is later determined that the account number used was not the appropriate one because it was associated with the wrong account type (e.g. a gas account number was first assigned, but the measure installed was an electric measure). Thus, different account numbers or customer types are not necessarily problems either; in actuality, they may represent corrections. Because of the array of different factors that can come into play, it was not possible for the certification team to determine which cases were associated with actual errors and which were related to issues such as those discussed above, thus the information provided here should be interpreted with care and should not be taken to suggest actual data problems.

Business Solutions Program

The Business Solutions Program application certification process covered a variety of forms for each project application file selected for the sample, including an application review form, incentive application checklist, incentive application form, final application agreement, measure worksheets, invoices, and measure specifications. The certification team examined a total of 153 applications for accuracy.

Table 4-1 shows that the most common variances at the customer level for Business Solutions applications were in the customer address field, with 33% of the applications containing an error. Most of the errors were due to minor differences in the street number or street spelling between the application and the database.

The next most common errors were in the contact name and customer type fields (24 and 17%, respectively). The most frequent error in the contact name field was a different name being listed; the most frequent error for customer type was the customer being marked as a combination customer in the application but showing up as either an electricity or gas customer in the database. Additionally, the review examined and discovered variances in customer name (8%), city (5%), and phone number (5%).

In total, 10% of all application fields examined in the sampled applications were associated with an error, and 60% of the sampled applications had at least one variance at the customer level. Of those customers that had at least one variance, the average number of variances was 1.548.

Table 4-1. PY2013 Business Solutions Program, Application Variances at the Customer-Level

Tracking Database Field Name	Number of Variances	Percent of Sampled Applications ($\mathrm{n}=153$)
Project ID	0	0\%
Account Number	0	0\%
Contact Name	37	24\%
Customer Name	12	8\%
Address	51	33\%
City	8	5\%
State	0	0\%
Phone	8	5\%
Customer Type	27	17\%
Total (Variances/Application Fields)	143	10\%
Total (Apps With Variances/Apps)	92	60\%

Columns may not sum to total due to rounding.
Table 4-2 summarizes the measure-level variances found for each of the end use categories in the Business Solution application sample. Two types of variances were screened: (1) measure code variances, and measure quantity variances. ${ }^{16}$ Measure code variances occur when a measure code appeared in the application, but not in the tracking system, or a measure code appeared in the tracking database, but not in the application. Measure quantity variances occur when the quantity installed of a measure differs between the application and tracking database.

As Table 4-2 shows, a total of 15 measure quantity variances were identified from the review of the 153 applications. These variances were present in approximately 3% of all measures reviewed and were most common in the HVAC-electric end use. No measure code variances were found in any category. A detailed list of all Business Solutions Program document review variances is presented in Appendix B.

[^12]Table 4-2. PY2013 Business Solutions Program Measure-Level Application Variances

End Use Category	\# of Measures	Count of Measure Quantity Variances	Percent of Total Measures	Count of Measure Code Variances	Percent of Total Measures
Compressed Air	18	0	0\%	0	0\%
EMS - gas	8	0	0\%	0	0\%
EMS - elec	6	0	0\%	0	0\%
EMS - both	7	0	0\%	0	0\%
HVAC - elec	24	2	8\%	0	0\%
HVAC - gas	68	0	0\%	0	0\%
HVAC - both	6	0	0\%	0	0\%
Lighting	219	6	3\%	0	0\%
Motors	70	3	4\%	0	0\%
Miscellaneous	78	0	0\%	0	0\%
Water Heating	20	0	0\%	0	0\%
Custom	65	4	6\%	0	0\%
Total	589	15	3\%	0	0\%

Columns may not sum to total due to rounding.

New Construction Program

The New Construction Program application certification covered a variety of forms for each project application file selected for the sample, including an application review form, incentive application checklist, incentive application form, final application agreement, measure worksheets, invoices, and measure specifications. The certification team examined a total of 10 applications for accuracy.

Table 4-3 summarizes the application customer level variances detected during this certification process. In all, the certification team reviewed 10 total applications and $8(80 \%)$ were found to have some type of variance. The greatest proportion of variances (40%) was associated with addresses. Other variances included customer name and customer type (20% each), contact name (10%), city (10%), and phone number (10%).

Table 4-3. PY2013 New Construction Program Variances at Customer Level

Tracking Database Field Name	Number of Variances	Percent of Sampled Applications $(\mathbf{n}=10)$
Project ID	0	0%
Account Number	0	0%
Contact Name	1	10%
Customer Name	2	20%
Address	4	40%
City	1	10%
State	$\mathbf{0}$	0%
Phone	1	10%
Customer Type	2	20%
Total (Variances/Application Fields)	$\mathbf{1 1}$	$\mathbf{1 2 \%}$
Total (Apps With Variances/Apps)	$\mathbf{8}$	$\mathbf{8 0 \%}$

Columns may not sum to total due to rounding.
The certification team only located one measure-level variance during the application review process for the New Construction Program. This variance involved an inaccurate quantity of watts reduced being recorded for a "Lighting Power Density" measure.

Direct Install - Core Program

For the Direct Install - Core Program, contractors filled out electronic applications on a computer and posted them directly into the implementer's tracking database where energy savings calculations occurred. The implementer database was then uploaded to the Consumers Energy tracking database. The certification team reviewed paper copies of the electronic applications and compared them to the Consumers Energy database of record. However, since measure types, quantities, and energy savings computations are uploaded directly into the Consumers Energy database electronically, no variances are possible for these fields. Thus, only customer level results are discussed.

Table 4-4 shows the results of the Direct Install - Core Program application review. In all, the certification team examined documents for 76 projects, and the greatest variances were associated with phone numbers (45%), and customer name (24%). Other fields that contained variances included address (4\%), zip code (4\%), and city (3\%). In all, 46 of the 76 applications had some type of variance, which translates to a 61% variance rate based on the total number of fields compared. A detailed list of all Direct Install - Core document review variances is presented in Appendix C.

Table 4-4. PY2013 Direct Install - Core Program Application Variances at Customer-Level

Tracking Database Field Name	Number of Variances	Percent of Sampled Applications ($\boldsymbol{n}=\mathbf{7 6}$)
Project ID	1	
Account Number	0	1%
Customer Name	18	0%
Address	8	24%
City	2	4%
Zip	3	3%
Phone	34	4%
Customer Type	0	45%
Total Variances	$\mathbf{6 6}$	(Variances/Application Fields)
Total (Apps With Variances/Apps)	$\mathbf{4 6}$	$\mathbf{6 4}$
Columns may not sum to total due to rounding.		$\mathbf{6 1 \%}$

Programmable Thermostat Program

For the Programmable Thermostat Program, installers filled out a paper application that was hand-entered into the implementer database, which subsequently was uploaded into the Consumers Energy tracking database. The certification team compared copies of the original paper applications to the Consumers Energy database.

Table 4-5 summarizes the application customer level variances detected during this certification process. In all, the certification team reviewed 77 total applications and 28% were found to have some type of variance. The greatest proportion of variances (18%) was associated with the phone numbers. Other variances included city (6\%), address (8\%), and customer name (4\%).

Table 4-5. PY2013 Programmable Thermostat Variances at Customer Level

Tracking Database Field Name	Number of Variances	Percent of Sampled Applications ($\boldsymbol{n}=\mathbf{7 7}$)
Project ID	0	0%
Account Number	0	0%
Customer Name	3	4%
Address	6	8%
City	5	6%
Zip Code	2	2%
Phone	14	18%
Customer Type	1	$\mathbf{1 \%}$
Total Variances	$\mathbf{3 1}$	(Variances/Application Fields)
Total (Apps With Variances/Apps)	$\mathbf{2 2}$	$\mathbf{3 2}$
Columns may not sum to total due to rounding		

Table 4-6 presents the measure level variances found by the certification team during the application review process for the Programmable Thermostat Program. There was only one variance found associated with the measure type: one customer's paper record did not have a Consumers Energy electric account number recorded, but the tracking database indicated that this was a combination customer. In all other cases when the tracking database indicated the customer was a combination customer, the paper record contained an account number for both gas and electric accounts. A detailed list of all Programmable Thermostat Program document review variances is presented in Appendix C.

Table 4-6. PY2013 Programmable Thermostat Measure-Level Application Variances

Measure Type	Number of Measures	Count of Measure Type Variances	Percent of Total Measures	Count of Measure Quantity Variances	Percent of Total Measures
Programmable Thermostat - Combination Customers	14	1	1\%	0	0\%
Programmable Thermostat - Gas Customers	29	0	0\%	0	0\%
Programmable Thermostat - DTE Shared Electric	3	0	0\%	0	0\%
Programmable Thermostat - DTE Shared Gas	6	0	0\%	0	0\%
Programmable Thermostats (Electric)	25	0	0\%	0	0\%
Programmable Thermostat - Board of Water and Light	??	0	0\%	0	0\%
Pre Rinse Sprayers - < 1.6 gpm	??	0	0\%	0	0\%
Low-flow Shower Head<1.75 gpm	??	0	0\%	0	0\%
Low-flow Faucet Aerator <1.5 gpm	??	0	0\%	0	0\%
Total	77	1	1\%	0	0\%

Columns may not sum to total due to rounding.

Hospitality Initiative

Similar in process to the Programmable Thermostat Program, Hospitality Initiative installers filled out a paper application that was manually entered into the implementer database, which subsequently was uploaded into the Consumers Energy tracking database. The certification team compared copies of the original paper applications to the Consumers Energy database.

Table 4-7 summarizes the application customer level variances detected during this certification process. In all, the certification team reviewed 73 total applications and 40% were found to have some type of variance. The greatest proportion of variances (29%) was associated with phone numbers. Other variances included customer name (15\%), address (3\%), ZIP code (1\%), and customer type (1\%).

Table 4-7. PY2013 Hospitality Initiative Application Variances at Customer Level

Tracking Database Field Name	Number of Variances	Percent of Sampled Applications ($n=73$)
Project ID	0	0\%
Account Number	0	0\%
Customer Name	11	15\%
Address	2	3\%
City	0	0\%
ZIP Code	1	1\%
Phone	21	29\%
Customer Type	0	0\%
Total Variances	36	(Variances/Application Fields)
Total (Apps With Variances/Apps)	29	40\%

Several variances were found at the measure level with measure type and measure quantity. Table 4-8 summarizes these variances. A total of 133 electric measures were verified across the 73 projects. There was one variance in measure description, and three variances in measure quantity. A detailed list of all Hospitality Initiative document review variances is presented in Appendix B.

Table 4-8. PY2013 Hospitality Initiative Application Variances at Measure Level

Measure Type	Number of Measures	Count of Measure Type Variances	Percent of Total Measures	Count of Measure Quantity Variances	Percent of Total Measures
LED Lighting - 12 W LED Lamps replacing incandescent lights	31	0	0\%	0	0\%
LED Lighting - 11 W LED Flood Lamp	42	1	1\%	2	2\%
LED Lighting - 9.5 W LED Lamps Replacing Incandescent Lights	17	0	0\%	0	0\%
LED Lighting - 8 W LED Lamps replacing incandescent lights	14	0	0\%	0	0\%
LED Lighting - 6 W LED Lamps Replacing Incandescent Lights	4	0	0\%	0	0\%
3.5 W LED Candelabra	7	0	0\%	0	0\%
LED Exit Sign	18	0	0\%	1	1\%
Total	133	1	1\%	3	2\%

Columns may not sum to total due to rounding.

Furnace Tune-Up Initiative

The Furnace Tune-up Initiative was implemented by approved independent contractors, who filled out and submitted paper incentive applications to program staff. The certification team compared copies of the original paper applications to the information contained in the Consumers Energy database.

Table 4-9 summarizes the application customer level variances detected for the Furnace Tuneup Initiative. In all, the certification team reviewed 72 total applications and 66% were found to have some type of variance. The greatest proportion of variances (60%) was associated with phone numbers. Other variances included customer name (21%), address (5\%), and account number (4%). Two applications had variances by customer type (3\%). No measure-level variances for measure type or quantity were found. A detailed list of all Furnace Tune-up Initiative document review variances is presented in Appendix B.

Table 4-9. PY2013 Furnace Tune-up Initiative Variances at Customer Level

Tracking Database Field Name	Number of Variances	Percent of Sampled Applications ($\boldsymbol{n}=\mathbf{7 2)}$
Project ID	0	0%
Account Number	3	4%
Customer Name	15	21%
Address	4	5%
City	0	0%
ZIP Code	1	$\mathbf{0}$
Phone	44	$\mathbf{1 \%}$
Customer Type	2	60%
Total Variances	$\mathbf{6 9}$	(Variances/Application Fields)
Total (Apps With Variances/Apps)	$\mathbf{4 8}$	$\mathbf{1 2 \%}$
Columns may not sum to total due to rounding.		$\mathbf{6 6 \%}$

Multi-Family Program

The Multi-Family Program included two types of paper documentation reflecting two different project pathways. As in the Programmable Thermostat Program and Hospitality Initiative, the Multi-Family Program employed implementers to directly install equipment, but the MultiFamily Program also permitted independent contractors to install lighting equipment, much like the Direct Install - Core Program. The certification team compared the paper records filled out by implementers and the incentive applications submitted by contractors to the Consumers Energy tracking database.

Table 4-10 summarizes the application customer level variances detected during this certification process. In all, the certification team reviewed 56 total applications and 70% were found to have some type of variance. The greatest proportion of variances (67%) were associated with phone numbers. Other variances included customer names (5\%), address (9\%), and customer type (3\%).

Table 4-10. PY2013 Multi-Family Program Application Variances at Customer Level

Tracking Database Field Name	Number of Variances	Percent of Sampled Applications ($\boldsymbol{n}=56$)
Project ID	0	0%
Account Number	0	0%
Customer Name	3	5%
Address	5	9%
City	0	0%
ZIP Code	0	0%
Phone	38	67%
Customer Type	0	0%
Total Variances	$\mathbf{4 6}$	(Variances/Application Fields)
Total (Apps With Variances/Apps)	$\mathbf{4 0}$	$\mathbf{1 0 \%}$
Columns may not sum to total due to rounding.		$\mathbf{7 0 \%}$

Several variances were found at the measure level. Table $4-11$ summarizes these variances. A total of 163 electric measures were verified across the 56 projects. There were no variances found in the measure descriptions and 11 variances found in the measure quantity. All measures not listed in the table below had zero variances. A detailed list of all Multifamily Program document review variances is presented in Appendix B.

Table 4-11. PY2013 Multi-Family Program Application Variances at Measure Level

Measure Type	Number of Measures	Count of Measure Type Variances	Percent of Total Measures	Count of Measure Quantity Variances	Percent of Total Measures
Low Flow Showerhead - 1.5 gpm Handheld - DI	12	0	0\%	1	1\%
Low Flow Showerhead - 1.5 gpm - DI	13	0	0\%	2	1\%
Low Flow Bath Faucet Aerators - Gas - DI	9	0	0\%	2	1\%
Low Flow Kitchen Faucet Aerators- Gas - DI	14	0	0\%	2	1\%
CFL bulbs - 13W	12	0	0\%	1	1\%
CFL Specialty	1	0	0\%	1	1\%
CFL Candelabra	1	0	0\%	1	1\%
C_I Multifamily Custom - Gas	2	0	0\%	1	1\%
Total	163	0	0\%	11	7\%

Columns may not sum to total due to rounding.

5. Certified Savings

This section of the report summarizes the certified savings values at the end use (Business Solutions Program) or measure level (Small Business Solutions and Multi-Family Programs). Results for the Business Solutions Program are presented at the end use level for the sake of brevity and clarity due to the relatively large number of individual measures installed under these programs, though all measure-level results are provided in Appendix B.

In each of the tables in this section, results are presented showing the reported gross savings representing the program database values (Column A), the certification team's calculated savings, or adjusted gross savings, using the appropriate deemed savings values (Column B), application of the appropriate gross savings adjustment factors (Columns C and D), application of the appropriate net-to-gross adjustment factors (Column E) resulting in verified net savings (Column F). Column G presents the realization rate, which is the relationship of verified net savings (Column F) to reported gross savings in the program database (Column A). Finally, Column H shows the verified net savings including any applicable 10\% LLESM.

All calculations were conducted using savings values rounded to four decimal places and adjustment factors are rounded to three decimal places. Though rounding was used for all computations, the savings results in this section are rounded to the nearest whole number to conserve space in the tables.

Business Solutions Program

Table 5-1, Table 5-2, and Table 5-3 present the certified savings for electric energy (kWh), electric demand (kW), and gas savings (Mcf), respectively, for the Program Year 2013 Business Solutions Program by end use category.

End Use Category	2013 Reported Gross kWh Savings [A]	2013 Adjusted Reported Gross kWh Savings [B]	2012 Verified Gross kWh Adjustment Factor ${ }^{\text {c }}$ [C]	2013 Verified Gross kWh Savings $[\mathrm{D}]=[\mathrm{B} \times \mathrm{C}]$	Deemed Net-toGross Adjustment Factor ${ }^{d}$ [E]	2013 Verified Net kWh Savings $[F]=[D \times E]$	2013 kWh Realization Rate $[G]=[F / A]$	2013 Verified Net kWh Savings Including LLESM $[H]=\left[\begin{array}{llll} F \times 1.1 \end{array}\right]^{e}$
BLDG Envelope	4,476	4,476	0.954	4,270	0.900	3,843	0.859	4,228
C\&I Water heating	1,873	1,873	0.957	1,791	0.900	1,612	0.861	1,774
CFL	1,114,542	1,114,542	0.954	1,063,273	0.900	956,946	0.859	956,946
Chiller	5,840,802	5,840,584	0.974	5,686,327	0.900	5,117,694	0.876	5,405,783
Compressed Air	6,544,991	6,543,197	0.954	6,244,566	0.900	5,620,110	0.859	5,895,130
Custom	21,992,470	21,992,470	1.005	22,106,432	0.900	19,895,789	0.905	21,408,965
DCV and Economizers	-33,138	-33,138	0.954	-31,614	0.900	-28,453	0.859	-31,298
Energy Management Systems	3,266,101	3,266,101	0.954	3,115,860	0.900	2,804,274	0.859	3,084,702
Energy Recovery	-56,937	-56,937	0.883	-50,275	0.956	-48,043	0.844	-52,847
Exit Signs	360,795	360,795	0.954	344,198	0.900	309,779	0.859	340,756
Furnaces and Heaters	456,260	456,260	0.954	435,272	0.900	391,745	0.859	426,766
Heat Pump	6,062	6,062	0.954	5,783	0.900	5,205	0.859	5,725
HP or RW Fluorescent	3,694,717	3,694,717	0.954	3,524,760	0.900	3,172,284	0.859	3,172,284
HVAC Controls	2,212,309	2,212,309	0.975	2,156,757	0.900	1,941,081	0.877	2,114,727
Ice Machines	15,363	15,363	0.954	14,656	0.900	13,191	0.859	14,510
Kitchen and Refrigeration	27,060,607	27,060,608	0.954	25,822,906	0.900	23,240,616	0.859	25,562,306
Lamp Removal	1,887,977	1,408,243	0.954	1,343,464	0.900	1,209,117	0.640	1,211,157
LED or Induction Fixtures	11,860,785	11,855,178	0.993	11,771,146	0.900	10,594,031	0.893	10,594,031
Lighting Controls	9,099,504	9,099,504	0.954	8,681,361	0.900	7,813,225	0.859	8,574,454
Lighting Retrofit Fixtures	25,044,428	25,044,428	0.987	24,720,313	0.900	22,248,282	0.888	24,462,387
New Construction	773,695	773,695	0.954	738,105	0.900	664,295	0.859	664,295
Occupancy Sensors and Controls	365,168	365,168	0.954	348,370	0.900	313,533	0.859	315,044

EMI
2013 C\&I Certification Report

0.900	$5,058,198$	0.861	$5,496,720$
0.900	53,187	0.519	58,506
0.900	$1,265,124$	0.863	$1,267,485$
0.900	$32,158,667$	0.859	$35,374,534$
0.900	109,041	0.859	119,929
0.900	$9,386,070$	0.869	$10,324,677$
$\mathbf{0 . 9 0 0}$	$\mathbf{1 5 4 , 2 7 0 , 4 4 3}$	$\mathbf{0 . 8 7 0}$	$\mathbf{1 6 6 , 7 7 3 , 6 7 4}$

[^13]Table 5－2．PY2013 Business Solutions Program－Electric Demand（kW）Certified Savings by Measure End Use Category ${ }^{\text {a，b }}$

			¢	＋	$\overline{8}$	$\stackrel{\infty}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{(}{\circ}$	\square	¢	－			E	\％		$\underset{\sim}{\text { N }}$	N	$\begin{aligned} & \text { H } \\ & \stackrel{\sim}{n} \end{aligned}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { 毋్ర } \\ & \stackrel{\leftrightarrow}{-} \end{aligned}$	N	$\xrightarrow{\text { N }}$
		$\begin{aligned} & \text { 毋 } \\ & \text { O } \\ & 0 \end{aligned}$	$\stackrel{\text { N }}{\underset{\sim}{\wedge}}$	$\begin{gathered} 0 \\ \infty \\ \infty \\ 0 \end{gathered}$	$\stackrel{\infty}{\infty} \underset{\substack{\infty \\ 0}}{ }$	$\begin{aligned} & \infty \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \end{gathered}$	が		$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\otimes}{\infty}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\sigma} \\ & \hline \dot{O} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\infty}{\infty} \\ & \dot{\infty} \end{aligned}$	$\begin{gathered} \mathscr{0} \\ \\ \end{gathered}$	$\begin{aligned} & \circ \stackrel{0}{0} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \varnothing 8 \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { O- } \\ & \hline \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\infty}} \stackrel{+}{0}$	$\stackrel{-}{\circ}$
		－	$\stackrel{\sim}{\sim}$	¢	$\stackrel{8}{\infty}$	$\stackrel{O}{N}$	\％	$\stackrel{\circ}{\circ}$	「	¢	N	N	∞	Σ	ゅ	－	$\stackrel{\curvearrowleft}{\stackrel{\circ}{\circ}}$	$\stackrel{\rightharpoonup}{N}$	$\begin{aligned} & \text { Hin } \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\text { on }}{\substack{\text { ¢ }}}$	N	$\stackrel{\text { ® }}{\stackrel{\text { n }}{\sim}}$
	wio	$\begin{aligned} & \mathrm{O} \\ & \text { B. } \end{aligned}$	$$	$\begin{aligned} & \circ \\ & \hline \text { O} \\ & \hline \end{aligned}$	-৪	ò	$\stackrel{\circ}{\circ}$	ه̀	ষ্ণ			৪i	ষ্ণ	$\stackrel{\circ}{\circ}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{8}{\circ} \\ & \text { oi } \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { oi } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ó } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { O. } \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$	\％
		－	へ	$\frac{5}{N}$			N	\％	「	¢		∞	の	$\stackrel{\sim}{\infty}$	¢	\sim	$\stackrel{\text { ¢ }}{\text { ¢ }}$	－	$\stackrel{\infty}{\infty}$	$\stackrel{\text { N}}{\text { N }}$		へ	$\xrightarrow[\sim]{\sim}$
		$\begin{aligned} & \text { 毋 } \\ & \stackrel{\circ}{\circ} \end{aligned}$		$\stackrel{n}{\circ}$	$\stackrel{\text { N゙ }}{\dot{\circ}}$	$\begin{aligned} & \text { O} \\ & 0 \end{aligned}$	$\stackrel{\text { N゙ }}{\substack{0}}$	$\stackrel{\text { ỹ }}{\text { y. }}$	$\stackrel{\overline{ल ু}}{\substack{0}}$	$\stackrel{\text { y̌ }}{\substack{\circ}}$		$\stackrel{\text { y̌ }}{\substack{\circ}}$	$\stackrel{\text { ỹ }}{\text { O}}$	$\stackrel{\text { N゙ }}{\stackrel{\circ}{\circ}}$			$\stackrel{\hat{\sigma}}{\dot{\alpha}}$	$\underset{\dot{\circ}}{\underset{\sim}{\text { N }}}$	$\stackrel{8}{\mathrm{O}}$	$\stackrel{\text { N }}{\substack{\mathrm{j} \\ \mathrm{o}}}$		$\stackrel{\text { Y゙ }}{\substack{\circ}}$	¢
	$\underline{w}^{\curvearrowleft}$	－	$\stackrel{\sim}{N}$	$\stackrel{\circ}{\text { NN }}$	－	$\stackrel{+}{i}$	$\stackrel{\infty}{\sim}$	－	ฯ	7	¢	∞		응	§	～	$\begin{aligned} & \text { ô } \\ & \text { i } \end{aligned}$	\％	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \sim \end{aligned}$	$\stackrel{\text { ¢ }}{\sim}$		$\stackrel{\infty}{\sim}$	$\xrightarrow[\sim]{\text { N－}}$
	$\mathbb{\Xi}^{\curvearrowleft}$	－	$\stackrel{\circ}{\sim}$	－	$\stackrel{\square}{8}$	N	$\stackrel{\sim}{\sim}$	－	N	$\overline{7}$	¢	®		¢		～	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { N } \end{aligned}$	\％	$\begin{aligned} & \stackrel{\circ}{\overleftarrow{~}} \\ & \underset{\sim}{\circ} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{3}}{\substack{\text { N }}}$	$\begin{aligned} & \text { No } \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ® }}{\text { N }}$
						E $\stackrel{0}{0}$ 0 0									n 0 0 0 0 0 0 1 1								$\stackrel{\text { ¢ }}{ \pm}$

EMI

2013 Reported Gross Mcf Savings [A]	2013 Adjusted Reported Gross Mcf Savings [B]	2012 Verified Gross Mcf Adjustment Factor ${ }^{\text {c }}$ [C]	2013 Verified Gross Mcf Savings $[D]=[B \times C]$	Deemed Net-toGross Adjustment Factor ${ }^{\text {d }}$	2013 Verified Net Mcf Savings $[\mathrm{F}]=[\mathrm{D} \times \mathrm{E}]$	2013 Mcf Realization Rate $[\mathrm{G}]=[\mathrm{F} / \mathrm{A}]$	2013 Verified Net Mcf Savings Including LLESM $[H]=\left[\begin{array}{lll} F & x & 1.1 \end{array}\right]^{\mathrm{e}}$
77	77	0.911	70	0.900	63	0.820	69
213,142	212,906	0.939	199,884	0.900	179,895	0.844	185,901
12,530	12,529	0.882	11,049	0.900	9,944	0.794	10,603
1,745	1,745	0.881	1,538	0.900	1,384	0.793	1,522
70,297	70,297	1.104	77,588	0.900	69,829	0.993	76,675.40
73,345	73,345	0.881	64,617	0.900	58,156	0.793	63,971
154,913	154,913	0.881	136,478	0.900	122,830	0.793	135,113
100,319	100,319	0.947	95,036	0.900	85,532	0.853	94,086
47,686	47,685	0.896	42,743	0.900	38,469	0.807	42,316
57	57	0.881	50	0.900	45	0.793	49
20,526	20,526	0.924	18,974	0.900	17,077	0.832	17,784
2,262	2,229	0.966	2,154	0.900	1,939	0.857	2,133
9,857	9,857	0.881	8,684	0.900	7,815	0.793	7,815
85,913	85,913	0.886	76,102	0.900	68,492	0.797	70,234
39,683	39,683	0.881	34,960	0.900	31,464	0.793	31,464
1,988	1,988	0.881	1,751	0.900	1,576	0.793	1,734
19	19	0.881	16	0.900	15	0.793	15
8,879	8,879	1.000	8,879	0.900	7,991	0.900	8,790
843,237	842,966	0.926	780,574	0.900	702,517	0.833	750,276

Columns may not sum to total due to rounding.

[^14]
Small Business Solutions Program

Table 5-4, Table 5-5, and Table 5-6 present the certified savings for electric energy (kWh), electric demand (kW), and gas savings (Mcf), respectively, for the Program Year 2013 Small Business Solutions Program by measure.

CDE0068	CFL Box - Door Delivery	22,685,520	22,685,520	1.000	22,685,520	0.900	20,416,968	0.900	20,416,968
CDE0069	CFL Box - Door Delivery (TC)	2,609,100	2,609,100	1.000	2,609,100	0.900	2,348,190	0.900	2,348,190
CDE0072	Programmable Thermostat - DTE Shared - Electric	280,411	280,411	0.993	278,448	0.900	250,603	0.894	250,603
CDE0080	ECM Case Motor	36,256	36,256	0.999	36,220	0.900	32,598	0.899	35,858
CDE0081	ECM Walk-in Cooler and Freezer Motor	412,230	412,230	0.999	411,818	0.900	370,636	0.899	407,700
CDE0084	Evaporator Fan Motor Controls on PSC motors	8,756	8,756	0.999	8,747	0.900	7,873	0.899	7,873
CDE0087	Vending Equipment Controller (Halo)	9,600	9,600	1.000	9,600	0.900	8,640	0.900	9,504
CDE0090	3.5 W LED Candelabra	107,525	107,525	1.000	107,525	0.900	96,773	0.900	96,773
CDE0100	13W BR30 LED Downlight	585	585	0.980	573	0.900	516	0.882	568
CDE0101	LED Exit Sign	216,879	216,879	0.980	212,541	0.900	191,287	0.882	210,416
CDE0102	LED Lighting - 9.5 W LED Lamps Replacing Incandescent Lights	1,272,040	1,272,040	1.000	1,272,040	0.900	1,144,836	0.900	1,144,836
CDE0103	LED Lighting - 6 W LED Lamps Replacing Incandescent Lights	321,440	321,440	1.000	321,440	0.900	289,296	0.900	289,296
CDE0104	14 W CFL Replacing 60 W Globe Inc (Halo)	13,332	13,332	1.000	13,332	0.900	11,999	0.900	11,999
CDE0198	CFL bulbs regular (buydown)	23,280,504	23,280,504	0.955	22,232,881	0.900	20,009,593	0.859	20,009,593
CDE0199	CFL bulbs specialty (buydown)	714,792	714,792	0.955	682,626	0.900	614,364	0.860	614,364
CDE0200	Miscellaneous Lighting	12,214,286	12,214,286	0.999	12,202,071	0.900	10,981,864	0.899	10,981,864
CDE0201	Fixture Removal	851,827	851,827	0.999	850,975	0.900	765,877	0.899	842,465

Chapter 5 Certified Savings

[^15]{ }
\] \& \[
\underset{\substack{n

\sum_{$$
\begin{subarray}{c}{0} }}^{n}} \\
{3}\end{subarray}
$$}{ }

\] \& \[

$$
\begin{aligned}
& \sum_{\substack{n \\
\sum_{3}^{\infty} \\
3}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sum_{i}^{n} \\
& \sum_{\substack{\infty}}^{3}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sum_{i}^{n} \\
& \sum_{\substack{\infty}}^{3}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sum_{\sum_{n}^{n}}^{\substack{n}} \\
& \vdots
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \sum_{\substack{0 \\
\vdots}}^{\infty}
\end{aligned}
$$
\]

\hline \& $$
\begin{aligned}
& \mathbb{\otimes} \\
& \stackrel{\circ}{\circ} \\
& \hline 0
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \infty .0 \\
& \stackrel{\circ}{\circ} \\
& \hline 0
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \stackrel{\circ}{0} \\
& \stackrel{0}{0} \\
& \stackrel{y}{0}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \stackrel{\circ}{N} \\
& \stackrel{0}{0}
\end{aligned}
$$
\] \& $\stackrel{+}{\circ}$ \& $\stackrel{\text { ¢ }}{\stackrel{\circ}{\circ}}$ \& －0\％ \& ¢0000 \& $\stackrel{\text { to }}{\substack{\text { ¢ }}}$

\hline \multirow[t]{2}{*}{8} \& \& \& \& $$
\begin{aligned}
& \stackrel{\circ}{\circ} \\
& \stackrel{\infty}{0} \\
& \underset{\sim}{0}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \stackrel{\circ}{\mathbf{o}} \\
& \stackrel{0}{0}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.0 \\
& \stackrel{0}{\dot{p}} \\
& \tilde{\sim}
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \stackrel{0}{\circ} \\
& \stackrel{\rightharpoonup}{\mathrm{~N}} \\
& \stackrel{\rightharpoonup}{\sigma}
\end{aligned}
$$
\] \& ¢ \&

\hline \& ${ }_{\text {¢ }}^{\text {I }}$ \& ${ }_{\text {¢ }}^{\text {I }}$ \& \& \& $$
\sum_{0}^{(\underset{0}{0}}
$$ \& $\sum_{0}^{\text {¢ }}$ \& \sum_{0}^{1} \& $\stackrel{\text { ¹ }}{\text { T }}$ \& \& \sum_{0}^{1}

\hline \& \& \& \& \& \& | |
| :--- |
| 伩安出 | \& \& \& \&

\hline
\end{tabular}

Business Solutions－ Prescriptive	Boilers and Boiler Controls	CHG0209
Business Solutions－ Prescriptive	Boilers and Boiler Controls	CHG0210
Business Solutions－ Prescriptive	Frequency Drives	CMC0002
Business Solutions－ Prescriptive	Frequency Drives	CMG0002
Business Solutions－ Prescriptive	Energy Recovery	CRC0001
Business Solutions－ Prescriptive	Energy	Recovery

Business Solutions Prescriptive	Energy Recovery	CRG0009	Laboratory Fume-Hood Ventillation Reduction (GO)	CFM	$\begin{array}{r} 27,186.0 \\ 0 \end{array}$	0.1318	WS MEMD	0.0000	No variances
Business Solutions Prescriptive	Kitchen and Refrigeration	CSC0030	Reach-In Refrigerated Case Door; Low Temp Combination Customer	Linear Feet	148.00	5.8952	Master MEMD; Commercial	0.0000	No variances
Business Solutions Prescriptive	Kitchen and Refrigeration	CSC0031	Temperature and Optical Sensor on Exhaust Combo	CFM	$\begin{array}{r} 19,750.0 \\ 0 \end{array}$	0.0410	mi_weather_sens itive_dbase_2012 _10_31_12.x\|s	0.0000	No variances
Business Solutions Prescriptive	Other	CSC0039	Roof Insulation Attic Roof (Combo)	Square Feet	8,504.00	0.0328	WS MEMD	0.0000	No variances
Business Solutions Prescriptive	Other	CSC0040	Roof Insulation Flat Roof (Combo)	Square Feet	$\begin{array}{r} 212,780 . \\ 00 \end{array}$	6.6423	WS MEMD	0.0000	No variances
Business Solutions Prescriptive	Other	CSC0106	Wall Insulation Combination Customer	Square Feet	$\begin{array}{r} 11,994.0 \\ 0 \end{array}$	142.2272	WS MEMD	0.0000	No variances
Business Solutions Prescriptive	Kitchen and Refrigeration	CSE0043	Night Covers (Combo)	Linear Feet	204.00	0.0000	WS MEMD	-32.4768	eTracker reported per unit MCF $=0.1592$; there is no MEMD gas savings for this measure
Business Solutions - Prescriptive	Other	CSG0001	Ozone Generation System	Pound s	2,273.00	4.0911	Master MEMD; Commercial	0.0000	No variances
Business Solutions - Prescriptive	Other	CSG0002	Truck Loading Dock Seals	Units	22.00	39.0743	Master MEMD; Commercial	-0.0022	eTracker reported per unit MCF = 39.0744; should be 39.0743 MCF
Business Solutions Prescriptive	Other	CSG0003	Truck Loading Dock Leveler Ramp Seals	Units	25.00	25.4663	Master MEMD; Commercial	-0.0025	eTracker reported per unit MCF = 25.4664; should be 25.4663 MCF
Business	Other	CSG0004	Greenhouse	Square	220,268.	0.0308	Master MEMD;	0.0000	No variances

2013 Certification Appendices

Solutions Prescriptive			Heat Curtains	Feet	00		Commercial		
Business Solutions - Prescriptive	Other	CSG0005	Greenhouse Infrared Film	Square Feet	$\begin{array}{r} 1,656,85 \\ 9.00 \end{array}$	0.0328	Master MEMD; Commercial	0.0000	No variances
Business Solutions - Prescriptive	Other	CSG0006	Wall Insulation Gas Customer	Square Feet	$\begin{array}{r} 18,473.0 \\ 0 \end{array}$	101.2413	WS MEMD	0.0000	No variances
Business Solutions Prescriptive	Other	CSG0007	Roof Insulation - Flat Roof	Square Feet	$\begin{array}{r} 547,185 . \\ 00 \end{array}$	7.7302	WS MEMD	0.0000	No variances
Business Solutions - Prescriptive	Kitchen and Refrigeration	CSG0009	Commercial Conveyer Oven (>25"" Conveyor Width)	Units	1.00	85.9245	Master MEMD; Commercial	-0.0003	eTracker reported per unit MCF = 85.9248; should be 85.9245 MCF
Business Solutions - Prescriptive	Other	CSG0012	Roof Insulation Attic Roof	Square Feet	$\begin{array}{r} 13,497.0 \\ 0 \end{array}$	9.3010	WS MEMD	0.0000	No variances
Business Solutions - Prescriptive	Kitchen and Refrigeration	CSG0013	Temperature and Optical Sensor on Exhaust Gas	CFM	5,000.00	0.0410	mi weather sens itive_dbase_2012 _10_31_12.xls	0.0000	No variances
Business Solutions - Prescriptive	Kitchen and Refrigeration	CSG0020	EnergyStar Steam Cookers-6 Pan; Gas	Units	1.00	202.5641	Master MEMD; Commercial	-0.0007	eTracker reported per unit MCF = 202.5648; should be 202.5641 MCF
Business Solutions - Prescriptive	Kitchen and Refrigeration	CSG0024	Fixed-Plate Energy Recovery Unit (GO)	CFM	450.00	0.1187	WS MEMD	-0.0900	eTracker reported per unit MCF $=0.1189$; should be 0.1187 MCF
Business Solutions - Prescriptive	Energy Recovery	CSG0025	Enthalpy Wheel Energy Recovery Unit (GO)	CFM	$\begin{array}{r} 126,076 . \\ 00 \end{array}$	0.1217	WS MEMD	0.0000	No variances
Business Solutions - Prescriptive	C\&I Waterheating	CWE0010	Pipe Wrap - Domestic Hot Water - conditioned space (120F)	Linear Feet	594.00	0.1012	Master MEMD; Commercial	0.0000	No variances

Business Solutions - Prescriptive	C\&I Waterheating	CWG0001	Pipe Wrap - Hydronic Space Heating	Linear Feet	1,596.00	0.3888	Master MEMD; Commercial	0.0000	No variances
Business Solutions Prescriptive	C\&I Waterheating	CWG0002	Gas Water Heater > 80 gal	Units	16.00	18.2735	Master MEMD; Commercial	-0.0016	eTracker reported per unit MCF = 18.2736; should be 18.2735 MCF
Business Solutions Prescriptive	C\&I Waterheating	CWG0003	Gas Water Heater <= 80 gal	Units	3.00	3.0132	Master MEMD; Commercial	0.0000	No variances
Business Solutions Prescriptive	C\&I Waterheating	CWG0004	Gas tankless water heater	Units	36.00	17.2043	Master MEMD; Commercial	-0.0036	eTracker reported per unit MCF = 17.2044; should be 17.2043 MCF
Business Solutions - Prescriptive	Swimming Pool	CWG0007	High Efficiency Pool Heater .84+ EF	mBtu	5,249.00	0.2372	Master MEMD; Commercial	0.0000	No variances
Business Solutions Prescriptive	Swimming Pool	CWG0008	Pool Covers	Square Feet	8,684.00	0.0855	Master MEMD; Commercial	0.0000	No variances
Business Solutions - Prescriptive	C\&I Waterheating	CWG0009	Pre Rinse Sprayers - < 1.6 gpm Gas HW	Units	1.00	5.8320	Master MEMD; Commercial	0.0000	No variances
Business Solutions - Prescriptive	C\&I Waterheating	CWG0012	Pipe Wrap Domestic Hot Water conditioned space (140F)	Linear Feet	42.00	0.1490	Master MEMD; Commercial	0.0000	No variances
Business Solutions Prescriptive	C\&I Waterheating	CWG0013	Pipe Wrap Steam Space Heating	Linear Feet	1,602.00	1.4580	Master MEMD; Commercial	0.0000	No variances
Business Solutions - Prescriptive	C\&I Waterheating	CWG0014	High Eff Domestic Water Heater (84\% to 89\%)	MBH	6,747.00	0.1034	Master MEMD; Commercial	0.0000	No variances
Business Solutions - Prescriptive	C\&I Waterheating	CWG0015	High Eff Domestic Water Heater (90\%)	MBH	$\begin{array}{r} 11,492.0 \\ 0 \end{array}$	0.2412	Master MEMD; Commercial	-1.1492	eTracker reported per unit MCF $=0.2413$; should be 0.2412 MCF
Business Solutions Prescriptive	C\&I Waterheating	CWG0016	Domestic Water Heater Tune-Up (199	Units	32.00	0.0557	Master MEMD; Commercial	0.0000	No variances

2013 Certification Appendices

			© 0 . 0 0 0 0			o 0 W W 0 0 2				
$\stackrel{\circ}{\circ}$	O	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$	\bigcirc	$\stackrel{8}{8}$	－	\％		
					$\begin{aligned} & \sum_{\substack{0 \\ \sum_{3}^{0} \\ \vdots}} \end{aligned}$	$\sum_{\substack{n \\ \sum_{3}^{\infty}}}^{\substack{n}}$	$\sum_{\substack{n \\ \sum\\}}^{\infty}$	$\underset{\substack{n \\ \sum_{n}^{0} \\ 3}}{ }$		
$\begin{aligned} & \text { N} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \stackrel{0}{0} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\mathrm{M}} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & \text { ®̀ } \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \text { £ } \\ & \stackrel{W}{な} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { oion } \\ & \stackrel{\oplus \infty}{\circ} \end{aligned}$	－	＋		
$\stackrel{\circ}{\infty}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{j} \end{aligned}$	－	$\begin{aligned} & \stackrel{\circ}{\dot{N}} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$		$\begin{aligned} & \dot{\circ} \\ & \stackrel{\infty}{\underset{\sim}{N}} \\ & \stackrel{\sim}{n} \end{aligned}$	8 $\stackrel{6}{6}$ ¢	$\begin{aligned} & 00 \\ & \dot{\infty} \\ & \frac{0}{0} \\ & \stackrel{1}{m} \end{aligned}$		
$\stackrel{\mathscr{L}}{5}$	$\stackrel{\varrho 2}{5}$		$\frac{\mathscr{L}}{5}$			$\begin{aligned} & \stackrel{0}{\stackrel{0}{\tilde{u}}} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	帝	$\stackrel{\text { c }}{\text { 产 }}$		－ 499 MBH）
:---										
Domestic										
Water Heater										
Tune－Up（500										
$-1,199$ MBH）										
Domestic										
Water Heater										
Tune－Up（＞＝										
1200 MBH）										
Pipe Wrap－										
Domestic Hot										
Water－										
unconditione										
d space										
（120F）										
Gas Water										
Heater＜＝ 80										
gal										
Natural Gas										
Domestic Hot										
Water－										
Conditioned										
Space（120F）										
（GO）										
Infrared										
Heaters－										
Combination										
Customers										
Demand										
Control										
Ventilation－										
Combination										
Customers										
Infrared										
Heaters－										
Gas										
Customer										
Only										
High										
Efficiency										
Boiler with										
AFUE＞＝										
90\％										

EM		
Business Solutions－ Prescriptive	C\＆I Waterheating	CWG0017
Business Solutions－ Prescriptive	C\＆I Waterheating	CWG0019
Business Solutions－ Prescriptive	C\＆I Waterheating	CWG0023
Business Solutions－ Prescriptive	C\＆I Waterheating	CWG0024
Business Solutions－ Prescriptive	C\＆I Waterheating	CWG0025
New Construction －Major Renovation 2013	Furnaces and Heaters	CHC0010
New Construction －Major Renovation 2013	DCV and Economizers	CHC0027
New Construction －Major Renovation 2013	Furnaces and Heaters	CHG0010
New Construction －Major Renovation 2013	Boilers and Boiler Controls	CHG0016

New Construction - Major Renovation 2013	Boilers and Boiler Controls	CHG0026	High Efficiency Process Boiler Replacement (Water)	kBtu/h	$\begin{array}{r} 97,968.0 \\ 0 \end{array}$	0.1468	Master MEMD; Commercial	0.0000	No variances
New Construction - Major Renovation 2013	Furnaces and Heaters	CHG0058	High Efficiency Furnace or Unit Heater (92-94\% AFUE)	MBH	1,006.00	0.2084	WS MEMD	0.0000	No variances
New Construction - Major Renovation 2013	Furnaces and Heaters	CHG0061	High Efficiency Furnace or Unit Heater (>94\% AFUE)	MBH	400.00	0.2542	WS MEMD	-0.4560	eTracker reported per unit MCF $=0.2559$ for 1 project; should be 0.2542 MCF
New Construction - Major Renovation 2013	Other	CSG0003	Truck Loading Dock Leveler Ramp Seals	Units	59.00	25.4663	Master MEMD; Commercial	-0.0059	eTracker reported per unit MCF = 25.4664; should be 25.4663 MCF
New Construction - Major Renovation 2013	C\&I Waterheating	CWG0002	Gas Water Heater > 80 gal	Units	3.00	18.2735	Master MEMD; Commercial	-0.0003	eTracker reported per unit MCF = 18.2736; should be 18.2735 MCF
New Construction - Major Renovation 2013	C\&I Waterheating	CWG0003	Gas Water Heater <= 80 gal	Units	1.00	3.0132	Master MEMD; Commercial	0.0000	No variances
New Construction - Major Renovation 2013	C\&I Waterheating	CWG0015	High Eff Domestic Water Heater (90\%)	MBH	3,180.00	0.2412	Master MEMD; Commercial	-0.3180	eTracker reported per unit MCF $=0.2413$; should be 0.2412 MCF
New Construction - Whole Building	NEW CONSTRUC TION	CNE0001	Design Incentive Building Owner	Units	5.00	0.0000	Custom calculated	0.0000	No variances
TOTAL								-270.4565	

		Table A	Busine	tions Pr	Per-Unit	ings for	tric Energy		
Program	End Use	Measure Code	Measure Description	Units	Install Quantity	MEMD or Workpaper Per-Unit kWh Savings	Deemed Source	Effect on Reported kWh	Variance Description
CFL - Buydown	Direct Install Non-lighting	CDE0198	CFL bulbs regular (buydown)	Units	149,234.00	156.0000	Master MEMD; Commercial	0.0000	No variances
CFL - Buydown	Direct Install Non-lighting	CDE0199	CFL bulbs specialty (buydown)	Units	4,582.00	156.0000	Master MEMD; Commercial	0.0000	No variances
$\begin{aligned} & \text { CFL - Drop } \\ & \text { Ship } \end{aligned}$	Direct Install Non-lighting	CDE0068	CFL Box - Door Delivery	Units	29,084.00	780.0000	Master MEMD; Commercial	0.0000	No variances
$\begin{aligned} & \text { CFL - Drop } \\ & \text { Ship } \end{aligned}$	Direct Install Non-lighting	CDE0069	CFL Box - Door Delivery (TC)	Units	3,345.00	780.0000	Master MEMD; Commercial	0.0000	No variances
Core DI	Direct Install Lighting	CDE0050	Lighting Controls	Watts Controlled	75,561.90	0.0000	DI Lighting	0.0000	No variances
Core DI	Direct Install Lighting	CDE0051	CFL Bulb -Screw-in	Units	753.00	0.0000	DI Lighting	0.0000	No variances
Core DI	Direct Install Lighting	CDE0052	Hardwired CFL	Units	82.00	0.0000	DI Lighting	0.0000	No variances
Core DI	Direct Install Lighting	CDE0053	Specialty CFL	Units	270.00	0.0000	DI Lighting	0.0000	No variances
Core DI	Direct Install Lighting	CDE0054	T8s and U-Tube T8 Lamps	Units	27,271.00	0.0000	DI Lighting	0.0000	No variances
Core DI	Direct Install Lighting	CDE0055	T5 Lamps	Units	85.00	0.0000	DI Lighting	0.0000	No variances
Core DI	Direct Install Lighting	CDE0057	LEDs, LED Exit Signs, Induction	Units	8,451.00	0.0000	DI Lighting	0.0000	No variances
Core DI	Direct Install Non-lighting	CDE0059	Anti-sweat Heater Control	Units	4,334.00	$\begin{array}{r} 1,489.000 \\ 0 \end{array}$	Master MEMD; Commercial	0.0000	No variances
Core DI	Direct Install Non-lighting	CDE0064	Small Business Custom Electric	Units	90.00	0.0000	DI Lighting	0.0000	No variances
Core DI	Direct Install Non-lighting	CDE0080	ECM Case Motor	Units	44.00	824.0000	Master MEMD; Commercial	0.0000	No variances
Core DI	Direct Install Non-lighting	CDE0081	ECM Walk-in Cooler and Freezer Motor	Units	302.00	$\begin{array}{r} 1,365.000 \\ 0 \end{array}$	Master MEMD; Commercial	0.0000	No variances

Core DI	Direct Install Lighting	CDE0084	Evaporator Fan Motor Controls on PSC motors	Units	11.00	796.0000	Master MEMD; Commercial	0.0000	No variances
Core DI	Direct Install Lighting	CDE0200	Miscellaneous Lighting	Units	24,027.00	0.0000	DI Lighting	0.0000	No variances
Core DI	Direct Install Lighting	CDE0201	Fixture Removal	Units	966.00	0.0000	DI Lighting	0.0000	No variances
Hospitality	Direct Install -- Hospitality	CDE0044	LED Lighting 12 W LED Lamps replacing incandescent lights	Units	3,860.00	196.0000	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install -- Hospitality	CDE0045	LED Lighting 11 W LED Flood Lamp	Units	8,639.00	195.0000	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install -- Hospitality	CDE0046	LED Lighting - 8 W LED Lamps replacing incandescent lights	Units	2,678.00	196.0000	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install Lighting	CDE0087	Vending Equipment Controller (Halo)	Units	12.00	800.0000	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install -- Hospitality	CDE0090	3.5 W LED Candelabra	Units	935.00	115.0000	DecorativeLED Workpaper_06 2713.docx	0.0000	No variances
Hospitality	Direct Install -- Hospitality	CDE0100	13W BR30 LED Downlight	Units	3.00	195.0000	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install -- Hospitality	CDE0101	LED Exit Sign	Units	1,079.00	201.0000	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install -- Hospitality	CDE0102	LED Lighting 9.5 W LED Lamps Replacing Incandescent Lights	Units	6,490.00	196.0000	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install -- Hospitality	CDE0103	LED Lighting - 6 W LED Lamps Replacing Incandescent Lights	Units	1,640.00	196.0000	Master MEMD; Commercial	0.0000	No variances

EMI

Hospitality	Direct Install -- Hospitality	CDE0104	14 W CFL Replacing 60 W Globe Inc (Halo)	Units	66.00	202.0000	Master MEMD; Commercial	0.0000	No variances
Programmable Thermostats	Direct Install Non-lighting	CDC0058	Programmable Thermostats -Combination Customers	Units	602.00	$\begin{array}{r} 1,619.045 \\ 0 \end{array}$	WS MEMD	0.0000	No variances
Programmable Thermostats	Direct Install Non-lighting	CDE0058	Programmable Thermostats	Units	917.00	$\begin{array}{r} 1,724.188 \\ 2 \end{array}$	WS MEMD	0.0000	No variances
Programmable Thermostats	Direct Install Non-lighting	CDE0072	Programmable Thermostat DTE Shared Electric	Units	184.00	$\begin{array}{r} 1,523.970 \\ 3 \end{array}$	WS MEMD	0.0000	No variances
Programmable Thermostats	Direct Install Lighting	CFE0014	Linear Fluorescent to LED Retrofit	Units	339.00	379.3900	LED LinearT1 2Workpaper_1 1082013_IS.d ocx	0.0019	kWh rounding issue
TOTAL								0.0019	

Appendix A: Savings Values of Validated Measures

Core DI	Direct Install Lighting	CDE0084	Evaporator Fan Motor Controls on PSC motors	Units	11.00	0.0819	Master MEMD; Commercial	-0.0991	eTtracker reported per unit kW = 0.0909 ; should be 0.0819 kW
Core DI	Direct Install Lighting	CDE0200	Miscellaneous Lighting	Units	24,027.00	0.0000	DI Lighting	0.0000	No variances
Core DI	Direct Install Lighting	CDE0201	Fixture Removal	Units	966.00	0.0000	DI Lighting	0.0000	No variances
Hospitality	Direct Install - - Hospitality	CDE0044	LED Lighting - 12 W LED Lamps replacing incandescent lights	Units	3,860.00	0.0479	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install - - Hospitality	CDE0045	LED Lighting - 11 W LED Flood Lamp	Units	8,639.00	0.0477	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install - - Hospitality	CDE0046	LED Lighting - 8 W LED Lamps replacing incandescent lights	Units	2,678.00	0.0479	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install Lighting	CDE0087	Vending Equipment Controller (Halo)	Units	12.00	0.0420	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install - - Hospitality	CDE0090	3.5 W LED Candelabra	Units	935.00	0.0281	DecorativeLED Workpaper_06 2713.docx	0.0000	No variances
Hospitality	Direct Install - - Hospitality	CDE0100	13W BR30 LED Downlight	Units	3.00	0.0477	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install - - Hospitality	CDE0101	LED Exit Sign	Units	1,079.00	0.0230	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install - - Hospitality	CDE0102	LED Lighting - 9.5 W LED Lamps Replacing Incandescent Lights	Units	6,490.00	0.0479	Master MEMD; Commercial	0.0000	No variances
Hospitality	Direct Install - - Hospitality	CDE0103	LED Lighting - 6 W LED Lamps Replacing Incandescent Lights	Units	1,640.00	0.0479	Master MEMD; Commercial	12.4640	eTracker reported per unit kW = 0.0403 ; should be 0.0479 kW

Hospitality	Direct Install - - Hospitality	CDE0104	14 W CFL Replacing 60 W Globe Inc (Halo)	Units	66.00	0.0494	Master MEMD; Commercial	0.0000	No variances
Programmabl e Thermostats	Direct Install Non-lighting	CDC0058	Programmable Thermostats -Combination Customers	Units	602.00	-0.1769	WS MEMD	0.0000	No variances
Programmabl e Thermostats	Direct Install Non-lighting	CDE0058	Programmable Thermostats	Units	917.00	-0.2260	WS MEMD	0.0000	No variances
Programmabl e Thermostats	Direct Install Non-lighting	CDE0072	Programmable Thermostat DTE Shared Electric	Units	184.00	-0.2265	WS MEMD	0.0000	No variances
Programmabl e Thermostats	Direct Install Lighting	CFE0014	Linear Fluorescent to LED Retrofit	Units	339.00	0.1030	LED_LinearT1 2Workpaper_1 1082013_IS.d ocx	0.0000	No variances
TOTAL								-638.7971	

EMI

Program	End Use	Measure Code	Measure Description	Units	Install Quantity	MEMD or Workpaper Per-Unit Mcf Savings	Deemed Source	Effect on Reported Mcf	Variance Description
Furnace Tuneup	Direct Install Nonlighting	CDG0011	DI - Gas Furnace or RTU Tuneup ($>=40$ and <300 MBH)	Units	2,402.00	0.0309	Navigant 2013 Q4_SB DI Master Measures_2013_ 1_23.xlsx	-2.0394	1 project has incorrect computed MCF perfomance savings in eTracker; reported MCF = 16.7478 should be 14.7084
Furnace Tuneup	Direct Install Nonlighting	CDG0012	DI - Gas Furnace or RTU Tuneup (>=300 MBH)	Units	193.00	0.0392	Navigant 2013 Q4_SB DI Master Measures_2013_ 1_23.xlsx	0.0000	No variances
Programmable Thermostats	Direct Install Nonlighting	CDC0058	Programma ble Thermostats -Combination Customers	Units	602.00	52.5793	WS MEMD	0.0000	No variances
Programmable Thermostats	Direct Install Nonlighting	CDG0033	Programma ble Thermostat - DTE Shared - Gas	Units	184.00	56.8936	WS MEMD	0.0000	No variances
Programmable Thermostats	Direct Install Nonlighting	CDG0058	Programma ble Thermostat - Gas Customers	Units	1,610.00	56.8936	WS MEMD	0.0000	No variances
TOTAL								-2.0394	

Appendix A: Savings Values of Validated Measures

Variance Description
No variances

0.0000	No variances
0.0000	No variances
	No variances

Commercial
Master MEMD;
Commercial
Master MEMD;
Residential
Master MEMD;
Residential
Master MEMD;
Residential
Master MEMD;
Commercial
LED and CFL
Candelabra Style
Lamps in
Multifamily_0737.doc
LED and CFL
Candelabra Style
Lamps in
Multifamily_0737.doc
LED and CFL
Candelabra Style
Lamps in

\circ 8 8 8	$\begin{aligned} & \text { O} \\ & \stackrel{8}{\mathrm{O}} \\ & \stackrel{-}{6} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\text { O}}{6} \\ & \text { ¢\% } \end{aligned}$	\circ 8 0 	$\begin{aligned} & \stackrel{8}{0} \\ & \frac{\dot{G}}{} \end{aligned}$	\circ 8 8	\circ 8 - - 0	\circ 8 0 ∞	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { Mo } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \stackrel{\text { N }}{\sim} \end{aligned}$	\circ 0 0 0 0	$\begin{aligned} & \text { O} \\ & \hline \mathbf{\circ} \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \circ \\ & \hline \text { O} \\ & \text { + } \\ & \text { N } \end{aligned}$				
$\begin{aligned} & \text { O} \\ & \text { O } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { i } \end{aligned}$		$\stackrel{\circ}{\circ}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\frac{\stackrel{8}{6}}{\square}$	$\begin{aligned} & \stackrel{\circ}{\dot{-}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \stackrel{y}{2} \end{aligned}$	$$	$\begin{aligned} & \text { O} \\ & \text { ó } \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & \\ & \stackrel{n}{2} \end{aligned}$				$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{U}} \end{aligned}$	¢ ¢ +	8 + $\substack{\text { ¢ }}$

175-250W	
$\begin{aligned} & \text { LED/Induction (Night Only) } \\ & 250-400 \mathrm{~W} \end{aligned}$	Units
$\begin{aligned} & \text { LED/Induction (24x7) } \\ & <175 W \end{aligned}$	Units
$\begin{aligned} & \text { LED/Induction }(24 \times 7) \text { 175- } \\ & 250 W \end{aligned}$	Units
CFL Speciality - Common Area	Units
CFL Speciality - In-Unit - DI	Units
Low Flow Showerhead - 1.5 gpm - Electric	Units
Low Flow Showerhead - 1.5 gpm - Eectric - Handheld	Units
13W CFL - Common Area Direct Install	Units
1L HPT8 replacing T12 -Common-24/7	Units
1L RW HPT8 replacing T12 - Common - 24/7	Units
2L HPT8 replacing T12 -Common-24/7	Units
2L RW HPT8 replacing T12 - Common - 24/7	Units
4L HPT8 replacing T12 -Common-24/7	Units
4L RW HPT8 replacing T12 - Common - 24/7	Units
CFL Candelabra Lamp (513W) - Common - 24/7 operation	Units
DI - CFL Candelabra Lamp (5-13W) - 24/7 operation DI	Units
DI - CFL Candelabra Lamp (5-13W) - DI	Units

			$\begin{aligned} & \stackrel{\circ}{8} \\ & \stackrel{\text { b }}{0} \end{aligned}$	$\stackrel{\circ}{8}$ $\stackrel{0}{5}$ 0		$\begin{aligned} & \overline{i n} \\ & \stackrel{0}{u} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { 妴 } \end{aligned}$		$\stackrel{N}{N}$ $\stackrel{\rightharpoonup}{\bullet}$ $\stackrel{\rightharpoonup}{0}$	$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{\rightharpoonup}{\mathrm{H}} \end{aligned}$		은	$\begin{aligned} & \bar{m} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\stackrel{9}{M}$ $\stackrel{\text { B }}{0}$ -		\%

E

							Multifamily_0737.doc		
MultiFamily	C\&l Multifamily	CTE0145	DI - LED Candelabra Lamp (3-5W) - $24 / 7$ operation - DI	Units	1,822.00	247.0000	LED and CFL Candelabra Style Lamps in Multifamily_0737.doc	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0146	DI - LED Candelabra Lamp (3-5W) - DI	Units	293.00	124.0000	LED and CFL Candelabra Style Lamps in Multifamily_0737.doc	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0147	Exterior CFL (replacing d175W HID)	Units	198.00	496.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&l Multifamily	CTE0153	HPT8 replacing T12 - per lamp-Common	Lamps Remov ed	1,983.00	29.0000	Master MEMD; Commercial	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0157	LED Fixture - In Unit	Units	52.00	44.0000	Master MEMD; Residential	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0158	LED Lamp - 100W Replacement - In Unit	Units	372.00	44.0000	Master MEMD; Residential	0.0000	No variances
Multi- Family	C\&l Multifamily	CTE0160	LED Lamp-50-80W Replacement-Common	Units	2,465.00	196.0000	Master MEMD; Commercial	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0161	LED Lamp - 60W Replacement - In Unit	Units	23.00	40.0000	Master MEMD; Residential	0.0000	No variances
Multi- Family	C\&l Multifamily	CTE0163	LED Lamp - 80-100W Replacement - Common	Units	85.00	258.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&l Multifamily	CTE0164	LED Lamp - Flood/PAR Common	Units	4.00	116.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0166	LED Lamp - PAR - In Unit	Units	37.00	54.0000	Master MEMD; Residential	0.0000	No variances
Multi- Family	C\&l Multifamily	CTE0168	PTHP - In Unit	Units	26.00	319.5693	WS MEMD	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0171	VFD - Pump	HP	1.75	$\begin{array}{r} 4,054.730 \\ 6 \end{array}$	WS MEMD	0.0000	No variances
MultiFamily	C\&l Multifamily	CTE0172	Low Flow Bath Faucet Aerators 1.0gpm - Electric DI	Units	28.00	207.0412	Low Flow 1.5 gpm Kitchen and 1.0 gpm Bath Aerators.doc	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0174	DI - LED Candelabra Lamp (3-5W) - In-Unit - DI	Units	612.00	25.0000	Master MEMD; Residential	0.0000	No variances
Multi- Family	C\&l Multifamily	CTE0175	DI - CFL Candelabra Lamp (5-13W) - In-Unit - DI	Units	67.00	44.1000	Master MEMD; Residential	0.0000	No variances
Multi-	C\&I Multifamily	CTG0009	Boiler Controls	mBtu	5,099.00	-0.4765	WS MEMD	0.0000	No variances

EM
Family

$\begin{aligned} & \mathrm{O} \\ & \hline 0 \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\stackrel{8}{\circ}$	\circ 0 0	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline \text { O} \\ & \hline-1 \end{aligned}$	\circ 8 0	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline-1 \end{aligned}$	\circ 8 0	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline-1 \end{aligned}$	－	－
	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \dot{-} \\ & \text { - } \end{aligned}$	\circ -8 - $\stackrel{\circ}{8}$ -	\circ 8 0 0 í	\circ 8 0 8	\circ 8 8	$\begin{aligned} & \text { O} \\ & \frac{0}{0} \\ & \frac{\mathrm{~F}}{6} \end{aligned}$	\circ 8 0 0	\circ - - \circ -		$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 8 \\ & \hline 8 \end{aligned}$	\circ 8 \vdots ∞	
$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{8}{-}$	$\begin{aligned} & \text { O} \\ & \text { ن } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O. } \\ & \text { en } \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\text { O}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { ষ̀ } \end{aligned}$	$\begin{aligned} & \mathrm{Q} \\ & \stackrel{\rightharpoonup}{\mathrm{~g}} \end{aligned}$	O-ઠ	$\stackrel{\circ}{\mathrm{j}}$ $\stackrel{\text { N }}{ }$ ले	$\frac{\mathrm{Q}}{\mathbf{\circ}}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \circ \\ & \stackrel{\text { ®}}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 6 \end{aligned}$
¢	$\stackrel{\square}{5}$			$\stackrel{\square}{5}$	$\stackrel{\square}{5}$		$\stackrel{\square}{5}$	$\stackrel{0}{5}$	$\stackrel{\square}{5}$	$\stackrel{\square}{5}$	$\stackrel{\square}{5}$	$\stackrel{\square}{5}$	$\stackrel{0}{5}$
응 岕		ल్ O ＂		$\begin{aligned} & 0.0 \\ & \text { O} \\ & \stackrel{山}{6} \end{aligned}$		O O ㅡ․		$\stackrel{0}{8}$ $\stackrel{3}{\text { b }}$ 0		$\begin{aligned} & \text { ơo } \\ & \text { O} \\ & \text { U } \end{aligned}$	등 岩	N	N $\stackrel{\text { ¢ }}{\text { U }}$ U
									$\frac{\dot{⿳ 亠 二 口 又 土}}{\stackrel{\rightharpoonup}{\bar{\omega}}}$				

EMI

MultiFamily	C\&I Multifamily	CTE0036	LED/Induction (Night Only) 175-250W	Units	30.00	409.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0038	LED/Induction (Night Only) 250-400W	Units	200.00	706.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0039	$\begin{aligned} & \text { LED/Induction }(24 \times 7) \\ & <175 W \end{aligned}$	Units	42.00	611.0000	Master MEMD; Commercial	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0040	$\begin{aligned} & \text { LED/Induction (24x7) } \\ & 175-250 \mathrm{~W} \end{aligned}$	Units	45.00	936.0000	Master MEMD; Commercial	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0045	CFL Speciality Common Area	Units	30.00	186.0000	Master MEMD; Commercial	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0046	CFL Speciality - InUnit - DI	Units	3,239.00	44.1000	Master MEMD; Residential	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0050	Low Flow Showerhead - 1.5 gpm - Electric	Units	61.00	690.0000	Master MEMD; Residential	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0051	Low Flow Showerhead - 1.5 gpm - Eectric Handheld	Units	19.00	690.0000	Master MEMD; Residential	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0052	13W CFL - Common Area - Direct Install	Units	163.00	186.0000	Master MEMD; Commercial	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0124	1L HPT8 replacing T12-Common-24/7	Units	46.00	103.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0125	1L RW HPT8 replacing T12- Common-24/7	Units	106.00	126.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0126	2L HPT8 replacing T12-Common-24/7	Units	158.00	138.0000	Master MEMD Commercial	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0127	2L RW HPT8 replacing T12 -Common-24/7	Units	263.00	180.0000	Master MEMD; Commercial	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0130	4L HPT8 replacing T12-Common-24/7	Units	32.00	264.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0131	4L RW HPT8 replacing T12 -Common-24/7	Units	35.00	359.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0139	CFL Candelabra Lamp (5-13W) - Common 24/7 operation	Units	12.00	298.0000	LED and CFL Canelabra Style Lamps in Multifamily_0737.doc	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0143	DI - CFL Candelabra Lamp (5-13W) - 24/7 operation - DI	Units	149.00	298.0000	LED and CFL Canelabra Style Lamps in Multifamily_0737.doc	0.0000	No variances

MultiFamily	C\&I Multifamily	CTE0144	DI - CFL Candelabra Lamp (5-13W) - DI	Units	674.00	149.0000	LED and CFL Canelabra Style Lamps in Multifamily_0737.doc	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0145	DI - LED Candelabra Lamp (3-5W) - 24/7 operation - DI	Units	1,822.00	247.0000	LED and CFL Canelabra Style Lamps in Multifamily_0737.doc	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0146	DI - LED Candelabra Lamp (3-5W) - DI	Units	293.00	124.0000	LED and CFL Canelabra Style Lamps in Multifamily_0737.doc	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0147	Exterior CFL (replacing d175W HID)	Units	198.00	496.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0153	HPT8 replacing T12 per lamp - Common	Lamps Removed	1,983.00	29.0000	Master MEMD; Commercial	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0157	LED Fixture - In Unit	Units	52.00	44.0000	Master MEMD; Residential	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0158	LED Lamp - 100W Replacement - In Unit	Units	372.00	44.0000	Master MEMD; Residential	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0160	LED Lamp - 50-80W Replacement Common	Units	2,465.00	196.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0161	LED Lamp -60W Replacement - In Unit	Units	23.00	40.0000	Master MEMD; Residential	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0163	LED Lamp -80-100W Replacement Common	Units	85.00	258.0000	Master MEMD; Commercial	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0164	LED Lamp - Flood/PAR - Common	Units	4.00	116.0000	Master MEMD; Commercial	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0166	LED Lamp - PAR - In Unit	Units	37.00	54.0000	Master MEMD; Residential	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0168	PTHP - In Unit	Units	26.00	319.5693	WS MEMD	0.0000	No variances
Multi- Family	C\&I Multifamily	CTE0171	VFD - Pump	HP	1.75	4,054.7306	WS MEMD	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0172	Low Flow Bath Faucet Aerators 1.Ogpm - Electric - DI	Units	28.00	207.0412	Low Flow 1.5 gpm Kitchen and 1.Ogpm Bath Aerators.doc	0.0000	No variances
MultiFamily	C\&I Multifamily	CTE0174	DI - LED Candelabra Lamp (3-5W) - In-Unit - DI	Units	612.00	25.0000	Master MEMD; Residential	0.0000	No variances
Multi-	C\&I	CTE0175	DI - CFL Candelabra	Units	67.00	44.1000	Master MEMD;	0.0000	No variances

Family	Multifamily		Lamp (5-13W) - In- Unit - DI				Residential		
Multi- Family	C\&I Multifamily	CTG0004	Low Flow Bath Faucet Aerators - Gas - DI	Units	1,188.00	0.0000	Master MEMD; Residential	0.0000	No variances
MultiFamily	C\&I Multifamily	CTG0009	Boiler Controls	mBtu	5,099.00	-0.4765	WS MEMD	0.0000	No variances
MultiFamily	C\&I Multifamily	CTG0052	Pipe Wrap - DHW -Common- DI	Linear Feet	7,896.00	0.0000	FES-C11a DHW Pipe Insulation Michigan 073013.doc	-7.8960	eTracker reported per unit MCF = 0.2441 ; should be 0.2431 MCF
MultiFamily	 Multifamily	CTG0131	In-Direct Water Heater (e90\% Eff)	MBH	3,510.00	0.0000	Master MEMD; Commercial	-0.3510	eTracker reported per unit MCF= 0.2413 ; should be 0.2412 MCF
TOTAL								-8.2470	

	$\begin{aligned} & \text { مٌ } \\ & \stackrel{0}{8} \\ & \underset{\sim}{i} \\ & \stackrel{N}{2} \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{+}{7} \end{aligned}$	$\begin{aligned} & \dot{\infty} \stackrel{n}{\infty} \\ & \stackrel{n}{0} \\ & \stackrel{0}{n} \\ & \underset{\sim}{c} \end{aligned}$		$\begin{aligned} & \dot{\sim} \\ & \underset{N}{N} \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{y}{i} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{y}{0} \\ & \dot{\circ} \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \stackrel{0}{0} \\ & \underset{\sim}{N} \end{aligned}$	
		$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { O- } \\ & \hline \text { O- } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{\infty} \\ & \underset{0}{2} \end{aligned}$	$\begin{aligned} & \circ 8 \\ & \infty \\ & \infty \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { of } \\ & \infty \\ & 0 \\ & \hline 0 \end{aligned}$	－1000	$\stackrel{\text { ¢ \％}}{\sim}$	$\stackrel{\circ}{\circ}$	－0\％
				$\begin{aligned} & \stackrel{1}{N} \mathrm{O} \\ & \stackrel{\circ}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\dot{N}} \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \stackrel{+}{\sigma} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { io } \\ & \text { in } \end{aligned}$	$\begin{aligned} & n o p \\ & 0 \\ & \text { G } \\ & \text { in o } \end{aligned}$				
	$\stackrel{8}{0}_{0}^{\circ}$	8_{0}°	8_{0}°	8_{0}°	8_{0}°	8_{0}°	$\text { ®O- }_{\circ}^{\circ}$	$\stackrel{80}{\circ}^{\circ}$	$\stackrel{\circ}{\circ}_{0}^{\circ}$	$\stackrel{80}{\circ}^{\circ}$	8_{0}°
				$\begin{aligned} & \text { BO } \\ & \text { Nì } \\ & \mathrm{H}_{0} \end{aligned}$				$\begin{aligned} & \dot{\circ} \mathrm{O} \\ & \dot{\text { ® }} \end{aligned}$	$\begin{aligned} & \dot{0} \dot{O}_{\infty}^{\infty} \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \dot{0} \stackrel{N}{i n} \\ & \stackrel{N}{0} \\ & \stackrel{M}{0} \end{aligned}$	
	$\stackrel{\text { O}}{\circ}$	$\stackrel{8}{8}$	$\stackrel{\sim}{0}$	O-	$\stackrel{\text { 犬゙ }}{\substack{\mathrm{O}}}$	$\stackrel{\text { H. }}{\substack{0 \\ \hline}}$	$\stackrel{\text { 犬゙ }}{\substack{\mathrm{O}}}$	$\stackrel{+}{\circ}$	¢0\％	＋＋＋	$\stackrel{+}{\circ}$
	$\begin{aligned} & \dot{\infty} \dot{0} \\ & \underset{\infty}{\infty} \\ & \infty \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \underset{\dot{r}}{\dot{q}} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \text { io } \\ & \text { Ni } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \stackrel{O}{-} \\ & \underset{\sim}{N} \\ & \text { is } \end{aligned}$	$\begin{aligned} & \frac{\infty}{6} 8 \\ & \stackrel{\circ}{\circ} \\ & \stackrel{+}{\circ} \end{aligned}$		$\begin{aligned} & 00 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & \mathbf{o}_{1}^{0} \\ & \infty \\ & 0 \end{aligned}$	No
			$\begin{aligned} & \text { on } \\ & \text { N్ } \\ & \text { N} \\ & \stackrel{N}{\circ} \text { Ni } \end{aligned}$	$\begin{aligned} & \text { BO } \\ & \text { î } \\ & 0 \end{aligned}$				$\begin{aligned} & \dot{m} 8 \\ & \stackrel{0}{\circ} 8 \\ & \stackrel{\circ}{\circ} \end{aligned}$	¢ ¢ ¢	$\begin{aligned} & \text { ©io } \\ & \text { ó } \\ & \text { qo } \end{aligned}$	$\stackrel{\sim}{\sim}$
	웅	앙	$\begin{aligned} & \infty \\ & \stackrel{\otimes}{\pi} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \mathscr{0} \\ & \stackrel{0}{0} \\ & \end{aligned}$	$\xrightarrow{-\infty}$	$\begin{aligned} & \stackrel{6}{\bullet 0} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \hline- \end{aligned}$	$\stackrel{8}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{8}{\square}$
	Y 0 0 0 0	O 0 0 0 0	\bar{O} 0 Ü 0	$\stackrel{\circ}{0}$ O ü O	\bar{o} $\stackrel{0}{0}$ 0	$\begin{aligned} & \text { ò } \\ & \text { O} \\ & \text { U } \end{aligned}$		O O U U	O O U U	¢0	¢
		$\begin{aligned} & \pm \\ & \stackrel{ \pm}{ \pm} \end{aligned}$	$\begin{aligned} & \text { E} \\ & \text { © } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { EO } \\ & \text { © } \\ & 00 \end{aligned}$	$\begin{aligned} & \text { E } \\ & \stackrel{0}{5} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { E} \\ & \stackrel{6}{0} \\ & 0 \end{aligned}$					
	$\begin{aligned} & \text { O } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \hline 0 \end{aligned}$									

	$\begin{aligned} & \text { N } \\ & \dot{\sim} \\ & \text { M } \\ & \text { in } \end{aligned}$	$$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$				$\begin{aligned} & \text { Ǹ } \\ & \stackrel{1}{n} \\ & \stackrel{1}{N} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\begin{aligned} & \text { en in } \\ & \stackrel{y}{j} \\ & \underset{\sim}{i} \\ & \underset{\sim}{i} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$
$\begin{gathered} \bar{N} \\ \hline-1 \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \infty \\ & 0 \end{aligned}$	-80	-80
$\begin{aligned} & \text { ন্ O } \\ & \dot{\infty} \\ & \infty^{-1} \end{aligned}$	$\begin{aligned} & \dot{\circ} \mathrm{i} \\ & \stackrel{\text { no }}{\infty} \\ & \stackrel{-}{\sim} \end{aligned}$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{0} \end{aligned}$				$\begin{aligned} & \text { No } \\ & \text { Nion } \\ & \text { Ni } \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{N} \\ & \stackrel{N}{N} \end{aligned}$	
$\stackrel{\circ}{0}^{\circ}$	$\stackrel{0}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{0}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}_{\circ}^{\circ}$	$\stackrel{\circ}{\circ}_{0}^{\circ}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\circ}{\circ}_{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$
0.0 0 ∞ ∞ ∞	$\begin{aligned} & \text { ल్లై in } \\ & \text { ci } \end{aligned}$		$\begin{aligned} & \text { M L } \\ & \underset{N}{N} \\ & \text { N} \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\sim}{-} \end{aligned}$		$\begin{aligned} & \stackrel{m}{\circ} \\ & \stackrel{m}{\sigma} \\ & \stackrel{m}{F} \end{aligned}$		$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{y}{0} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\text { Ñ }}{\text { N- }}$
응	O-	O-	$\stackrel{\text { No }}{\substack{\mathrm{O}}}$	$\stackrel{\text { H. }}{\substack{\mathrm{O}}}$	$\stackrel{\text { H゙ }}{\substack{\text { O}}}$	$\stackrel{\text { H゙ }}{\substack{\circ \\ \hline}}$	$\stackrel{\text { H. }}{\substack{\circ \\ \hline}}$	$\stackrel{\hat{N}}{\substack{0}}$	$\stackrel{8}{-1}$	$\stackrel{8}{-}$
$\begin{aligned} & \mathrm{O} \\ & \dot{\circ} \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { مలo } \\ & \text { ल్ల } \\ & \text { ले } \end{aligned}$	$\begin{aligned} & \text { O} 0 \\ & \stackrel{\circ}{0} \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\Gamma} \\ & \dot{\circ} \\ & \stackrel{\sigma}{\sigma} \end{aligned}$				$\begin{aligned} & \text { ๗ N } \\ & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{+} \end{aligned}$		$\begin{aligned} & \infty \underset{\sim}{\infty} \underset{\sim}{\underset{\sim}{0}} \\ & \stackrel{\circ}{\mathrm{Y}} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \hat{N}^{\infty} \\ & \text { ले } \\ & \text { - } \end{aligned}$
$\begin{aligned} & 00 \\ & \dot{0} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { ल్లై io } \\ & \text { č } \end{aligned}$			$\begin{aligned} & 0 \\ & \stackrel{N}{0} \\ & \stackrel{y}{\infty} \\ & \stackrel{-}{6} \end{aligned}$	O- :		$\begin{aligned} & \text { BiN } \\ & \underset{\sim}{\infty} \text { No } \end{aligned}$			
$\stackrel{\circ}{\mathrm{i}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{O}}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{O}}{2} \end{aligned}$	$\stackrel{\otimes}{\mathrm{i}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{j}}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\mathrm{O}}{\dot{\circ}} \end{aligned}$	$\stackrel{\circ}{\mathrm{N}}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\stackrel{\mathrm{O}}{\stackrel{\mathrm{j}}{2}}$	\circ 0 -
$\begin{aligned} & \text { ơo } \\ & \stackrel{\text { Uu}}{\mathbf{u}} \end{aligned}$	$\begin{aligned} & \text { OO} \\ & \text { O} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\rightharpoonup}{\breve{U}} \end{aligned}$	$\bar{\circ}$ 0 0 0	$\bar{\circ}$ 0 O Ẅ	$\stackrel{\circ}{\circ}$ O ن	$\begin{aligned} & \bar{O} \\ & \text { Uu} \\ & \text { U } \end{aligned}$	®o O U U		¢0\%	

EM

$\begin{aligned} & \mathrm{O}^{\circ} \stackrel{9}{\mathrm{~N}} \\ & \stackrel{0}{\mathrm{~N}} \\ & \stackrel{5}{5} \end{aligned}$		5 1 0 0 0 N	$\begin{aligned} & 0 \\ & 0 \\ & \dot{0} \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$	\circ 0 0 0 0 0 0			10 0 0 0 0 0 0 N		\pm 0 0 0 0 0 0
$\begin{aligned} & \overline{0} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { O} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { of } \\ & \text { © } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { of } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\overline{0}$ 0 0
	$\begin{aligned} & 0 \text { F } \\ & 0 \\ & \\ & \end{aligned}$	$\begin{aligned} & 0_{0}^{\infty} \\ & 0_{0} \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	${\underset{6}{0}}_{8}^{8}$		$$	$\begin{aligned} & \text { N ழ } \\ & \underset{\sim}{\circ} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \infty \\ & N \\ & \underset{\sim}{*} \\ & \underset{\sim}{*} \end{aligned}$		$\begin{aligned} & 0 \text { O } \\ & 0_{0}^{\prime} \\ & \infty \\ & 0 \end{aligned}$
	ơo	$\stackrel{8}{\circ}^{\circ}$	$\stackrel{8}{\circ}^{\circ}$	O_{0}°	ọo	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$	O_{0}°	O_{0}°	$\stackrel{8}{\circ}^{\circ}$
$\begin{aligned} & \text { N } \\ & \text { on } \\ & \frac{1}{6} \\ & \end{aligned}$		$\begin{aligned} & \dot{\sim} \underset{\sim}{N} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \dot{5} 8 \\ & \stackrel{y}{n} 8 \\ & N \end{aligned}$	$\begin{aligned} & 88 \\ & \text { o } 0 \\ & \text { o } \\ & \text { o } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathscr{O} \text { O } \\ & \infty \\ & \underset{\sim}{+} \end{aligned}$	$\begin{aligned} & \text { o } 8 \\ & \stackrel{8}{\mathrm{~N}} \end{aligned}$		$\begin{aligned} & \hat{0}^{N} \\ & \mathbf{N}^{0} \end{aligned}$
$\begin{aligned} & \mathrm{o} \\ & \hline 0 \\ & 0 \end{aligned}$	O-	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & 0 \end{aligned}$	8	$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \end{aligned}$	O-	$$	+	No
		$\begin{aligned} & \underset{\sim}{\dot{j}} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\mathcal{G}} \end{aligned}$	$\begin{aligned} & \stackrel{O}{\dot{j}} \\ & \frac{N}{N} \\ & \underset{N}{j} \end{aligned}$	$\begin{aligned} & \text { ó o } \\ & \text { ó } \\ & \infty \\ & \text { ó } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{\infty}{\infty} \mathrm{O} \\ & \underset{\sim}{6} \end{aligned}$	$\begin{aligned} & \dot{+} O \\ & \underset{\sim}{+} \\ & \infty \\ & \underset{\sim}{+} \end{aligned}$	$\begin{aligned} & \dot{\circ} 9 \\ & \stackrel{\circ}{\underset{\sim}{\square}} \\ & \stackrel{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \dot{\circ} \text { প } \\ & \dot{\circ} \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\circ}{\infty} \\ & \stackrel{\infty}{N} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$
	$\begin{aligned} & \text { giv } \\ & 0 \underset{\sim}{N} \\ & \text { NT } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\circ} \\ & \text { N } \end{aligned}$	$\frac{\grave{N}}{\stackrel{N}{N}}$	$\begin{aligned} & \text { o } 8 \\ & \infty \\ & \text { o } \\ & \text { q } \end{aligned}$	$\begin{aligned} & \infty \text { © } \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & 8 \underset{0}{\circ} \underset{\sim}{\infty} \\ & \underset{\sim}{+} \end{aligned}$			
$\begin{aligned} & \hline 8 \\ & \stackrel{\circ}{6} \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\mathrm{j}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 1 \\ & \stackrel{\circ}{2} \end{aligned}$	응	\bigcirc
$$		$\begin{aligned} & \text { O} \\ & \hline \mathbf{O} \\ & \text { U } \\ & \text { U } \end{aligned}$	응 U U	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\rightharpoonup}{U} \\ & \text { U } \end{aligned}$	N $\stackrel{N}{\circ}$ U U	$\stackrel{m}{8}$ $\stackrel{4}{U}$ 0	응 8 0 1	$\begin{aligned} & \bar{\circ} \\ & \overline{0} \\ & \frac{1}{0} \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{O}{0} \\ & \text { U} \\ & \text { U } \end{aligned}$
								$\begin{array}{ll} 0 & \frac{0}{0} \\ i \\ i \\ \text { I } \\ \hline \end{array}$	

Business Solutions - Prescriptive	HVAC Controls	CHC0014	Critical Zone Supply Air Reset Control (Combo)	15.00	$\begin{array}{r} 17,755 . \\ 63 \end{array}$	$\begin{array}{r} 17,755.6 \\ 3 \end{array}$	1.000	$\begin{array}{r} 17,755 . \\ 63 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 15,980 . \\ 07 \end{array}$	0.900	17,578.08
Business Solutions Prescriptive	HVAC Controls	CHC0015	Hydronic HVAC Pump (Combo)	15.00	$\begin{array}{r} 313,74 \\ 2.83 \end{array}$	$\begin{array}{r} 313,742 . \\ 83 \end{array}$	0.957	$\begin{array}{r} 300,25 \\ 1.88 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 270,22 \\ 6.70 \end{array}$	0.861	297,249.37
Business Solutions - Prescriptive	HVAC Controls	CHC0017	Optimal Start/Stop on Air Handling Units (Combo)	20.00	$\begin{array}{r} 748,40 \\ 1.41 \end{array}$	$\begin{array}{r} 748,401 . \\ 41 \end{array}$	1.000	$\begin{array}{r} 748,40 \\ 1.41 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 673,56 \\ 1.27 \end{array}$	0.900	740,917.40
Business Solutions - Prescriptive	HVAC Controls	CHC0018	Occupancy Sensor Controls on HVAC Units (Combo)	15.00	$\begin{array}{r} 47,274 . \\ 53 \end{array}$	$\begin{array}{r} 47,274.5 \\ 3 \end{array}$	1.000	$\begin{array}{r} 47,274 . \\ 53 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 42,547 . \\ 08 \end{array}$	0.900	46,801.78
Business Solutions - Prescriptive	DCV and Economi zers	CHC0027	Demand Control Ventilation Combination Customers	15.00	$\begin{array}{r} 68,703 . \\ 74 \end{array}$	$\begin{array}{r} 68,703.7 \\ 4 \end{array}$	0.954	$\begin{array}{r} 65,543 . \\ 37 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 58,989 . \\ 03 \end{array}$	0.859	64,887.93
Business Solutions - Prescriptive	Unitary/ Split HVAC	CHC0070	Occ Sensor For Toilet Rm Exhaust	8.00	188.00	188.00	0.954	179.35	$\begin{array}{r} 0.90 \\ 0 \end{array}$	161.42	0.859	161.42
Business Solutions Prescriptive	Unitary/ Split HVAC	CHE0001	$\begin{aligned} & \text { AC }<65,000 \\ & \text { Btuh (} 5.4 \\ & \text { tons) } \end{aligned}$	15.00	$\begin{array}{r} 14,933 . \\ 95 \end{array}$	$\begin{array}{r} 14,933.9 \\ 5 \end{array}$	0.954	$\begin{array}{r} 14,246 . \\ 99 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 12,822 . \\ 29 \end{array}$	0.859	14,104.52
Business Solutions - Prescriptive	Unitary/ Split HVAC	CHE0003	$\begin{aligned} & \text { AC }>240,000 \\ & \text { Btuh }(20 \\ & \text { tons) \& }<= \\ & 760,000 \text { Btuh } \\ & \text { (63.3 tons) } \end{aligned}$	15.00	$\begin{array}{r} 40,592 . \\ 47 \end{array}$	$\begin{array}{r} 40,592.4 \\ 7 \end{array}$	0.954	$\begin{array}{r} 38,725 . \\ 22 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 34,852 . \\ 70 \end{array}$	0.859	38,337.97
Business Solutions - Prescriptive	Room AC/ PTAC	CHE0008	Package Terminal AC AC >=10\% EER higher than IECC 2006 standard	15.00	$\begin{array}{r} 6,067.9 \\ 0 \end{array}$	6,067.90	0.954	$5,788.7$ 8	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 5,209.9 \\ 0 \end{array}$	0.859	5,730.89
Business Solutions - Prescriptive	Room AC/ PTAC	CHE0009	Package Terminal ACHeat Pump $>=10 \%$ EER	15.00	$\begin{array}{r} 4,712.5 \\ 5 \end{array}$	4,712.55	0.954	$\begin{array}{r} 4,495.7 \\ 7 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 4,046.1 \\ 9 \end{array}$	0.859	4,450.81

	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N} \\ & \underset{\sim}{\prime} \end{aligned}$		$ஜ$ 6 6 6 6		$\underset{\sim}{+}$ ∞ ∞ ∞ ∞ ∞	$$		$\begin{aligned} & \dot{\circ} \\ & \dot{\infty} \\ & \stackrel{\circ}{\infty} \\ & \stackrel{+}{寸} \end{aligned}$	$\begin{aligned} & 00 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \infty \\ & \stackrel{\circ}{f} \end{aligned}$
	$\stackrel{N}{\underset{\sim}{\circ}}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\infty} \\ & \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\infty} \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{\infty} \\ & 0 \\ & \hline \end{aligned}$	－
					$\begin{aligned} & \infty 0_{0}^{\infty} \\ & \stackrel{\sim}{0} \\ & \stackrel{0}{\sim} \end{aligned}$	$\begin{aligned} & \circ \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ®O } \\ & \stackrel{\circ}{6} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\infty}{\substack{\mathrm{N}}} \stackrel{\mathrm{~m}}{-}$	
	$\stackrel{8}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{8}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	©〇○	$\stackrel{8}{0}_{0}^{\circ}$	$\stackrel{8}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$
			$\begin{aligned} & \dot{-} \dot{\sim} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$		$\begin{aligned} & {\underset{\sim}{0}}_{\infty}^{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { Ñ } \end{aligned}$	$\frac{ㅇ N}{N}$	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No } \end{aligned}$	
	O-	$\begin{aligned} & \text { J. } \\ & \text { O- } \end{aligned}$	$\begin{aligned} & \text { H. } \\ & \text { Ò } \end{aligned}$	$\stackrel{\text { むু }}{\substack{\circ \\ \hline}}$	$\stackrel{\text { H゙ }}{\substack{\mathrm{O}}}$	$\stackrel{\text { H゙ }}{\substack{\circ \\ \hline}}$	$\stackrel{\text { H゙ }}{\substack{\circ \\ \hline}}$	¢	$\stackrel{\text { ¢ }}{\substack{\text { O－}}}$
			$\begin{aligned} & \dot{\underset{N}{N}}+ \\ & \underset{\sim}{\sim} \end{aligned}$		$\infty 0$ $\stackrel{\infty}{\circ}$ $\stackrel{\sim}{\circ}$	$\stackrel{\infty}{\circ}$	$\stackrel{\stackrel{N}{\text { ®o }}}{\stackrel{0}{\infty}}$	¢ \sim N	$\begin{aligned} & \hat{m} \\ & \underset{\sim}{6} \\ & \dot{8} \end{aligned}$
	$\begin{aligned} & \dot{\infty} \stackrel{N}{N}_{\sim}^{\sim} \\ & \stackrel{-}{\sigma} \end{aligned}$					$\overbrace{\sim}^{\infty}$		$\begin{aligned} & \text { No } \\ & \underset{\sim}{+} \infty \\ & \underset{\sim}{\infty} \end{aligned}$	
	$\begin{aligned} & \stackrel{8}{\mathrm{O}} \\ & \stackrel{j}{2} \end{aligned}$	$\stackrel{8}{\mathrm{~N}}$	$\begin{aligned} & \stackrel{8}{\circ} \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { N}}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{e}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\circ} \\ & \stackrel{j}{2} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\mathrm{~N}}$	৪i	웅

Business Solutions－ Prescriptive	Room AC／ PTAC	CHE0011
Business Solutions－ Prescriptive	Chiller	CHE0012
Business Solutions－ Prescriptive	DCV and Economi zers	CHE0027
Business Solutions－ Prescriptive	Unitary／ Split HVAC	CHE0028
Business Solutions－ Prescriptive	Unitary／ Hplit	CHE0029
Business	Heat	CHE0030
Solutions－ Prescriptive	Pump	CHE0037
Business Solutions－ Prescriptive	Chiller	CHE0039
Chiller	CHE0038	
Business	Chiller	CHutions－

			IPLV =0.49									
Business Solutions - Prescriptive	Chiller	CHE0041	Water-Cooled ChillersReciprocating >150 tons and $<=300$ tons, IPLV = 0.52	20.00	$\begin{array}{r} 28,026 . \\ 24 \end{array}$	$\begin{array}{r} 28,026.2 \\ 4 \end{array}$	0.957	$\begin{array}{r} 26,821 . \\ 11 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 24,139 . \\ 00 \end{array}$	0.861	26,552.90
Business Solutions - Prescriptive	Chiller	CHE0043	Air and Water-Cooled Chiller Tuneup	0.00	$\begin{array}{r} 2,485,3 \\ 44.39 \end{array}$	$\begin{array}{r} 2,485,34 \\ 4.39 \end{array}$	1.000	$\begin{array}{r} 2,485,3 \\ 44.39 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 2,236,8 \\ 09.95 \end{array}$	0.900	$\begin{array}{r} 2,236,809 . \\ 95 \end{array}$
Business Solutions - Prescriptive	HVAC Controls	CHE0061	Air Side Economizer	15.00	$\begin{array}{r} 88,674 . \\ 76 \end{array}$	$\begin{array}{r} 88,674.7 \\ 6 \end{array}$	0.954	$\begin{array}{r} 84,595 \\ 72 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 76,136 \\ 15 \end{array}$	0.859	83,749.77
Business Solutions - Prescriptive	HVAC Controls	CHE0062	Hydronic HVAC Pump	15.00	$\begin{array}{r} 600,37 \\ 3.85 \end{array}$	$\begin{array}{r} 600,373 . \\ 85 \end{array}$	0.954	$\begin{array}{r} 572,75 \\ 6.65 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 515,48 \\ 0.99 \end{array}$	0.859	567,029.08
Business Solutions - Prescriptive	Room AC/ PTAC	CHE0064	Ductless Air Conditioning	15.00	428.70	799.50	1.000	799.50	$\begin{array}{r} 0.90 \\ 0 \end{array}$	719.55	1.678	791.51
Business Solutions - Prescriptive	HVAC Controls	CHE0065	Chilled Water Reset Retrofit (10 degrees) - Electric	5.00	$\begin{array}{r} 7,986.9 \\ 3 \end{array}$	7,986.93	1.000	$\begin{array}{r} 7,986.9 \\ 3 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 7,188.2 \\ 4 \end{array}$	0.900	7,188.24
Business Solutions - Prescriptive	HVAC Controls	CHE0067	Optimal Start/Stop on Air Handling Units (EO)	20.00	$\begin{array}{r} 36,883 . \\ 05 \end{array}$	$\begin{array}{r} 36,883.0 \\ 5 \end{array}$	1.000	$\begin{array}{r} 36,883 . \\ 05 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 33,194 \\ 74 \end{array}$	0.900	36,514.22
Business Solutions - Prescriptive	HVAC Controls	CHE0069	Critical Zone Supply Air Reset Control (EO)	15.00	$\begin{array}{r} 121,47 \\ 6.93 \end{array}$	$\begin{array}{r} 121,476 . \\ 93 \end{array}$	1.000	$\begin{array}{r} 121,47 \\ 6.93 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 109,32 \\ 9.24 \end{array}$	0.900	120,262.16
Business Solutions Prescriptive	Furnace s and Heaters	CHE0090	Programmabl e Thermostat - Electric Customer	9.00	$\begin{array}{r} 48,380 . \\ 69 \end{array}$	$\begin{array}{r} 48,380.6 \\ 9 \end{array}$	0.954	$\begin{array}{r} 46,155 . \\ 17 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 41,539 . \\ 66 \end{array}$	0.859	41,539.66
Business Solutions - Prescriptive	CFL	CLE0001	CFL Screw in (30 watts or less)	2.00	$\begin{array}{r} 957,84 \\ 0.00 \end{array}$	$\begin{array}{r} 957,840 . \\ 00 \end{array}$	0.954	$\begin{array}{r} 913,77 \\ 9.36 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 822,40 \\ 1.42 \end{array}$	0.859	822,401.42
Business Solutions - Prescriptive	CFL	CLE0002	CFL Speciality (down-light,	2.00	$\begin{array}{r} 15,554 . \\ 00 \end{array}$	$\begin{array}{r} 15,554.0 \\ 0 \end{array}$	0.954	$\begin{array}{r} 14,838 . \\ 52 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 13,354 . \\ 66 \end{array}$	0.859	13,354.66

		10 0 0 0 0 0 0			$\begin{aligned} & \hat{0} \\ & \dot{\infty} \\ & \stackrel{+}{\infty} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{+}{\dot{~}} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{N}} \\ & \stackrel{\sim}{0} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \dot{C}_{0}^{\infty} \\ & \stackrel{\infty}{\circ} \\ & \stackrel{-}{7} \\ & \underset{\sim}{c} \end{aligned}$	N Ni
	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\infty} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { © } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\infty} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \\ & \hline 0 \end{aligned}$	¢	¢
		$\begin{aligned} & \text { N } \\ & \text { Non }_{0}^{\circ} \\ & \text { M }^{\circ} \end{aligned}$	$\stackrel{N}{N} \underset{\sim}{N} \underset{\sim}{\sim}$				$\underset{\stackrel{\Gamma}{\circ}}{\stackrel{\rightharpoonup}{\circ}}$		－¢
	$\stackrel{\circ}{0}_{\circ}^{\circ}$	$\stackrel{80}{\circ}$	$\stackrel{\circ}{0}_{\circ}^{\circ}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{0}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\otimes+0}{\circ}$	$\stackrel{\circ}{0}$	8_{0}°
						$\begin{aligned} & \text { ì n } \\ & \stackrel{n}{N} \\ & \end{aligned}$	$\underset{\substack{\underset{\sim}{N}}}{\substack{\text { No }}}$	$\begin{aligned} & \infty 00 \\ & N \\ & 0 \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \stackrel{N}{N} \end{aligned}$
	$\begin{aligned} & \text { H. } \\ & \text { O. } \end{aligned}$	$\stackrel{\text { H. }}{\substack{\mathrm{O}}}$	$\begin{aligned} & \text { H. } \\ & \text { O. } \end{aligned}$	$\stackrel{\text { H. }}{\substack{\circ \\ \hline}}$	$\stackrel{\text { N゙ }}{\substack{\mathrm{O}}}$	$\begin{aligned} & \text { H. } \\ & \text { O. } \end{aligned}$	$\stackrel{\text { ¢ }}{\substack{\text { O－}}}$	$\stackrel{ \pm}{\text { H }}$	$\stackrel{ \pm}{\text { ¢ }}$
	$\begin{aligned} & \dot{8} 8 \\ & 0.8 \\ & 0.0 \\ & \infty \end{aligned}$			$\begin{aligned} & \text { No } \\ & \text { 等 } \\ & \underset{\text { N }}{N} \end{aligned}$	$\frac{\dot{\sim}}{\underset{\sim}{\dot{\sigma}}}$	$\begin{aligned} & 00 \\ & \text { Ni } \\ & \text { N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { م○ } \\ & \dot{\circ} \\ & \stackrel{\rightharpoonup}{寸} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { ò } \\ & \text { on } \\ & \text { N } \end{aligned}$	
	$\begin{aligned} & 808 \\ & 080 \\ & 0 . \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { R } 8 \\ & \text { ó ib } \\ & \text { in } \end{aligned}$			$\begin{aligned} & \dot{F} 8 \\ & \dot{F} \dot{\sigma} \end{aligned}$	$\begin{aligned} & \text { Ni } 8 \\ & \underset{N}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \dot{\text { ® }} \text { ®o } \\ & \text { Ñ } \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \text { ö } \\ & \text { on } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\text { N }}{\mathrm{N}} \\ & \stackrel{y}{\mathrm{~N}} \end{aligned}$
	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{f}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \text { Ọ } \\ & \underset{\sim}{c} \end{aligned}$	－	\bigcirc	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	\bigcirc	－
									－
	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { u } \end{aligned}$		$\begin{aligned} & \text { N} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { OU } \\ & \text { Uu } \end{aligned}$		$\begin{aligned} & \text { オ } \\ & \text { OU } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { O} \\ & \text { Uu } \end{aligned}$	へّ0
		$\stackrel{\rightharpoonup}{x}$			ப！				－

Prescriptive			Remove 2foot T12 fluorescent lamp (with T8 ballast retrofit)									
Business Solutions Prescriptive	Lamp Removal	CLE0029	Lamp Removal: Remove 3foot T12 fluorescent lamp (with T8 ballast retrofit)	12.00	$\begin{array}{r} 2,042.4 \\ 0 \end{array}$	2,042.40	0.954	$\begin{array}{r} 1,948.4 \\ 5 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,753.6 \\ 0 \end{array}$	0.859	1,928.97
Business Solutions Prescriptive	Lamp Removal	CLE0030	Lamp Removal: Remove 4- foot T12 fluorescent lamp (with T8 ballast retrofit)	8.00	$\begin{array}{r} 1,661,6 \\ 62.20 \end{array}$	$\begin{array}{r} 1,212,09 \\ 4.40 \end{array}$	0.954	$\begin{array}{r} 1,156,3 \\ 38.06 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,040,7 \\ 04.25 \end{array}$	0.626	$\begin{array}{r} 1,040,704 . \\ 25 \end{array}$
Business Solutions Prescriptive	Lamp Removal	CLE0031	Lamp Removal: Remove 8foot T12 fluorescent lamp (with T8 ballast retrofit)	8.00	$\begin{array}{r} 202,56 \\ 0.20 \end{array}$	$\begin{array}{r} 172,394 . \\ 10 \end{array}$	0.954	$\begin{array}{r} 164,46 \\ 3.97 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 148,01 \\ 7.57 \end{array}$	0.731	148,017.57
Business Solutions Prescriptive	Lighting Controls	CLE0033	Central Lighting Control	12.00	$\begin{array}{r} 2,529,3 \\ 00.80 \end{array}$	$\begin{array}{r} 2,529,30 \\ 0.80 \end{array}$	0.954	$\begin{array}{r} 2,412,9 \\ 52.96 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 2,171,6 \\ 57.67 \end{array}$	0.859	$\begin{array}{r} 2,388,823 . \\ 43 \end{array}$
Business Solutions Prescriptive	Lighting Controls	CLE0034	Switching Controls for Multilevel Lighting	12.00	$\begin{array}{r} 279,54 \\ 5.60 \end{array}$	$\begin{array}{r} 279,545 . \\ 60 \end{array}$	0.954	$\begin{array}{r} 266,68 \\ 6.50 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 240,01 \\ 7.85 \end{array}$	0.859	264,019.64
Business Solutions Prescriptive	Lighting Controls	CLE0035	Daylight Sensor controls	12.00	$\begin{array}{r} 1,845,1 \\ 68.93 \end{array}$	$\begin{array}{r} 1,845,16 \\ 8.93 \end{array}$	0.954	$\begin{array}{r} 1,760,2 \\ 91.16 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,584,2 \\ 62.04 \end{array}$	0.859	$\begin{array}{r} 1,742,688 . \\ 25 \end{array}$
Business Solutions - Prescriptive	T8 Fluoresc ent	CLE0046	$\begin{aligned} & \text { 8-FT T12HO } \\ & \text { to } 24-\mathrm{FT} \\ & \text { T8HP } \end{aligned}$	8.00	$\begin{array}{r} 1,246,0 \\ 70.00 \end{array}$	$\begin{array}{r} 1,246,07 \\ 0.00 \end{array}$	0.954	$\begin{array}{r} 1,188,7 \\ 50.78 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,069,8 \\ 75.70 \end{array}$	0.859	$\begin{array}{r} 1,069,875 . \\ 70 \end{array}$
Business	Lighting	CLE0050	Exterior Multi-	8.00	144,90	144,905.	0.957	138,67	0.90	124,80	0.861	124,806.93

2013 Certification Appendices

	$\begin{aligned} & \text { O} \\ & \text { 잉 } \\ & \stackrel{N}{\circ} \end{aligned}$	$\begin{aligned} & \odot \\ & \stackrel{+}{\dot{N}} \\ & \infty \\ & \underset{\sim}{\sim} \end{aligned}$				$\begin{aligned} & \hat{N}^{\circ} \\ & \hat{N}^{\circ} \\ & \stackrel{y}{n} \\ & \stackrel{y}{-} \end{aligned}$	$\begin{aligned} & \hat{\sim}^{\circ} \\ & 0 \\ & \mathscr{\circ} \\ & \stackrel{\infty}{\sigma} \end{aligned}$		$\begin{aligned} & \stackrel{\rho}{0} \\ & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\sim} \end{aligned}$
	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline-0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \infty \\ & 0 \end{aligned}$	－80	$\begin{aligned} & \text { O} \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	＋100	\circ 0 0 0
$\stackrel{\oplus}{\oplus}$					- No N				$\begin{aligned} & \text { ๗ N} \\ & \underset{\sim}{\underset{\sim}{*}} \end{aligned}$
\bigcirc	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{\circ}{0}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}_{\circ}^{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$
$\stackrel{\ominus}{\mathrm{O}}$	$\begin{aligned} & \dot{\sim} \bar{N} \\ & \underset{\infty}{\dot{\infty}} \end{aligned}$			$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$		$\begin{gathered} \text { No } \\ \underset{\sim}{\mathcal{N}} \stackrel{0}{\infty} \end{gathered}$			$\begin{aligned} & \pm \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{5} \\ & \stackrel{\circ}{\circ} \end{aligned}$
	ざ	$\stackrel{\text { N゙ }}{\substack{\text { O}}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\text { O}}{\substack{\circ \\ \hline}}$	$\begin{gathered} \text { No } \\ 0 \\ \hline \end{gathered}$	$\stackrel{8}{\square}$	$\stackrel{\text { N゙ }}{\substack{\text { O}}}$	＋	＋¢
～	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \dot{\infty} \text { N } \\ & \mathrm{N}_{0} \\ & \stackrel{N}{\circ} \end{aligned}$		$\begin{aligned} & \dot{\circ} 8 \\ & \infty \\ & 0 \\ & \text { ó } \\ & \stackrel{0}{\circ} \end{aligned}$					$\begin{aligned} & \dot{\circ} \dot{\mathrm{O}} \\ & \dot{-} \\ & \dot{\square} \end{aligned}$
$\stackrel{\text { Ni }}{\substack{~+~}}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0_{\infty}^{\infty} \\ & \infty \end{aligned}$			$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$					
	$\underset{\infty}{\circ}$	$\begin{aligned} & \stackrel{\mathrm{O}}{\mathrm{M}} \end{aligned}$	$\stackrel{\circ}{\infty}$	$\stackrel{\circ}{\infty}$	$\stackrel{\circ}{\circ}$	©	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{j}}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	－80
		$\begin{aligned} & \text { Noㅇ } \\ & \text { O} \\ & \text { O} \end{aligned}$		$\begin{aligned} & \text { H } \\ & \text { OX } \\ & \text { Uu } \end{aligned}$	$\begin{aligned} & \text { n0 } \\ & \text { O} \\ & \text { ü } \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & \sum_{0}^{n} \end{aligned}$	$\begin{aligned} & \circ \\ & 0.0 \\ & \sum_{0}^{1} \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \sum_{0}^{W} \end{aligned}$	O O \sum_{0}^{11}
		$\begin{aligned} & \text { 을 } \\ & \text { 은 } \\ & \text { 응 } \\ & \hline 0 \end{aligned}$							

	Drives		Customers									
Business Solutions Prescriptive	Custom	CME0013	VFD on Process Pumps ($50-$ 250 HP)	15.00	$\begin{array}{r} 308,40 \\ 0.52 \end{array}$	$\begin{array}{r} 308,400 . \\ 52 \end{array}$	1.000	$\begin{array}{r} 308,40 \\ 0.52 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 277,56 \\ 0.47 \end{array}$	0.900	305,316.51
Business Solutions - Prescriptive	Variable Frequen cy	CME0014	EC Motors	20.00	$\begin{array}{r} 66,960 . \\ 00 \end{array}$	$\begin{array}{r} 66,960.0 \\ 0 \end{array}$	1.000	$\begin{array}{r} 66,960 . \\ 00 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 60,264 . \\ 00 \end{array}$	0.900	66,290.40
Business Solutions Prescriptive	Variable Frequen cy Drives	CME0015	VFD on Process Fans ($<50 \mathrm{HP}$)	15.00	$\begin{array}{r} 118,63 \\ 6.00 \end{array}$	$\begin{array}{r} 118,636 . \\ 00 \end{array}$	1.000	$\begin{array}{r} 118,63 \\ 6.00 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 106,77 \\ 2.40 \end{array}$	0.900	117,449.64
Business Solutions Prescriptive	Custom	CME0019	VFDs for Process Fixed Speed Control (Throttled; <= 50 hz)	15.00	$\begin{array}{r} 56,250 . \\ 00 \end{array}$	$\begin{array}{r} 56,250.0 \\ 0 \end{array}$	1.000	$\begin{array}{r} 56,250 . \\ 00 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 50,625 . \\ 00 \end{array}$	0.900	55,687.50
Business Solutions Prescriptive	Variable Frequen cy Drives	CME0022	Constant Volume AHU to VAV with Hydronic Reheat (Electric)	20.00	$\begin{array}{r} 906,59 \\ 4.34 \end{array}$	$\begin{array}{r} 906,594 . \\ 34 \end{array}$	1.000	$\begin{array}{r} 906,59 \\ 4.34 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 815,93 \\ 4.90 \end{array}$	0.900	897,528.39
Business Solutions Prescriptive	Variable Frequen cy	CME0025	VFD on HVAC Fans ($<100 \mathrm{HP}$)	10.00	$\begin{array}{r} 1,748,1 \\ 53.35 \end{array}$	$\begin{array}{r} 1,748,15 \\ 3.35 \end{array}$	0.957	$\begin{array}{r} 1,672,9 \\ 82.76 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,505,6 \\ 84.48 \end{array}$	0.861	$\begin{array}{r} 1,656,252 . \\ 93 \end{array}$
Business Solutions Prescriptive	Variable Frequen cy Drives	CME0026	VFD on HVAC Fans (100 HP . 250 HP)	10.00	$\begin{array}{r} 67,403 . \\ 85 \end{array}$	$\begin{array}{r} 67,403.8 \\ 5 \end{array}$	0.957	$\begin{array}{r} 64,505 . \\ 48 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 58,054 . \\ 94 \end{array}$	0.861	63,860.43
Business Solutions Prescriptive	Variable Frequen cy Drives	CME0027	VFD on HVAC Pumps ($<100 \mathrm{HP}$)	10.00	$\begin{array}{r} 2,423,7 \\ 75.66 \end{array}$	$\begin{array}{r} 2,423,77 \\ 5.66 \end{array}$	0.957	$\begin{array}{r} 2,319,5 \\ 53.30 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 2,087,5 \\ 97.97 \end{array}$	0.861	$\begin{array}{r} 2,296,357 . \\ 77 \end{array}$
Business Solutions Prescriptive	Energy Recover y	CRC0001	Enthalpy Wheels ERUs	15.00	$\begin{array}{r} 29,300 \\ 16 \end{array}$	$\begin{array}{r} 29,300.1 \\ 6 \end{array}$	0.954	$\begin{array}{r} 27,952 . \\ 35 \end{array}$	$\begin{array}{r} 1.00 \\ 0 \end{array}$	$\begin{array}{r} 27,952 . \\ 35 \end{array}$	0.954	-30,747.59
Business Solutions Prescriptive	Energy Recover y	CRC0002	Fixed-Plate Air to Air ERUs	15.00	$\begin{array}{r} 115,53 \\ 0.49 \end{array}$	$\begin{array}{r} 115,530 . \\ 49 \end{array}$	0.954	$\begin{array}{r} 110,21 \\ 6.09 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 99,194 . \\ 48 \end{array}$	0.859	109,113.93

2013 Certification Appendices

		\circ 0 0 0 0 0	$\begin{aligned} & \text { O- } \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	∞ $\stackrel{\infty}{+}$ $\stackrel{+}{\infty}$ $\stackrel{\sim}{\infty}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { N }}{ } \\ & \stackrel{N}{N} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{9}{1} \\ & \underset{\sim}{\circ} \end{aligned}$	
$\begin{aligned} & \text { O} \\ & \text { O } \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { O- } \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { of } \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \end{aligned}$	¢080	－
$\underset{\text { İ }}{\stackrel{N}{N}}$				$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 . \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\stackrel{\sim}{\underset{\sim}{\infty}} \stackrel{\infty}{\infty}$		
80	$8{ }_{8}^{\circ}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\circ}{\circ}^{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{9}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\circ}{\circ}$
$\begin{aligned} & \text { ๗் } \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$			$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \underset{\sim}{\infty} \\ & \stackrel{-}{2} \end{aligned}$		$\begin{aligned} & 0.0 \\ & \underset{\sim}{\infty} \\ & \stackrel{N}{N} \end{aligned}$				N Nor 0 0
$\stackrel{8}{\circ}$	$\stackrel{\text { No }}{\substack{0 \\ \hline}}$	$\stackrel{8}{\square}$	$\begin{aligned} & \text { No } \\ & 0 \end{aligned}$	$\stackrel{N}{0}$	ざ		＋		－
	$\begin{aligned} & \text { Ni } 8 \\ & \stackrel{\sim}{\Gamma} \\ & \stackrel{5}{N} \end{aligned}$					$\circ 0^{\circ}$ 0° $\stackrel{-}{\circ}$	$\begin{aligned} & 0_{0}^{\infty} 8 \\ & \stackrel{0}{0} \\ & \stackrel{\text { N }}{2} \end{aligned}$	－	
	$\frac{9}{\stackrel{9}{N}} \frac{8}{N}$				$\begin{aligned} & \stackrel{1}{0} \text { N } \\ & \stackrel{0}{0} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { ©i } 8 \\ & \stackrel{\circ}{-} \end{aligned}$			
$\begin{aligned} & \stackrel{\mathrm{O}}{\mathrm{o}} \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	웅	$\stackrel{\otimes}{\mathrm{N}}$	© ì	© ì	$\begin{aligned} & \mathrm{O} \\ & \hline- \end{aligned}$	\bigcirc	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	－
									즌 ¢ U
	$\begin{aligned} & \text { O} \\ & \text { O్ర } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \text { ƠO } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { O్ర } \\ & \text { O} \\ & \text { On } \end{aligned}$	$\begin{aligned} & \text { Ơ十 } \\ & \text { OUO } \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & 0 \\ & 0 \end{aligned}$	¢ O 0 0	\％	O O ¢0	O
			$\begin{aligned} & \stackrel{ \pm}{ \pm} \\ & \stackrel{1}{5} \end{aligned}$	$\begin{aligned} & \stackrel{ \pm}{ \pm} \\ & \stackrel{1}{ \pm} \end{aligned}$	$\begin{aligned} & \stackrel{ \pm}{ \pm} \\ & \stackrel{1}{5} \end{aligned}$				－

B－12

	n N y i	$\begin{aligned} & \underset{\infty}{\infty} \\ & \dot{j} \\ & \underset{\sim}{\mathcal{Y}} \end{aligned}$	$\begin{aligned} & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { ల్ } \\ & \stackrel{\sim}{\circ} \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0_{0}^{\infty}{ }_{\circ}^{\infty} \\ & \stackrel{\sim}{N} \\ & \stackrel{N}{\sim} \end{aligned}$		∞ ∞ ∞ $\stackrel{\infty}{\infty}$ $\stackrel{\circ}{\circ}$	$\begin{aligned} & \text { Non } \\ & \stackrel{N}{N} \\ & \end{aligned}$
	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & \text { م } \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { of } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & \text { م } \end{aligned}$	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\bar{\circ}$ ∞
\wedge	$\begin{aligned} & \text { M N } \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \end{aligned}$							$\begin{aligned} & \dot{\circ} \text { © } \\ & \underset{\sim}{\infty} \end{aligned}$	
\bigcirc	$\stackrel{\circ}{0}_{0}^{\circ}$	$8{ }^{\circ}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	8_{0}°
＊		$\begin{aligned} & \stackrel{\circ}{\underset{\sim}{n}} \\ & \stackrel{N}{N} \end{aligned}$			$\begin{aligned} & \text { ge } \\ & \text { Co } \\ & \text { in } \end{aligned}$			$\begin{aligned} & \dot{\infty} \text { in } \\ & \mathbf{o}_{0}^{-} \\ & \stackrel{-}{\circ} \end{aligned}$	$\begin{aligned} & \hat{\circ}_{0}^{\circ} \\ & \stackrel{\mu}{\stackrel{N}{N}} \end{aligned}$
	ざ	$\begin{aligned} & \text { H. } \\ & \text { O. } \end{aligned}$	$\stackrel{\text { H. }}{\substack{\mathrm{O}}}$	$\stackrel{\text { H. }}{\substack{\mathrm{O}}}$		$\begin{aligned} & \text { H. } \\ & \text { O- } \end{aligned}$	$\begin{aligned} & \text { J゙ } \\ & \text { Ò } \end{aligned}$	＋	へٌo
	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { Ñ } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty 0 \\ & \stackrel{N}{N} \\ & \underset{\sim}{N} \end{aligned}$		$\begin{aligned} & \text { 人̀ } \\ & \text { ò } \\ & \text { ò } \\ & \text { on } \end{aligned}$				$\begin{aligned} & \infty \quad \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{-}{6} \end{aligned}$	8 0 0 0 0
\bigcirc				$$			$\begin{aligned} & \text { so } \\ & \text { o. } \\ & \mathrm{O} \end{aligned}$		$\begin{aligned} & 0.0 \\ & \dot{0}_{0}^{0} \\ & \stackrel{0}{n} \end{aligned}$
	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{U}} \end{aligned}$	8.	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{j}}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\text { O}}{2} \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{j}}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\text { ® }}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\mathrm{N}}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$
						$\begin{aligned} & \text { U } \\ & \underset{\sim}{0} \\ & \text { O} \\ & \text { O} \\ & \hline 0 \end{aligned}$			
	O 0 0 0	O 0 0 0		m $\stackrel{0}{W}$ Wु	\circ $\stackrel{0}{O}$ Wु 0	oiv	$\begin{aligned} & \overline{\mathrm{O}} \\ & \text { O} \\ & \text { U0 } \end{aligned}$	N O U 0	N

EMI

$\begin{aligned} & \dot{\infty} \\ & \underset{\sim}{J} \\ & \substack{\infty \\ 0} \end{aligned}$	$\begin{aligned} & 10 \\ & \stackrel{0}{0} \\ & 1 \\ & \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \infty \end{aligned}$	$\begin{aligned} & \text { ন } \\ & \text { o } \\ & \text { N } \\ & \text { N } \end{aligned}$	\pm 0 0 0 N $\stackrel{1}{2}$ -		$\begin{aligned} & \text { N } \\ & \underset{\sim}{\circ} \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$
$\begin{aligned} & \text { of } \\ & \text { © } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { of } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { of } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 . \\ & 0 \end{aligned}$	$\begin{array}{r}\infty \\ \hline- \\ \hline-\end{array}$	$\begin{aligned} & \overline{0} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \end{aligned}$	8 0 0	8 8 0	8 0 0
$\begin{aligned} & \stackrel{L}{N}^{\infty} \\ & \underset{N}{N} \\ & \sigma^{-} \end{aligned}$	$\begin{aligned} & \Gamma_{0}^{10} \\ & 0^{0} \\ & 0 \\ & \sigma^{2} \end{aligned}$		$\begin{aligned} & \text { N O } \\ & \stackrel{y}{\circ} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & 0_{0}^{\circ} \\ & 0 \\ & 0 \\ & 0^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{N}^{-} \\ & \dot{\sigma} \\ & \bar{\sigma} \\ & \underset{N}{\prime} \end{aligned}$		$\begin{aligned} & \stackrel{0}{\dot{\sim}} \\ & \stackrel{0}{m} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { ó } \\ & 0 \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \stackrel{1}{N} \\ & \underset{\sim}{n} \end{aligned}$
ọ o	$\begin{aligned} & \text { O- } \\ & 0 \end{aligned}$	ọo	ọo	ọ o	$\begin{aligned} & \text { O- } \\ & \hline 0 \end{aligned}$	ọo	$\begin{aligned} & \text { O- } \\ & \hline 0 \end{aligned}$	ơo	$\begin{aligned} & \text { O. } \\ & \hline 0 \end{aligned}$
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sigma} \\ & \stackrel{\sigma}{\sigma} \end{aligned}$	$\begin{aligned} & \dot{\infty} \text { B } \\ & \text { M } \\ & \text { ó } \end{aligned}$	$\begin{aligned} & 0_{0}^{\infty} \\ & \stackrel{\circ}{\circ} \\ & \underset{\sim}{-} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { o } \\ & \text { o } \\ & \text { c } \\ & \text { ले } \end{aligned}$	$\begin{aligned} & \text { ヘ } 8 \\ & \stackrel{1}{0} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \underset{\dot{J}}{\sim} \\ & \underset{\sim}{N} \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0 . \\ & \stackrel{0}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0.0 \\ & \stackrel{\infty}{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \text { 웅 } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \text { ले } \end{aligned}$
$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { to } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { to } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	O-	8 -	$\begin{aligned} & \mathrm{N} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	8 -	$\stackrel{8}{8}$	8 -	$\stackrel{8}{8}$
$\begin{aligned} & \stackrel{O}{\mathrm{~N}} \\ & \stackrel{y}{+} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & 00 \\ & \otimes_{0} \\ & \infty \\ & 0^{-} \end{aligned}$	$\begin{aligned} & \circ \\ & \dot{0} \\ & \stackrel{+}{4} \\ & \stackrel{0}{6} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \infty \\ & \text { o } \\ & + \\ & \text { ले } \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\circ}{\mathrm{~N}} \\ & \stackrel{N}{\mathrm{~L}} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \\ & \text { ल } \end{aligned}$	$\begin{aligned} & \dot{\circ} \mathrm{O} \\ & \sim \\ & \stackrel{N}{N} \\ & \stackrel{N}{\sim} \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\infty} \\ & \stackrel{1}{N} \end{aligned}$	
	$\begin{aligned} & \dot{8} 8 \\ & \infty \\ & 0_{0}^{\prime} \end{aligned}$		$\begin{aligned} & 0 \wedge \\ & 0 \\ & 0 \\ & \text { ¢ } \\ & \text { ल } \end{aligned}$	$\begin{aligned} & \dot{\circ} \text { © } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{N}{N} \end{aligned}$	∞ ∞ ∞ ∞ ∞		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{2} \\ & \underset{\sim}{1} \end{aligned}$	$\stackrel{\bullet}{\underset{N}{N}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{-}{\circ} \end{aligned}$
$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { N }}{1} \end{aligned}$	O-	$\begin{aligned} & \text { O} \\ & \text { 는 } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { Ni }}{ } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline-0 \\ & \hline \end{aligned}$	O-	O-	©	$\begin{aligned} & \text { O} \\ & \stackrel{\text { N }}{ } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { ®i }}{ } \end{aligned}$
$\begin{aligned} & \underset{\sim}{\circ} \\ & \text { O} \\ & \text { Wु } \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{y}{O} \\ & \text { O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { O} \\ & \text { Ẅ } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \infty \\ & \mathbf{N} \\ & \text { O} \\ & \text { ヘু } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { Ẅ } \\ & \text { Oै } \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{8} \\ & 0 \\ & \text { Ẅ } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { of } \\ & \text { O} \\ & \text { W̛ } \\ & \text { Oै } \end{aligned}$	$\begin{aligned} & 0 \\ & \substack{0 \\ 山 己 ~ \\ \text { Wٌ } \\ \hline} \end{aligned}$		$\begin{aligned} & \text { ơ } \\ & \text { O} \\ & \text { W్ } \\ & 0 \end{aligned}$
				$\begin{aligned} & \bar{\Phi} \\ & \stackrel{5}{ \pm} \end{aligned}$		$\begin{aligned} & \overline{\text { © }} \\ & \stackrel{5}{0} \end{aligned}$	$\begin{aligned} & \bar{\Phi} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		

B－14

Business Solutions - Prescriptive	Kitchen and Refriger ation	CSE0080	Electric Dishwasher (High Temp; Single Tank)	12.00	$\begin{array}{r} 7,120.2 \\ 7 \end{array}$	7,120.00	1.000	$7,120.0$ 0	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 6,408.0 \\ 0 \end{array}$	0.900	7,048.80
Business Solutions - Prescriptive	Kitchen and Refriger ation	CSE0082	Electric Dishwasher (Low Temp; Door)	12.00	3,566.8	3,567.00	1.000	$3,567.0$ 0	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 3,210.3 \\ 0 \end{array}$	0.900	3,531.33
Business Solutions - Prescriptive	Kitchen and Refriger ation	CSE0089	Walk-in EC Motor replacing non-EC Motor	15.00	$\begin{array}{r} 1,403,2 \\ 20.00 \end{array}$	$\begin{array}{r} 1,403,22 \\ 0.00 \end{array}$	0.957	$\begin{array}{r} 1,342,8 \\ 81.54 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,208,5 \\ 93.39 \end{array}$	0.861	$\begin{array}{r} 1,329,452 . \\ 72 \end{array}$
Business Solutions Prescriptive	C\&I Waterhe ating	$\begin{aligned} & \text { CWE001 } \\ & 0 \end{aligned}$	Pipe Wrap Domestic Hot Water conditioned space (120F)	20.00	$\begin{array}{r} 1,695.8 \\ 7 \end{array}$	1,695.87	0.957	$1,622.9$ 5	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,460.6 \\ 5 \end{array}$	0.861	1,606.72
Business Solutions - Prescriptive	C\&I Waterhe ating	CWG001 2	Pipe Wrap Domestic Hot Water conditioned space (140F)	20.00	176.65	176.65	0.954	168.53	$\begin{array}{r} 0.90 \\ 0 \end{array}$	151.67	0.859	166.84
New Construction - Major Renovation 2013	Compre ssed Air	CAE0001	VSD Air Compressor	15.00	$\begin{array}{r} 236,30 \\ 0.00 \end{array}$	$\begin{array}{r} \text { 236,300. } \\ 00 \end{array}$	0.954	$\begin{array}{r} 225,43 \\ 0.20 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 202,88 \\ 7.18 \end{array}$	0.859	223,175.90
New Construction - Major Renovation 2013	Compre ssed Air	CAE0002	Refrigerated Cycling Thermal Mass Air Dryer	10.00	$\begin{array}{r} 8,387.2 \\ 0 \end{array}$	8,387.20	0.954	$8,001.3$ 9	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 7,201.2 \\ 5 \end{array}$	0.859	7,921.37
New Construction - Major Renovation 2013	Compre ssed Air	CAE0009	Compressed Air Pressure Flow Controller	10.00	$\begin{array}{r} 4,436.4 \\ 0 \end{array}$	4,436.40	1.000	$4,436.4$ 0	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 3,992.7 \\ 6 \end{array}$	0.900	4,392.04
New Construction - Major Renovation 2013	Furnace s and Heaters	CHC0010	Infrared Heaters - Combination Customers	15.00	$\begin{array}{r} 123,38 \\ 8.38 \end{array}$	$\begin{array}{r} 123,388 . \\ 38 \end{array}$	0.954	$\begin{array}{r} 117,71 \\ 2.51 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 105,94 \\ 1.26 \end{array}$	0.859	116,535.39
New	DCV	CHC0027	Demand	15.00	1,771.4	1,771.40	0.954	1,689.9	0.90	1,520.9	0.859	1,673.02

	\circ $\stackrel{\circ}{0}$ $\stackrel{0}{0}$ 子	$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{0}{ल} \\ & \infty \\ & \stackrel{0}{N} \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{N} \\ & \stackrel{N}{i} \end{aligned}$	ल ल ∞ ∞ $\underset{\sim}{\infty}$	$\bar{\circ}$ 0 0 0 0			g N N N N \sim
	$\begin{aligned} & \text { O} \\ & \text { م } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { On } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & \text { م } \end{aligned}$	¢	O
ल	$\begin{aligned} & \text { N N } \\ & \stackrel{\sim}{0} \\ & \text { ल゙ } \end{aligned}$	$\begin{aligned} & \text { Q ö } \\ & \stackrel{\circ}{N} \\ & \stackrel{\circ}{\sim} \end{aligned}$	$\begin{aligned} & \text { g} \\ & \stackrel{m}{\sigma} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$				$\begin{aligned} & \text { م م } \\ & \text { مi } \\ & \text { ले } \end{aligned}$	$\stackrel{\text { N }}{\stackrel{\sim}{\sim}}$
\bigcirc	$\stackrel{\circ}{0}_{\circ}^{\circ}$	$\stackrel{\circ}{\circ}^{\circ}$	$\stackrel{0}{\circ}_{\circ}^{\circ}$	$\stackrel{0}{0}_{0}^{\circ}$	$\stackrel{8}{0}$	$\stackrel{0}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}_{\circ}^{\circ}$	\bigcirc
～		$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{\infty}} \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} \underset{\sim}{\dot{N}} \\ \stackrel{\sim}{\sim} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \hat{\sim} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \dot{0} \hat{1} \\ & \text { O} \\ & \text { O- } \end{aligned}$	$\begin{aligned} & \dot{+} 0 \\ & \underset{0}{\underset{O}{0}} \end{aligned}$	$\begin{aligned} & \dot{\overleftarrow{o}}^{\circ} \\ & \dot{\%} \\ & \dot{\omega} \end{aligned}$	N
	$\stackrel{\text { ざ }}{\substack{0}}$	$\stackrel{\text { ざ }}{\substack{\mathrm{O} \\ \hline}}$	$\stackrel{\text { H. }}{\substack{\mathrm{O}}}$	$\begin{aligned} & \text { ざ } \\ & \text { O- } \end{aligned}$	$\stackrel{\text { H゙ }}{\substack{\mathrm{O}}}$	$\stackrel{\text { ざ }}{\substack{\mathrm{O}}}$	＋＋	－
	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\circ}{8} \\ & \stackrel{+}{\circ} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{O} \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{\infty} \\ & \underset{-}{2} \end{aligned}$	$\begin{aligned} & \text { 毋 } \\ & \stackrel{0}{\circ} \\ & \stackrel{\text { in }}{6} \end{aligned}$		¢	¢	$\underset{\sim}{\text { ¢ }}$
\bigcirc	$\begin{aligned} & \hat{o}^{\circ} \\ & \dot{0} \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \stackrel{N}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	$\underset{\sim}{\infty} \underset{\sim}{\infty}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\text { م }}{6} \end{aligned}$	$\stackrel{i}{i}$	$\begin{aligned} & \hat{\mathrm{N}}^{m} \\ & \stackrel{y}{\mathrm{~N}} \end{aligned}$		$\stackrel{\sim}{\underset{\sim}{\infty}}$
	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\ominus}{\mathrm{p}} \end{aligned}$	-৪	$\begin{aligned} & \stackrel{8}{\circ} \\ & \stackrel{\circ}{\mathrm{j}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{i}{\mathrm{e}} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\circ} \\ & \stackrel{\circ}{\mathrm{j}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{j}}{2} \end{aligned}$	－8	－
		$\begin{aligned} & \stackrel{N}{\circ} \\ & \stackrel{U}{\top} \end{aligned}$				¢ O Wָ O	O O U1 O	\％
		$\begin{aligned} & \stackrel{\grave{\omega}}{\bar{\prime}} \\ & \text { ভ́ } \end{aligned}$					¢	㐫
								$\underset{\sim}{3}$

B－16

Construction - Major Renovation 2013			ChillersCentrifugal >300 tons and <= 600 tons, IPLV = 0.49		4.86	86		0.19	0	8.17		
New Construction - Major Renovation 2013	Lighting Controls	CLE0035	Daylight Sensor controls	12.00	$\begin{array}{r} 82,004 . \\ 12 \end{array}$	$\begin{array}{r} 82,004.1 \\ 2 \end{array}$	0.954	$\begin{array}{r} 78,231 . \\ 93 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 70,408 . \\ 74 \end{array}$	0.859	77,449.61
New Construction - Major Renovation 2013	Variable Frequen cy Drives	CME0007	VFD/HVAC Fans and Pumps < 100HP Electric Customers	10.00	$\begin{array}{r} 497,14 \\ 4.32 \end{array}$	$\begin{array}{r} 497,144 . \\ 32 \end{array}$	0.954	$\begin{array}{r} 474,27 \\ 5.68 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 426,84 \\ 8.11 \end{array}$	0.859	469,532.93
New Construction - Major Renovation 2013	Ice Machine s	CSE0005	Energy Efficient Ice Machines 1000-1500 lbs	12.00	$\begin{array}{r} 3,858.0 \\ 0 \end{array}$	3,858.00	0.954	$\begin{array}{r} 3,680.5 \\ 3 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 3,312.4 \\ 8 \end{array}$	0.859	3,643.73
New Construction - Major Renovation 2013	Kitchen and Refriger ation	CSE0011	AntiSweat Heater Controls	15.00	$\begin{array}{r} 44,670 . \\ 00 \end{array}$	$\begin{array}{r} 44,670.0 \\ 0 \end{array}$	0.954	$\begin{array}{r} 42,615 . \\ 18 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 38,353 . \\ 66 \end{array}$	0.859	42,189.03
New Construction - Major Renovation 2013	Kitchen and Refriger ation	CSE0013	LED Lighting for Refrigeration Cases	16.00	$\begin{array}{r} 378,12 \\ 0.00 \end{array}$	$\begin{array}{r} 378,120 . \\ 00 \end{array}$	0.954	$\begin{array}{r} 360,72 \\ 6.48 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 324,65 \\ 3.83 \end{array}$	0.859	357,119.22
New Construction - Major Renovation 2013	Other	CSE0017	Lighting Power Density	12.00	$\begin{array}{r} 4,036,4 \\ 30.08 \end{array}$	$\begin{array}{r} 4,036,43 \\ 0.08 \end{array}$	0.954	$\begin{array}{r} 3,850,7 \\ 54.30 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 3,465,6 \\ 78.87 \end{array}$	0.859	$\begin{array}{r} 3,812,246 . \\ 75 \end{array}$
New Construction - Major Renovation 2013	Other	CSE0042	UPS - Single Normal Mode - VI ($\mathrm{P}>10$ kW)	10.00	$\begin{array}{r} 2,859.3 \\ 9 \end{array}$	3,203.03	1.000	$\begin{array}{r} 3,203.0 \\ 3 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 2,882.7 \\ 3 \end{array}$	1.008	3,171.00
New Construction -	Other	CSE0049	Lighting Power	12.00	$\begin{array}{r} 816,68 \\ 1.98 \end{array}$	$\begin{array}{r} 784,082 . \\ 88 \end{array}$	0.957	$\begin{array}{r} 750,36 \\ 7.32 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 675,33 \\ 0.58 \end{array}$	0.827	742,863.64

EMI										2013 Certification Appendices		
Major Renovation 2013			Density (Exterior)									
New Construction - Major Renovation 2013	Kitchen and Refriger ation	CSE0079	Electric Dishwasher (Low Temp; Single Tank)	12.00	$\begin{array}{r} 3,016.9 \\ 8 \end{array}$	3,017.00	1.000	$\begin{array}{r} 3,017.0 \\ 0 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 2,715.3 \\ 0 \end{array}$	0.900	2,986.83
New Construction Whole Building	NEW CONST RUCTIO N	CNE0001	Design Incentive Building Owner	0.00	$\begin{array}{r} 773,69 \\ 5.00 \end{array}$	$\begin{array}{r} 773,695 . \\ 00 \end{array}$	0.954	$\begin{array}{r} 738,10 \\ 5.03 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 664,29 \\ 4.53 \end{array}$	0.859	664,294.53
TOTAL					$\begin{array}{r} 177,33 \\ 1,024.3 \\ 4 \end{array}$	$\begin{array}{r} 176,778 \\ 027.84 \end{array}$		$\begin{array}{r} 171,41 \\ 4,709.5 \\ 5 \end{array}$		$\begin{array}{r} 154,27 \\ 0,443.3 \\ 6 \end{array}$		$\begin{array}{r} 166,773,67 \\ 4.41 \end{array}$

Program	Measure Category	Measure Code	Measure Description	Measure Life	Reporte d kW Savings	Adjusted Reported Gross kW Savings	Verified Gross kW Savings Adjustm ent Factor	Verified Gross kW Savings	kW NTG Adjustem ent Factor	Verified Net kW Savings	kW Realiz ation Rate	Verified Net kW Savings Incl Bonus
BOC	Other	CSC0042	BOC (Combo Customer)	5.00	29.55	29.55	1.000	29.55	0.900	26.60	$\begin{array}{r} 0.90 \\ 0 \end{array}$	26.60
BOC	Other	CSE0090	BOC (Electric Customer)	5.00	32.24	32.24	1.000	32.24	0.900	29.02	$\begin{array}{r} 0.90 \\ 0 \end{array}$	29.02
Business Solutions Custom	Custom	CBE0001	Custom Electric Program	Varies	$\begin{array}{r} 1,613.8 \\ 8 \end{array}$	1,613.88	0.2290	369.58	0.9000	332.62	$\begin{array}{r} 0.20 \\ 60 \end{array}$	365.59
Business Solutions - Custom	Custom	CJE0001	Lumens per Watt Improvement per Year	Varies	836.35	836.35	0.942	787.84	0.900	709.05	$\begin{array}{r} 0.84 \\ 8 \end{array}$	720.53
Business Solutions - Custom	Custom	CJE0002	Energy Conservation Improvement per Year	Varies	55.20	55.20	0.942	52.00	0.900	46.80	$\begin{array}{r} 0.84 \\ 8 \end{array}$	48.20
Business Solutions Prescriptive	Compre ssed Air	CAE0001	VSD Air Compressor	15.00	225.50	225.50	0.942	212.42	0.900	191.18	$\begin{array}{r} 0.84 \\ 8 \end{array}$	210.30
Business Solutions - Prescriptive	Compre ssed Air	CAE0002	Refrigerated Cycling Thermal Mass Air Dryer	10.00	8.64	8.64	0.942	8.14	0.900	7.33	$\begin{array}{r} 0.84 \\ 8 \end{array}$	8.06
Business Solutions - Prescriptive	Compre ssed Air	CAE0004	Low-Pressure Drop Air Filter	5.00	2.48	2.80	1.000	2.80	0.900	2.52	$\begin{array}{r} 1.01 \\ 6 \end{array}$	2.52
Business Solutions - Prescriptive	Compre ssed Air	CAE0005	Zero Loss Condensate Drain	5.00	286.00	318.40	0.942	299.93	0.900	269.94	$\begin{array}{r} 0.94 \\ 4 \end{array}$	269.94
Business Solutions Prescriptive	Compre ssed Air	CAE0007	Compressed Air Energy Audit	1.00	452.67	455.27	0.942	428.86	0.900	385.97	$\begin{array}{r} 0.85 \\ 3 \end{array}$	385.97
Business Solutions - Prescriptive	Compre ssed Air	CAE0008	Air Compressor Outdoor Air Intake	20.00	0.05	0.05	1.000	0.05	0.900	0.05	$\begin{array}{r} 0.90 \\ 0 \end{array}$	0.05

$\begin{aligned} & \infty \\ & \text { ì } \end{aligned}$	$\xrightarrow[N]{\hat{N}}$	ذ	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { O- } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { คे } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \stackrel{~}{N} \\ & \underset{N}{N} \end{aligned}$	$\stackrel{N}{-}$	$\begin{aligned} & \underset{+}{\dot{N}} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{+}{2} \end{aligned}$
óo	$\stackrel{\circ}{0}^{\circ}$	${\underset{\sim}{\infty}}_{\infty}^{\infty}$	＋${ }_{\text {＋}}^{+\infty}$	${ }_{\text {－}}^{+\infty}$	O_{0}	${\underset{o}{\infty}}_{\infty}^{\infty}$	oio	óo	o_{0}°	8-	∞_{0}^{∞}
$\begin{aligned} & \text { مٌ } \\ & \text { Ǹ } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{y}{c} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\underset{\sim}{N}}{\underset{\sim}{\sim}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathcal{J}} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { N్ } \\ & \text { Ǹ } \\ & \text { è } \end{aligned}$	$\begin{aligned} & \text { 오 } \\ & \text { ค่ } \end{aligned}$	$\begin{aligned} & \bar{m} \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\ominus}{-}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & \underset{\sim}{\circ} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \stackrel{+}{\circ} \end{aligned}$
$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline \text { O } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 8 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 8 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hline \text { O- } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hline \text { O- } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 8 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 8 \\ & \hline 0 \end{aligned}$	\circ 8 0	O
$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ヘ̀ } \end{aligned}$	8)	$\begin{aligned} & \text { or } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { Ni } \\ & \text { Ǹ } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\infty} \\ & \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & \stackrel{-}{N} \\ & \underset{N}{\prime} \end{aligned}$	$\underset{\underset{\sim}{\infty}}{\square}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{r} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ò } \\ & \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \infty \\ & \sim \end{aligned}$
O -	O -	$\begin{aligned} & \underset{\sim}{\mathcal{T}} \\ & \underset{O}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\square} \\ & \underset{O}{\square} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\square} \\ & \underset{O}{\square} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\square} \\ & \underset{\sim}{\square} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\square} \\ & \underset{O}{\square} \end{aligned}$	O -	\circ - -	$\stackrel{8}{8}$	$\stackrel{8}{8}$	\bigcirc
$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\circ}{\text { N }}$	$\underset{i}{\circ}$	$\begin{aligned} & \text { @ } \\ & \text { N } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { O } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { م } \\ & \text { م̀ } \\ & \text { en } \end{aligned}$	$\begin{gathered} \stackrel{-}{\mathrm{N}} \\ \underset{\sim}{n} \end{gathered}$	$\stackrel{\infty}{\underset{\sim}{\sim}}$	$\begin{aligned} & \stackrel{1}{+} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ón } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \stackrel{0}{2} \end{aligned}$
$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { 内̀ } \end{aligned}$	$\underset{i}{\circ}$	$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{N} \\ & \stackrel{j}{j} \end{aligned}$		$\begin{aligned} & \stackrel{-}{N} \\ & \underset{N}{\prime} \end{aligned}$	$\underset{\underset{\sim}{\infty}}{\infty}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{r} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { ò } \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \text { oे } \end{aligned}$
$\begin{aligned} & 8 \\ & \hline-0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 1 \end{aligned}$	O- 웅	$\begin{aligned} & \text { فـ } \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { 8 } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { O}}{1} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { O}}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { O}}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{+} \end{aligned}$	\bigcirc
$\begin{aligned} & \text { OO} \\ & \hline \mathbf{O} \\ & \stackrel{\text { U }}{\circlearrowleft} \end{aligned}$		$\begin{aligned} & \bar{\circ} \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	\bar{o} 0 0 0 0	$\bar{\circ}$ 0 ư u	\bar{O} O U1	O O U U	$\begin{aligned} & \text { ®O } \\ & \text { O} \\ & \text { U山 } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { U } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { U山 } \end{aligned}$	\circ 8 ㅇ U	$\begin{aligned} & \text { 응 } \\ & \text { O} \\ & \text { 씅 } \end{aligned}$
		©									

Business Solutions Prescriptive	LED or Inductio n Fixtures	CFE0011	LED Replacing Incandescent BR-Series	8.00	100.11	90.59	1.000	90.59	0.900	81.53	$\begin{array}{r} 0.81 \\ 4 \end{array}$	81.53
Business Solutions Prescriptive	T8 Fluoresc ent	CFE0012	8 -foot T12 to Two (2) 4-ft HP/RW T8	8.00	39.52	39.52	1.000	39.52	0.900	35.57	$\begin{array}{r} 0.90 \\ 0 \end{array}$	35.57
Business Solutions Prescriptive	LED or Inductio n Fixtures	CFE0013	4-ft T12 to LED Tube Lights	8.00	36.83	36.49	1.000	36.49	0.900	32.84	$\begin{array}{r} 0.89 \\ 2 \end{array}$	32.84
Business Solutions Prescriptive	Furnace s and Heaters	CHC0010	Infrared Heaters - Combination Customers	15.00	64.81	64.81	0.942	61.05	0.900	54.95	$\begin{array}{r} 0.84 \\ 8 \end{array}$	60.44
Business Solutions Prescriptive	HVAC Controls	CHC0011	Programmable Thermostat Combination Customers	9.00	-18.28	-18.28	0.942	-17.22	0.900	-15.50	$\begin{array}{r} 0.84 \\ 8 \end{array}$	-15.50
Business Solutions Prescriptive	HVAC Controls	CHC0012	Guestroom Energy Management Control Combination Customer	8.00	26.60	26.60	1.000	26.60	0.900	23.94	$\begin{array}{r} 0.90 \\ 0 \end{array}$	23.94
Business Solutions Prescriptive	HVAC Controls	CHC0014	Critical Zone Supply Air Reset Control (Combo)	15.00	-0.08	-0.08	1.000	-0.08	0.900	-0.08	$\begin{array}{r} 0.90 \\ 0 \end{array}$	-0.08
Business Solutions Prescriptive	HVAC Controls	CHC0017	Optimal Start/Stop on Air Handling Units (Combo)	20.00	89.05	89.05	1.000	89.05	0.900	80.15	$\begin{array}{r} 0.90 \\ 0 \end{array}$	88.16
Business Solutions Prescriptive	DCV and Economi zers	CHC0027	Demand Control Ventilation Combination Customers	15.00	88.42	88.42	0.942	83.29	0.900	74.96	$\begin{array}{r} 0.84 \\ 8 \end{array}$	82.46
Business Solutions Prescriptive	Unitary/ Split HVAC	CHE0001	$\begin{aligned} & \mathrm{AC}<65,000 \\ & \text { Btuh (} 5.4 \text { tons) } \end{aligned}$	15.00	19.59	19.59	0.942	18.46	0.900	16.61	$\begin{array}{r} 0.84 \\ 8 \end{array}$	18.27
Business Solutions Prescriptive	Unitary/ Split HVAC	CHE0003	$\begin{aligned} & \text { AC }>240,000 \\ & \text { Btuh }(20 \text { tons }) \& \\ & <=760,000 \\ & \text { Btuh }(63.3 \text { tons }) \end{aligned}$	15.00	76.87	76.87	0.942	72.42	0.900	65.17	$\begin{array}{r} 0.84 \\ 8 \end{array}$	71.69

$$	$\stackrel{\square}{-}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{1}{\circ} \end{aligned}$	N N N	$\begin{aligned} & \text { Q } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { N゙ } \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\infty}}$	$\stackrel{\infty}{+}$		$\stackrel{9}{+}$ $\stackrel{y}{+}$
${\underset{O}{\infty}}_{\infty}^{\infty}$		$\underset{\sim}{\infty} \sim$	$$	${\underset{\sim}{+}}_{\infty}^{\infty}$	${\underset{O}{\infty}}_{\infty}^{\infty}$	$\underset{\sim}{+\infty}$	${\underset{O}{\infty}}_{\infty}^{\infty}$	$\underset{\sim}{\infty}$	
$$	$\stackrel{\underset{\sim}{\wedge}}{\underset{\sim}{-}}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \underset{\infty}{\underset{\sim}{*}} \\ & \underset{\sim}{\prime} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{1} \\ & \end{aligned}$	$\stackrel{\underset{N}{N}}{\underset{N}{N}}$	$\begin{aligned} & \text { స } \\ & \stackrel{0}{2} \end{aligned}$	$\underset{\sim}{\forall}$	$\frac{\circ}{\frac{\square}{\tau}}$	$\begin{aligned} & \bullet \\ & \stackrel{\ominus}{\mathrm{Q}} \\ & \stackrel{-}{2} \end{aligned}$
\circ 8	$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$	8 8 0	\circ 8 0	$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \end{aligned}$
$\underset{\oplus}{\dot{\circ}}$	$\stackrel{\bigcirc}{-}$	$\begin{aligned} & \circ \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{n} \\ & \end{aligned}$	$\stackrel{\stackrel{1}{\mathrm{~N}}}{\stackrel{\rightharpoonup}{N}}$	$\begin{aligned} & \text { ® } \\ & \text { N் } \end{aligned}$	$\stackrel{N}{\stackrel{N}{\dot{~}}}$	$\stackrel{\text { O}}{+}$	$\begin{aligned} & \varrho \\ & \stackrel{\circ}{+} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { M } \\ & \end{aligned}$
$\begin{aligned} & \underset{\sim}{Y} \\ & \underset{O}{3} \end{aligned}$	$\begin{aligned} & \underset{\sim}{Y} \\ & \underset{O}{3} \end{aligned}$	8	$\begin{aligned} & \underset{\sim}{\mathcal{O}} \\ & \underset{O}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{O}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathcal{T}} \\ & \underset{O}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O゙ } \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{Y} \\ & \underset{O}{3} \end{aligned}$	$\begin{aligned} & \underset{\sim}{Y} \\ & \underset{O}{3} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathcal{T}} \\ & \underset{O}{2} \end{aligned}$
N	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \infty \\ & \infty \\ & \underset{N}{0} \end{aligned}$	$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { の } \\ & \stackrel{\Gamma}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { م } \\ & \text { ค̀ } \\ & \text { Nे } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { é } \end{aligned}$	$\begin{aligned} & N \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$
N	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{+} \\ & \text { Nे } \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { の } \\ & \stackrel{1}{\circ} \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \text { ○ } \\ & \text { م่ํ } \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\text { N}}{ } \end{aligned}$	N	$\underset{\underset{\sim}{\infty}}{\substack{\text { on }}}$	$\begin{aligned} & \infty \\ & \stackrel{9}{\infty} \\ & \stackrel{m}{c} \end{aligned}$
$\begin{aligned} & 8 \\ & \hline 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \text { 앙 } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { ® }}{2} \end{aligned}$	운	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { ® }}{2} \end{aligned}$		$\begin{aligned} & 8 \\ & \hline \text { م } \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \text { 앙 } \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \text { Ni } \end{aligned}$
∞ 8 O 핀 U	응 $\stackrel{\text { U }}{1}$ ㄴ	$\begin{aligned} & \stackrel{\rightharpoonup}{O} \\ & \text { 씬 } \end{aligned}$	$\stackrel{N}{\circ}$ $\stackrel{O}{O}$ $\stackrel{1}{\top}$	$\begin{aligned} & \text { N} \\ & \text { O} \\ & \text { Ẅ } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { ©్O } \\ & \text { O} \\ & \text { W্T } \end{aligned}$		$\begin{aligned} & \text { 응 } \\ & \text { U } \\ & \text { 피 } \end{aligned}$		
$\begin{aligned} & E=0 \\ & \text { OU } \\ & \text { OX } \end{aligned}$			¢ $\overline{\bar{\prime}}$ Ј						$\stackrel{\stackrel{\rightharpoonup}{ \pm}}{\overline{\bar{C}}}$

			IPLV = 0.49									
Business Solutions Prescriptive	Chiller	CHE0039	Water-Cooled ChillersCentrifrugal >600 tons, IPLV $=0.49$	20.00	129.38	129.38	0.942	121.88	0.900	109.69	$\begin{array}{r} 0.84 \\ 8 \end{array}$	120.66
Business Solutions Prescriptive	Chiller	CHE0041	Water-Cooled Chillers- Reciprocating >150 tons and <=300 tons, IPLV = 0.52	20.00	14.65	14.65	1.000	14.65	0.900	13.19	$\begin{array}{r} 0.90 \\ 0 \end{array}$	14.51
Business Solutions Prescriptive	Chiller	CHE0043	Air and WaterCooled Chiller Tune-up	0.00	$\begin{array}{r} 1,168.7 \\ 4 \end{array}$	1,168.74	1.000	$\begin{array}{r} 1,168.7 \\ 4 \end{array}$	0.900	$1,051.8$ 7	$\begin{array}{r} 0.90 \\ 0 \end{array}$	1,051.87
Business Solutions Prescriptive	HVAC Controls	CHE0061	Air Side Economizer	15.00	-0.35	-0.35	0.942	-0.33	0.900	-0.29	$\begin{array}{r} 0.84 \\ 8 \end{array}$	-0.32
Business Solutions Prescriptive	Room AC / PTAC	CHE0064	Ductless Air Conditioning	15.00	0.52	0.48	1.000	0.48	0.900	0.43	$\begin{array}{r} 0.83 \\ 4 \end{array}$	0.48
Business Solutions Prescriptive	HVAC Controls	CHE0065	Chilled Water Reset Retrofit (10 degrees) Electric	5.00	-7.84	-7.84	1.000	-7.84	0.900	-7.06	$\begin{array}{r} 0.90 \\ 0 \end{array}$	-7.06
Business Solutions Prescriptive	HVAC Controls	CHE0067	Optimal Start/Stop on Air Handling Units (EO)	20.00	4.89	4.89	1.000	4.89	0.900	4.40	$\begin{array}{r} 0.90 \\ 0 \end{array}$	4.84
Business Solutions Prescriptive	HVAC Controls	CHE0069	Critical Zone Supply Air Reset Control (EO)	15.00	-0.98	-0.98	1.000	-0.98	0.900	-0.88	$\begin{array}{r} 0.90 \\ 0 \end{array}$	-0.97
Business Solutions Prescriptive	Furnace s and Heaters	CHE0090	Programmable Thermostat - Electric Customer	9.00	-6.57	-6.57	0.942	-6.19	0.900	-5.57	$\begin{array}{r} 0.84 \\ 8 \end{array}$	-5.57
Business Solutions Prescriptive	CFL	CLE0001	CFL Screw in (30 watts or less)	2.00	260.34	234.55	0.942	220.94	0.900	198.85	$\begin{array}{r} 0.76 \\ 4 \end{array}$	198.85
Business Solutions Prescriptive	CFL	CLE0002	CFL Speciality (down-light, 3way, dimmable)	2.00	3.80	3.80	0.942	3.58	0.900	3.22	$\begin{array}{r} 0.84 \\ 8 \end{array}$	3.22

$\begin{aligned} & \bar{N} \\ & \stackrel{\circ}{\infty} \end{aligned}$	$\begin{aligned} & \text { مٌo } \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \stackrel{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \stackrel{\sim}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\stackrel{\hat{\infty}}{\stackrel{\infty}{\circ}}$	$\underset{\substack{\mathrm{N}}}{ }$	$\begin{aligned} & \text { Ny } \\ & \stackrel{8}{8} \end{aligned}$	$\begin{aligned} & \circ \\ & \hline \end{aligned}$	$\stackrel{\text { ¢ }}{\substack{*}}$
$\stackrel{ \pm}{\infty} \times$	$\stackrel{\text { ¢ }}{\infty}_{\infty}^{\text {O }}$			$\stackrel{ \pm}{\infty} \times$		$\stackrel{ \pm}{\infty} \times$	$\stackrel{\sim}{0}_{\sim}^{\sim}$	$\stackrel{ \pm}{\infty} \times$	$\stackrel{ \pm}{\infty} \times$
$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \text { しల } \end{aligned}$	$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\sim}{\infty} \end{gathered}$		$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{N}{\infty}$	$\stackrel{\circ}{\stackrel{\circ}{i}}$	$\begin{aligned} & \text { Ny } \\ & \stackrel{3}{\circ} \end{aligned}$	$\stackrel{\circ}{\odot}$	$\stackrel{\text { ® }}{\substack{0}}$
$$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \end{aligned}$	$$	$$	$$	\bigcirc	$$	－
$\begin{aligned} & \text { N } \\ & \text { Ò } \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { © } \end{aligned}$		$\begin{aligned} & \text { î } \\ & \text { ले } \end{aligned}$	$\stackrel{గ}{0}$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \hline 0 \end{aligned}$	$\stackrel{\Gamma}{i}$	$\stackrel{\text { J }}{\substack{\text { a }}}$
$\stackrel{\text { N゙ }}{\substack{0}}$	$\stackrel{\text { N゙ }}{\substack{0}}$	$\stackrel{\text { N゙ }}{\substack{0}}$	$\stackrel{\text { N゙ }}{\substack{0}}$	$\stackrel{\text { N゙ }}{\substack{\circ}}$	$\begin{gathered} \text { N゙ } \\ \text { O. } \end{gathered}$	$\stackrel{\text { N゙ }}{\substack{0}}$	$\stackrel{\text { ै }}{\text { ¢ }}$	$\stackrel{\text { ソ }}{\substack{\circ}}$	
$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\underset{子}{+}}$	$\begin{aligned} & \text { N} \\ & \underset{\infty}{\circ} \\ & \text { ion } \end{aligned}$	$\begin{aligned} & \text { R } \\ & \text { مí } \\ & 0 . \end{aligned}$	$\begin{aligned} & \overline{i n} \\ & \stackrel{\text { W }}{ } \end{aligned}$	$\stackrel{\oplus}{\oplus}$	$\underset{\substack{N}}{\sim}$	$\begin{aligned} & \underset{\sim}{\underset{\circ}{8}} \end{aligned}$	$\stackrel{\Im}{6}$	－
$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\stackrel{\underset{\sim}{\square}}{\underset{\gamma}{\prime}}$	$\begin{aligned} & \text { N } \\ & \text { 人 } \\ & \text { ion } \end{aligned}$	$\begin{aligned} & \text { مٌ } \\ & 0_{0}^{\circ} \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{n} \\ & \stackrel{\text { ® }}{ } \end{aligned}$	$\stackrel{\varrho}{\oplus}$	$\underset{\substack{N}}{N}$	$\begin{aligned} & \text { t. } \\ & \stackrel{0}{0} \\ & \hat{6} \end{aligned}$		－
웅	$\begin{aligned} & \stackrel{8}{\circ} \\ & \stackrel{\circ}{\mathrm{C}} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline- \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{i}}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	－

Business Solutions－ Prescriptive	HP or RW Fluoresc ent	CLE0009
Business Solutions－ Prescriptive	Exit Signs	CLE0014
Business Solutions－ Prescriptive	Lighting Controls	CLE0017
Business Solutions－ Prescriptive	T8／T5 Fixture	CLE0018
Business Solutions－ Prescriptive	CFL	CLE0020
Business Solutions－ Prescriptive	T8 Fluoresc ent	CLE0023
Business Solutions－ Prescriptive	T8 Fluoresc ent	CLE0024
Business Solutions－ Prescriptive	HP or RW Fluoresc ent	CLE0027
Business Solutions－ Prescriptive	Lamp Removal	CLE0028
Business Solutions－ Prescriptive	Lamp Removal	CLE0029

Business Solutions Prescriptive	Lamp Removal	CLE0030	Lamp Removal: Remove 4-foot T12 fluorescent lamp (with T8 ballast retrofit)	8.00	397.41	301.78	0.942	284.28	0.900	255.85	$\begin{array}{r} 0.64 \\ 4 \end{array}$	255.85
Business Solutions Prescriptive	Lamp Removal	CLE0031	Lamp Removal: Remove 8-foot T12 fluorescent lamp (with T8 ballast retrofit)	8.00	49.32	42.32	0.942	39.87	0.900	35.88	$\begin{array}{r} 0.72 \\ 8 \end{array}$	35.88
Business Solutions Prescriptive	Lighting Controls	CLE0033	Central Lighting Control	12.00	659.82	659.82	0.942	621.55	0.900	559.39	$\begin{array}{r} 0.84 \\ 8 \end{array}$	615.33
Business Solutions Prescriptive	Lighting Controls	CLE0034	Switching Controls for Multilevel Lighting	12.00	69.89	69.89	0.942	65.83	0.900	59.25	$\begin{array}{r} 0.84 \\ 8 \end{array}$	65.17
Business Solutions Prescriptive	Lighting Controls	CLE0035	Daylight Sensor controls	12.00	457.48	457.48	0.942	430.95	0.900	387.85	$\begin{array}{r} 0.84 \\ 8 \end{array}$	426.64
Business Solutions Prescriptive	T8 Fluoresc ent	CLE0046	8-FT T12HO to 2 4-FT T8HP	8.00	302.11	302.11	0.942	284.59	0.900	256.13	$\begin{array}{r} 0.84 \\ 8 \end{array}$	256.13
Business Solutions Prescriptive	Lighting Controls	CLE0051	Parking Garage Multi-Step Dimming Occ Sensor	8.00	6.75	6.75	0.942	6.36	0.900	5.72	$\begin{array}{r} 0.84 \\ 8 \end{array}$	5.72
Business Solutions Prescriptive	Lighting Controls	CLE0052	Probe Start to Pulse Start Lighting(Lamp and Ballast Retrofit)	13.00	226.37	226.37	0.942	213.24	0.900	191.91	$\begin{array}{r} 0.84 \\ 8 \end{array}$	211.11
Business Solutions Prescriptive	LED or Inductio n Fixtures	CLE0053	LED Replacing A19	8.00	$\begin{array}{r} 2,226.1 \\ 0 \end{array}$	2,226.10	1.000	$\begin{array}{r} 2,226.1 \\ 0 \end{array}$	0.900	$\begin{array}{r} 2,003.4 \\ 9 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	2,003.49
Business Solutions Prescriptive	LED or Inductio n Fixtures	CLE0054	LED MR16 Replacing Halogen MR16	8.00	34.04	34.04	1.000	34.04	0.900	30.64	$\begin{array}{r} 0.90 \\ 0 \end{array}$	30.64
Business Solutions Prescriptive	LED or Inductio n	CLE0055	LED Par Replacing Halogen Par	8.00	432.97	432.97	1.000	432.97	0.900	389.67	$\begin{array}{r} 0.90 \\ 0 \end{array}$	389.67

$\stackrel{-0}{\underset{\sim}{\sim}}$		$\begin{aligned} & \text { M} \\ & \stackrel{\sim}{\mathrm{N}} \end{aligned}$	$\stackrel{\infty}{\circ}$	$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{\sim}} \end{aligned}$	$\stackrel{\Gamma}{\stackrel{\omega}{\omega}}$	$\stackrel{\text { f }}{\text { in }}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	$\begin{aligned} & \stackrel{\sim}{\mathrm{N}} \\ & \stackrel{+}{\circ} \end{aligned}$	$\underset{\substack{\text { N }}}{\text { ¢ }}$	－
$\stackrel{+}{\infty}_{\infty}^{\infty}$	$\underset{\substack{\infty \\ \infty}}{\infty}$	$\stackrel{8}{0}^{\circ}$	8_{0}°	8_{0}°	8_{0}°	$\stackrel{8}{0}^{\circ}$	8_{0}°	$\stackrel{8}{0}^{\circ}$	$\stackrel{+}{\infty}_{\infty}^{\infty}$	$\stackrel{\square}{\infty}_{\substack{\infty}}$
$\begin{aligned} & \overline{+} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { ざ } \\ & \text { ém } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { öㅁ } \end{aligned}$	$\underset{\text { i }}{\underset{\text { in }}{ }}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\mathrm{N}} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { প } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\underset{0}{\Gamma}$			
$$	$\begin{aligned} & \text { O- } \\ & \hline 0 \\ & \hline \end{aligned}$	$$	$$	$$	$\begin{aligned} & \text { O} \\ & \text { O- } \end{aligned}$	$$	$$	－	－	－
$\begin{aligned} & \bar{\circ} \\ & \text { م̀ } \end{aligned}$	$\begin{aligned} & \stackrel{8}{\circ} \\ & \hline \text { + } \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\sim}{\sim} \\ \sim \end{gathered}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \text { N } \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { +゙ } \\ & \stackrel{\text { ¢ }}{2} \end{aligned}$	$\stackrel{8}{\stackrel{8}{i}}$	$\stackrel{\text { o}}{\substack{\circ}}$	$\begin{aligned} & \dot{0} \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$
$\stackrel{\text { ~ }}{\substack{\circ \\ \hline}}$	$\stackrel{\text { ~ }}{\substack{\circ \\ \hline}}$	$\stackrel{8}{\mathrm{O}}$	$\stackrel{\circ}{\circ}$	$\stackrel{8}{8}$	$\stackrel{\text { 안 }}{\square}$	$\stackrel{\circ}{\circ}$	$\stackrel{8}{8}$	$\stackrel{8}{8}$	\％	\％
		$\begin{gathered} \infty \\ \stackrel{\sim}{\sim} \\ \underset{\sim}{c} \end{gathered}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \text { ñ } \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { +े } \\ & \stackrel{\rightharpoonup}{\dot{C}} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \stackrel{\circ}{5} \end{aligned}$	$\underset{\substack{\circ \\ \hline}}{ }$	$\begin{aligned} & \dot{\omega} \\ & \infty \\ & \dot{\circ} \end{aligned}$	$\stackrel{N}{\underset{\sim}{N}}$	$\stackrel{\stackrel{\circ}{¢}}{\stackrel{+}{+}}$
$\begin{aligned} & \text { O} \\ & \stackrel{y}{\circ} \\ & \stackrel{y}{0} \end{aligned}$	$\frac{\stackrel{\circ}{c}}{\underset{\sim}{2}}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{gathered} \text { N} \\ \underset{\sim}{\sim} \end{gathered}$	$\begin{aligned} & \text { +े } \\ & \stackrel{\text { T}}{2} \end{aligned}$	$\stackrel{\stackrel{8}{\mathrm{o}}}{\stackrel{1}{\circ}}$	$\stackrel{\text { on }}{\substack{\circ}}$	$\begin{aligned} & \dot{\omega} \\ & \infty \\ & \dot{\infty} \end{aligned}$	$\stackrel{N}{N}$	$\stackrel{\stackrel{8}{\text { ¢ }} \text {＋}}{\square}$
$\begin{aligned} & \text { ه̣ } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline- \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { ® }}{2} \end{aligned}$	$\stackrel{\otimes}{\mathrm{N}}$	$\begin{aligned} & \text { ه̀ } \\ & \stackrel{\text { ® }}{2} \end{aligned}$	$\begin{aligned} & \text { ه̣ } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline- \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { ® }}{2} \end{aligned}$	－8
$\begin{aligned} & 0.0 \\ & \sum_{0}^{0} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \sum_{0}^{0} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \sum_{0}^{\underline{0}} \end{aligned}$	$\begin{aligned} & \stackrel{+}{\bar{O}} \\ & \sum_{0}^{U} \end{aligned}$	\sum_{0}° \sum_{0}^{11}	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \sum_{0}^{\mathrm{u}} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \mathbf{O}_{0}^{W 0} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{\Sigma} \\ & \text { O} \\ & \sum_{0}^{M} \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \sum_{0}^{W} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \text { O} \\ & \text { ָ̃ } \end{aligned}$	O O O ¢ O
		$\begin{aligned} & \text { E } \\ & \text { OV } \\ & \text { Oै } \end{aligned}$			$\begin{aligned} & \text { E } \\ & \text { ì } \\ & 0 . \end{aligned}$					交产

	$\begin{aligned} & \stackrel{\circ}{\dot{\sim}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ஜு } \\ & \stackrel{\text { ® }}{2} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\stackrel{1}{2}}$	$\stackrel{N}{\underset{\sim}{\sim}}$	$\stackrel{\otimes}{\infty}$	$\begin{gathered} \sim \\ \sim \end{gathered}$	$\frac{9}{0}$	$\stackrel{0}{\hat{0}}$	No．	5 0 0 0 \sim
	8_{0}°	$\stackrel{\circ}{0}^{\circ}$	8_{0}°	8_{0}°	$\underset{\substack{+\infty \\ \infty}}{\infty}$		$\stackrel{ \pm}{\infty} \times$	$\stackrel{+}{\infty}_{\infty}^{\infty}$	$\stackrel{+}{\infty}_{\infty}^{\infty}$		$\stackrel{ \pm}{\mathbf{O}}$
	$\stackrel{\stackrel{\infty}{\mathrm{N}}}{\stackrel{1}{\mathrm{~N}}}$	Oిల్లిల్ల	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\begin{aligned} & \stackrel{\circ}{\sigma} \\ & \stackrel{\sigma}{\sigma} \end{aligned}$	ָ	$\stackrel{\infty}{\stackrel{\infty}{0}}$	$\begin{gathered} \stackrel{\infty}{N} \\ \text { N1 } \end{gathered}$	$\stackrel{N}{0}$	$\stackrel{8}{\circ}$	N®	$\stackrel{\sim}{\text { ¢ }}$
	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline-8 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline-\mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline- \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline- \end{aligned}$	O-	O-	\bigcirc	－\％
	$\begin{aligned} & \text { Ò } \\ & \underset{\sim}{c} \end{aligned}$		$\stackrel{\infty}{+}$	$\stackrel{\infty}{\stackrel{\sim}{\mathrm{N}}}$	$\stackrel{m}{\square}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \circ \\ & \stackrel{\infty}{N} \end{aligned}$	$\stackrel{\circ}{0}$	$\underset{0}{\hat{j}}$	$\xrightarrow[\sim]{\sim}$	N
	$\stackrel{8}{\circ}$	$\stackrel{\bigcirc}{8}$	$\stackrel{\circ}{8}$	$\stackrel{8}{\circ}$	$\stackrel{\text { M }}{\substack{0}}$	$\stackrel{\text { y }}{\substack{\circ}}$	¢	$\stackrel{\text { ̌ }}{\text { ¢ }}$	ソ̆	ソ	¢
	$\begin{aligned} & \text { O} \\ & \underset{\sim}{\sim} \end{aligned}$		$\stackrel{\infty}{+}$	$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{N}} \end{aligned}$	$\stackrel{\text { ® }}{+}$	$\underset{\sim}{\circ}$	$\stackrel{\circ}{\stackrel{\circ}{\mathrm{N}}}$	No	$\underset{\infty}{\infty}$	Nọ	O 0 0 0 0
	$\begin{aligned} & \text { Ò } \\ & \underset{\sim}{c} \end{aligned}$	$\underset{\text { © }}{\stackrel{\text { ® }}{2}}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\stackrel{\sim}{\sim}}$	$\stackrel{\text { ¢ }}{\sim}$	N	$\begin{aligned} & \stackrel{\circ}{4} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\sim}{\circ}$	$\stackrel{\infty}{\circ}$	N	n 0 0 0 \sim
	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{j}}{\mathrm{j}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\stackrel{\otimes}{\mathrm{N}}$	-৪	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\substack{2}}$	$\begin{aligned} & \mathrm{O} \\ & \hline-\mathrm{O} \end{aligned}$	\bigcirc	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{\text { ®}}{\mathrm{N}} \end{aligned}$	\circ 0 \bullet
	\bar{o} O 둥	$\begin{aligned} & \text { ơ } \\ & \text { ƠO } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \text { OU0 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Oi } \\ & \text { O} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{6} \\ & \hline 000 \end{aligned}$	¢ O U0	$\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { ư } \\ & 0 \end{aligned}$	O O Wु 0		¢0	¢
入				$\begin{aligned} & \stackrel{ \pm}{ \pm} \\ & \stackrel{1}{ \pm} \end{aligned}$	$\begin{aligned} & \stackrel{ \pm}{ \pm} \\ & \stackrel{1}{\circ} \end{aligned}$						¢ ¢ ¢ ¢
¢											¢ － ¢ －

$\stackrel{\infty}{\infty}$

毋

$\underset{\infty}{\underset{\infty}{\infty}}$	$\stackrel{\infty}{\stackrel{\infty}{0}}$	$\begin{aligned} & \bar{\infty} \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$
${\underset{\sim}{\infty}}_{\infty}^{\infty}$	$\stackrel{\circ}{0}^{\circ}$	8°

∞
∞

$\stackrel{+}{\infty}_{\substack{\infty \\ 0}}^{\infty}$

| | | | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | \circ | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | |

0.900
0.900

$\stackrel{8}{8}$	$\begin{aligned} & \circ \\ & \hline \text { O} \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline \mathbf{\circ} \end{aligned}$	$\stackrel{8}{\circ}$
$\stackrel{\circ}{+}$	$\begin{gathered} \aleph \\ \infty \\ \hline \end{gathered}$	¢	¢

$\stackrel{\text { N゙ }}{\substack{\circ}}$	$\stackrel{\text { N゙ }}{\substack{0}}$	$\begin{aligned} & \text { N゙ } \\ & \text { O- } \end{aligned}$	$\begin{aligned} & \text { N゙ } \\ & \text { Ó } \end{aligned}$
$\stackrel{\Im}{\circ}$	$\begin{aligned} & \text { N } \\ & \underset{寸}{+} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \stackrel{6}{6} \end{aligned}$	$\underset{\sim}{\Gamma}$

\bigcirc	\％
$\stackrel{\infty}{\stackrel{\infty}{\Gamma}}$	$\stackrel{\square}{\square}$

$\stackrel{\text { Y }}{\substack{0}}$	$$	$\stackrel{8}{8}$	－
$\stackrel{\mathrm{m}}{\underset{\sim}{7}}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	$\stackrel{\text { D }}{\stackrel{1}{0}}$	$\stackrel{ \pm}{\text { ¢ }}$

\bigcirc	$\stackrel{\text { O}}{\stackrel{\circ}{\circ}}$	$\stackrel{\text { m }}{\text { ¢ }}$	N $\stackrel{\circ}{6}$	$\underset{\sim}{\dot{\sigma}}$

EMI
Solutions－
Prescriptive

Business
$\begin{array}{l}\text { Solutions－} \\ \text { Prescriptive }\end{array}$
$\begin{array}{l}\text { Business } \\ \text { Solutions－} \\ \text { Prescriptive }\end{array}$

Business
Solutions－
Prescriptive
Business
$\begin{aligned} & \text { Solutions－} \\ & \text { Prescriptive }\end{aligned}$
Prescriptive
Business
Solutions－
Prescriptive

Business
Solutions－
Prescriptive
Business
Solutions－

$\stackrel{\infty}{\sim}$

Prescriptive			$\mathrm{VI}(\mathrm{P}>10 \mathrm{~kW})$									
Business Solutions - Prescriptive	Kitchen and Refriger ation	CSE0078	Electric Dishwasher (High Temp; Multi Tank)	12.00	1.80	1.80	1.000	1.80	0.900	1.62	$\begin{array}{r} 0.90 \\ 0 \end{array}$	1.78
Business Solutions - Prescriptive	Kitchen and Refriger ation	CSE0079	Electric Dishwasher (Low Temp; Single Tank)	12.00	0.70	0.70	1.000	0.70	0.900	0.63	$\begin{array}{r} 0.90 \\ 0 \end{array}$	0.69
Business Solutions - Prescriptive	Kitchen and Refriger ation	CSE0080	Electric Dishwasher (High Temp; Single Tank)	12.00	1.65	1.65	1.000	1.65	0.900	1.48	$\begin{array}{r} 0.90 \\ 0 \end{array}$	1.63
Business Solutions - Prescriptive	Kitchen and Refriger ation	CSE0082	Electric Dishwasher (Low Temp; Door)	12.00	0.83	0.83	1.000	0.83	0.900	0.74	$\begin{array}{r} 0.90 \\ 0 \end{array}$	0.82
Business Solutions - Prescriptive	Kitchen and Refriger ation	CSE0089	Walk-in EC Motor replacing non-EC Motor	15.00	144.33	144.33	1.000	144.33	0.900	129.90	$\begin{array}{r} 0.90 \\ 0 \end{array}$	142.89
Business Solutions Prescriptive	C\&I Waterhe ating	$\begin{aligned} & \text { CWE001 } \\ & 0 \end{aligned}$	Pipe Wrap Domestic Hot Water conditioned space (120F)	20.00	1.19	1.19	1.000	1.19	0.900	1.07	$\begin{array}{r} 0.90 \\ 0 \end{array}$	1.18
Business Solutions - Prescriptive	C\&I Waterhe ating	${ }_{2}^{\text {CWGO01 }}$	Pipe Wrap Domestic Hot Water conditioned space (140F)	20.00	0.12	0.12	0.942	0.11	0.900	0.10	$\begin{array}{r} 0.84 \\ 8 \end{array}$	0.11
New Construction - Major Renovation 2013	Compre ssed Air	CAE0001	VSD Air Compressor	15.00	18.70	18.70	0.942	17.62	0.900	15.85	$\begin{array}{r} 0.84 \\ 8 \end{array}$	17.44
New Construction - Major Renovation 2013	Compre ssed Air	CAE0002	Refrigerated Cycling Thermal Mass Air Dryer	10.00	1.28	1.28	0.942	1.21	0.900	1.09	$\begin{array}{r} 0.84 \\ 8 \end{array}$	1.19
New Construction	Compre ssed Air	CAE0009	Compressed Air Pressure Flow	10.00	0.62	0.62	1.000	0.62	0.900	0.56	$\begin{array}{r} 0.90 \\ 0 \end{array}$	0.61

	$\begin{aligned} & \underset{\sim}{v} \\ & \stackrel{\circ}{N} \end{aligned}$	$\stackrel{M}{\mathrm{~N}}$	+i		$\stackrel{\sim}{\sim}$	க்	$\begin{aligned} & \underset{\stackrel{+}{\mathrm{i}}}{ } \end{aligned}$	$\underset{\sim}{\underset{\sim}{j}}$	$\stackrel{\infty}{\infty}$
	$\underset{\dot{\infty}}{\underset{\infty}{\infty}}$	$\underset{\dot{\infty}}{\underset{\infty}{\infty}}$		$\stackrel{+}{\infty}_{\infty}^{\infty}$		${\underset{\sim}{\infty}}_{\infty}^{\infty}$	${\underset{\sim}{\infty}}_{\infty}^{\infty}$	${\underset{\sim}{\infty}}_{\infty}^{\infty}$	$\stackrel{+}{\infty}$
	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\oplus}{\circ}$	$\underset{\sim}{\text { N}}$	$\begin{aligned} & \text { B/ } \\ & \end{aligned}$	$\stackrel{m}{\mathrm{~N}}$	نٍ	$\stackrel{\stackrel{\circ}{\underset{~}{+}}}{\stackrel{-}{2}}$	$\underset{\sim}{\infty}$	$\stackrel{\text { g }}{\substack{\text { ¢ }}}$
	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline-\mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline-\mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline-\mathrm{O} \end{aligned}$	\％	\circ 0 0	－8
	$\begin{aligned} & \infty \\ & \stackrel{\infty}{+} \\ & \stackrel{\circ}{+} \end{aligned}$	$\stackrel{\circ}{\mathrm{N}}$	$\begin{aligned} & 8 \\ & \stackrel{8}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \text { ס̈ } \end{aligned}$	$\stackrel{\widehat{N}}{\mathrm{~N}}$	8	$\begin{aligned} & \text { N} \\ & \stackrel{\text { N}}{2} \end{aligned}$	$\stackrel{ \pm}{m}$	$\stackrel{\bigotimes}{\odot}$
	$\stackrel{\text { N゙ }}{\substack{0}}$	$\stackrel{\text { N゙ }}{\text { O. }}$	$\begin{gathered} \text { N゙ } \\ \text { O- } \end{gathered}$	$\begin{aligned} & \text { y } \\ & \text { O- } \end{aligned}$	$\begin{gathered} \text { y } \\ \text { O- } \end{gathered}$	$\stackrel{\text { N゙ }}{\substack{0}}$	$\stackrel{\text { N゙ }}{\substack{0}}$	¢	$\stackrel{\text { T }}{\substack{\text { ¢ }}}$
	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\sim}$	$\underset{\substack{\text { © } \\ \hline}}{\text { O}}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \end{aligned}$	N	$\stackrel{\oplus}{\text { O}}$	$\begin{aligned} & \text { N} \\ & \text { Mֻ } \end{aligned}$	$\stackrel{\text { ल }}{\text { m }}$	$\stackrel{4}{\text { ® }}$
	$\underset{\sim}{\underset{\sim}{\infty}}$	$\stackrel{\infty}{\sim}$	$\stackrel{\square}{6}$	$\begin{aligned} & \mathscr{\infty} \\ & \infty \\ & \infty \end{aligned}$	N	$\stackrel{\text { O}}{\substack{\circ}}$	$\begin{aligned} & \text { N} \\ & \stackrel{\Gamma}{\mathrm{N}} \end{aligned}$	ल๊	－
	$\begin{aligned} & \stackrel{8}{\mathrm{O}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \text { ه̣ } \\ & \stackrel{\varphi}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{e}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		$\begin{aligned} & \stackrel{8}{\mathrm{O}} \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{j}}{2} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\mathrm{O}} \\ & \stackrel{i}{2} \end{aligned}$	－80	－8
	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & 0 \\ & \hline 1 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { O} \\ & \text { O} \\ & \text { N} \end{aligned}$			$\begin{aligned} & \text { N} \\ & \text { O} \\ & \text { Uָ } \end{aligned}$				N
				$\begin{aligned} & \grave{\bar{\omega}} \\ & \stackrel{\vdots}{\bar{\prime}} \end{aligned}$					＋
									$\frac{3}{8}$

	$\stackrel{N}{\underset{\sim}{\circ}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	గ్ర	$\underset{\substack{\text { F }}}{ }$	$\begin{aligned} & \text { O- } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { O/ } \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \ddagger \\ & \infty \\ & \dot{\infty} \\ & \hline \end{aligned}$
∞	$\stackrel{\square}{+}_{\substack{0 \\ 0}}$	${\underset{\sim}{\infty}}_{\substack{\infty \\ \hline}}$	${\underset{\sim}{\infty}}_{\substack{\infty}}$	$\underset{\sim}{ \pm}$	$\underset{\sim}{\infty}$	${\underset{\sim}{\infty}}_{\substack{\infty \\ 0}}$	8°	৪o
	$\begin{aligned} & \bar{ఢ} \\ & \underset{\gamma}{2} \end{aligned}$	$\stackrel{\underset{N}{N}}{\underset{\sim}{N}}$	$\underset{\infty}{\hat{\infty}}$	$\begin{aligned} & \text { No } \\ & \text { on } \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\top}}$	$\begin{aligned} & \mathbb{N} \\ & \dot{\infty} \\ & \dot{\infty} \end{aligned}$	$\stackrel{1}{\stackrel{1}{\circ}}$	$\begin{aligned} & \infty \\ & \stackrel{n}{N} \\ & \stackrel{N}{N} \end{aligned}$
	$\begin{aligned} & 8 \\ & \hline 8 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & 0 \end{aligned}$	¢
	$\begin{aligned} & \stackrel{1}{+} \\ & \underset{子}{+} \end{aligned}$	$\frac{10}{\Gamma}$	$\stackrel{ஜ}{\circ}$		$\begin{aligned} & \text { N్ } \\ & \text { Ǹ } \end{aligned}$		$\stackrel{\infty}{\infty}$	$\begin{aligned} & \stackrel{0}{N} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$
	$\begin{aligned} & \underset{G}{G} \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathcal{T}} \\ & \underset{O}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{O}{\circ} \end{aligned}$	$\begin{aligned} & \underset{\sim}{Y} \\ & \underset{O}{3} \end{aligned}$	$\begin{aligned} & \underset{\sim}{Y} \\ & \underset{O}{3} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathcal{T}} \\ & \underset{O}{2} \end{aligned}$	8	\bigcirc
	$\frac{ \pm}{\underset{i}{t}}$	$\begin{aligned} & \text { ल్ } \\ & \text { Ni } \end{aligned}$	$\underset{\sim}{N}$	$\underset{\sim}{\forall}$	$\begin{aligned} & \text { O } \\ & \text { ̇ㅗ } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	${ }_{\infty}^{\infty}$	$\begin{aligned} & \stackrel{\circ}{1} \\ & \stackrel{\sigma}{\sigma} \end{aligned}$
	$\frac{\text { f }}{i}$	$\begin{aligned} & \text { ल్ } \\ & \text { Ǹ } \end{aligned}$	$\underset{\sim}{N}$	$\underset{\sim}{J}$	$\begin{aligned} & \text { O } \\ & \text { ले } \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\sim} \\ \stackrel{\infty}{\infty} \end{gathered}$	$\underset{\sim}{N}$	$\begin{aligned} & \stackrel{0}{N} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$
	O-	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{U}} \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { N }}{1} \end{aligned}$	$$	$\begin{aligned} & \text { O} \\ & \stackrel{\text { in }}{+} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$
						$\stackrel{亠}{\infty}$ O $\stackrel{\square}{\square}$ 흥 －		
			$\begin{aligned} & \hat{O} \\ & 0 \\ & \sum_{0}^{U} \end{aligned}$	® 0 U U	m - W 0	$\begin{aligned} & \hat{O} \\ & \stackrel{O}{0} \\ & \text { Ŵ } \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \underset{O}{0} \\ & \text { Ö } \\ & \text { Oै } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline \mathbf{O} \\ & \text { W్0 } \\ & 0 \end{aligned}$
$\begin{aligned} & \text { 읃 } \\ & \frac{1}{5} \end{aligned}$		$\begin{aligned} & \text { ㅇo } \\ & \text { 든 } \\ & \text { 듣 } \\ & \text { 윽 } \end{aligned}$				$\begin{aligned} & \bar{\Phi} \\ & \stackrel{5}{0} \end{aligned}$	¢ $\stackrel{\text { ¢ }}{\text { ¢ }}$	¢ $\stackrel{\text { ¢ }}{\square}$

2013												
New Construction - Major Renovation 2013	Kitchen and Refriger ation	CSE0079	Electric Dishwasher (Low Temp; Single Tank)	12.00	0.70	0.70	1.000	0.70	0.900	0.63	$\begin{array}{r} 0.90 \\ 0 \end{array}$	0.69
TOTAL					$\begin{array}{r} 29,041 . \\ 76 \end{array}$	$\begin{array}{r} 28,958.7 \\ 2 \end{array}$		$\begin{array}{r} 26,517 . \\ 14 \end{array}$		$\begin{array}{r} 23,865 . \\ 42 \end{array}$		$\begin{array}{r} 25,591.7 \\ 4 \end{array}$

Appendix B: Validated Savings
EMI

Table B-3: Business Solutions Program - Validated Natural Gas (Mcf) Savings by Measure

Program	Measure Category	Measure Code	Measure Description	Measure Life	Reported MCF Savings	Adjuste d Reporte d Gross MCF Savings	Verified Gross MCF Savings Adjustm ent Factor	Verified Gross MCF Savings	MCF NTG Adjust ment Factor	Verified Net MCF Savings	MCF Realiza tion Rate	Verified Net MCF Savings Incl Bonus
BOC	Other	CSC0042	BOC (Combo Customer)	5.00	1,672.23	$1,672.2$ 2	1.000	$\begin{array}{r} 1,672.2 \\ 2 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,505.0 \\ 0 \end{array}$	0.900	1,505.00
BOC	Other	CSG0027	BOC (Gas Customer)	5.00	1,216.17	$\begin{array}{r} 1,216.1 \\ 6 \end{array}$	1.000	$\begin{array}{r} 1,216.1 \\ 6 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,094.5 \\ 5 \end{array}$	0.900	1,094.55
Business Solutions Custom	Custom	CBG0001	Custom Gas Program	Varies	$\begin{array}{r} 68,781.2 \\ 4 \end{array}$	$\begin{array}{r} 68,781 . \\ 24 \end{array}$	1.106	$\begin{array}{r} 76,072 . \\ 05 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 68,464 . \\ 84 \end{array}$	0.995	75,311.33
Business Solutions Custom	Custom	CBG0300	Smart Buildings Gas	Varies	1,516.00	$\begin{array}{r} 1,516.0 \\ 0 \end{array}$	1.000	$\begin{array}{r} 1,516.0 \\ 0 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,364.4 \\ 0 \end{array}$	0.900	1,364.40
Business Solutions Prescriptive	Compressed Air	CAG0006	Air Compressor Waste Heat Recovery	15.00	1,745.39	$\begin{array}{r} 1,745.3 \\ 9 \end{array}$	0.881	$\begin{array}{r} 1,537.6 \\ 9 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,383.9 \\ 2 \end{array}$	0.793	1,522.32
Business Solutions Prescriptive	BLDG Envelope	CBC0001	Window Reduction	20.00	20.89	20.89	0.881	18.40	$\begin{array}{r} 0.90 \\ 0 \end{array}$	16.56	0.793	18.22
Business Solutions Prescriptive	BLDG Envelope	CBC0002	Window Reduction (Gas)	20.00	55.93	55.93	0.922	51.57	$\begin{array}{r} 0.90 \\ 0 \end{array}$	46.41	0.830	51.06
Business Solutions Prescriptive	Energy Management Systems	CEB0001	EMS - Combination Customers	15.00	$\begin{array}{r} 56,589.6 \\ 4 \end{array}$	$\begin{array}{r} 56,589 . \\ 64 \end{array}$	0.881	$\begin{array}{r} 49,855 . \\ 47 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 44,869 . \\ 92 \end{array}$	0.793	49,356.91
Business Solutions Prescriptive	Energy Management Systems	CEG0001	EMS (Gas Heating)- Gas Customers	15.00	$\begin{array}{r} 98,323.1 \\ 5 \end{array}$	$\begin{array}{r} 98,323 . \\ 15 \end{array}$	0.881	$\begin{array}{r} 86,622 . \\ 70 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 77,960 . \\ 43 \end{array}$	0.793	85,756.47
Business Solutions Prescriptive	Furnaces and Heaters	CHC0010	Infrared Heaters Combination Customers	15.00	5,381.56	$\begin{array}{r} 5,381.5 \\ 6 \end{array}$	0.881	$\begin{array}{r} 4,741.1 \\ 5 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 4,267.0 \\ 4 \end{array}$	0.793	4,693.74
Business Solutions -	HVAC Controls	CHC0011	Programma ble	9.00	3,947.94	$\begin{array}{r} 3,947.9 \\ 4 \end{array}$	0.881	$\begin{array}{r} 3,478.1 \\ 4 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 3,130.3 \\ 2 \end{array}$	0.793	3,130.32

2013 Certification Appendices

		$\begin{aligned} & \text { N } \\ & \underset{\text { N }}{+} \end{aligned}$	$\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ \hline 6\end{array}$	$\begin{aligned} & \text { No } \\ & \stackrel{\text { Non }}{\text { No }} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{N} \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { に } \\ & \underset{\sim}{\prime} \end{aligned}$	$\stackrel{\mathscr{O}}{\underset{\sim}{+}}$	∞ 0 0 0 0 0
	$\begin{aligned} & \text { O} \\ & \text { ó } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \text { O- } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ón } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline \text { O} \end{aligned}$	$\begin{aligned} & \text { O-O } \\ & \text { Oi } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \text { 毋ু } \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sigma} \\ & \hline \dot{O} \end{aligned}$	¢ ¢
		$\begin{aligned} & \bar{m} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$		$\stackrel{\text { ®iN N }}{N}_{N}^{N}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \dot{\circ} \text { in } \\ & i \circ \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \stackrel{\text { N }}{\text { T }} \end{aligned}$	$\stackrel{\sim}{\sim}$	7 8 8 \sim
	$\stackrel{8}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{0}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{8}{0}_{0}^{\circ}$	$\stackrel{8}{0}^{\circ}$	$\stackrel{8}{8}$
		$\underset{\underset{\sim}{N}}{\underset{\sim}{\infty}}$	$\begin{aligned} & \underset{\circ}{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{0}{-} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{N}} \\ & \stackrel{y}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \stackrel{\text { ® }}{ } \end{aligned}$		$\begin{aligned} & \stackrel{\oplus}{0} \\ & \stackrel{\oplus}{6} \end{aligned}$	$\stackrel{\sim}{\square}$	둥
	$\begin{aligned} & \underset{\sim}{N} \\ & 0 \end{aligned}$	$\stackrel{8}{8}$	$$	$\stackrel{8}{8}$	$\stackrel{8}{8}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{8}{\circ}$	-
		$\stackrel{N}{\underset{\sim}{\infty}}$	$\begin{aligned} & \text { No } \\ & \stackrel{0}{0} \\ & \stackrel{0}{-} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{N}}$	$\begin{aligned} & \text { Bi } \\ & \text { Ni } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \propto \dot{\top} \end{aligned}$	$\stackrel{\sim}{\sim}$	-
		$\underset{\sim}{\sim}$	$\stackrel{0}{\stackrel{0}{\infty}}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{N}{\mathrm{~N}} \\ & \text { ले } \end{aligned}$	$\begin{aligned} & \text { ®. } \\ & \underset{\sim}{\mathrm{O}} \\ & \text { م } \end{aligned}$	$\begin{aligned} & 0 \infty \\ & \dot{0} \\ & \dot{+} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \infty \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\stackrel{\llcorner }{\stackrel{\circ}{\sim}}$	O-1 $\stackrel{0}{0}$ $\stackrel{0}{1}$ 0
	$\underset{\infty}{\circ}$	$\begin{aligned} & \text { هi } \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \text { ه̣ } \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\circ}{\mathrm{i}}$	$\begin{aligned} & \text { هi } \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \text { ه̣ } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\underset{\infty}{\circ}$	8	-
									$\stackrel{\text { - }}{\stackrel{\text { ® }}{\text { ¢ }}}$
	$\begin{aligned} & N \\ & \stackrel{N}{8} \\ & 0 \\ & \hline 1 \end{aligned}$	\pm $\stackrel{\rightharpoonup}{8}$ 0 0 0	$\begin{aligned} & \text { n} \\ & \stackrel{0}{0} \\ & \text { 조 } \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \stackrel{O}{0} \\ & \frac{1}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{8} \\ & \stackrel{0}{1} \\ & \frac{1}{0} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { O} \\ & \text { U } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { Q} \\ & \hline \mathbf{O} \\ & 0 \\ & \hline 1 \end{aligned}$		LO 0 0 O
0. 0.0 0.0 0.0 0.0									¢ $\stackrel{0}{0}$ $\stackrel{-1}{0}$ 0

				$\begin{aligned} & \bar{\Gamma} \\ & \stackrel{\circ}{\infty} \\ & \dot{\circ} \\ & \dot{\sim} \end{aligned}$			$\begin{gathered} \stackrel{0}{\mathrm{~m}} \\ \stackrel{\mathrm{~m}}{\mathrm{r}} \\ \hline \end{gathered}$	$\begin{aligned} & \text { © } \\ & \text { 잉 } \end{aligned}$
	$\stackrel{ু}{N}$	$\stackrel{\text { ® }}{\substack{\circ \\ \hline}}$	$\stackrel{刃}{\underset{\sim}{\circ}}$	$\stackrel{\cong}{\underset{\sim}{\circ}}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{\circ} \end{aligned}$	$\stackrel{ু}{\stackrel{ু}{\circ}}$	$\begin{aligned} & \text { חু } \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \text { ু } \\ & \underset{\circ}{\circ} \end{aligned}$
＊	$\begin{aligned} & \dot{\oplus}_{N}^{\infty} \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\circ} \\ & \stackrel{\sim}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$			$\underset{\substack{\dot{N} \\ \underset{\sim}{N} \\ \hline \\ \hline}}{ }$	$\begin{aligned} & \stackrel{m}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{m}{-} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{e}{0} \end{aligned}$	$\stackrel{\hat{F}}{\stackrel{\rightharpoonup}{\infty}}$
\bigcirc	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{8}{0}^{\circ}$	$\stackrel{9}{0}_{0}^{\circ}$	8_{0}°	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{8}{0}^{\circ}$
\bullet		$\begin{aligned} & \infty \text { n } \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \text { N্~ } \\ & \text { ボ } \\ & \text { ボ } \end{aligned}$	$\begin{aligned} & \text { mo } \\ & \stackrel{\circ}{0} \\ & \stackrel{0}{i} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{N}} \\ & \stackrel{\sim}{n} \\ & \stackrel{1}{\sim} \end{aligned}$	$\begin{aligned} & \infty \text { م } \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\sim}{\tau} \end{aligned}$	$\begin{aligned} & \text { すे } \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$
	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} -\infty \\ \infty \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & -\infty \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & -\infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\infty}{\infty}$
－	$\begin{aligned} & \dot{\sim} \dot{N} \\ & \stackrel{\text { N }}{0} \\ & \stackrel{\circ}{-} \end{aligned}$	$\begin{aligned} & \text { م m } \\ & \underset{\sim}{\omega} \\ & \stackrel{0}{0} \end{aligned}$	$\underset{\sim}{\underset{\sim}{\tilde{m}}} \underset{\sim}{\sigma}$	$\begin{aligned} & \text { o் © } \\ & \text { O}^{\circ} \\ & \text { oo } \end{aligned}$	$\begin{aligned} & \text { m m } \\ & \dot{\infty} \\ & \underset{\infty}{\infty} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \dot{\underset{~}{\mathrm{~N}}} \stackrel{\text { N }}{\sim} \\ & \stackrel{y}{5} \end{aligned}$		$\begin{aligned} & \underset{\sim}{\mathrm{O}} \\ & \underset{-}{\sim} \end{aligned}$
	$\begin{aligned} & \text { ma } \\ & \stackrel{\sim}{N} \\ & \stackrel{\circ}{\sim} \end{aligned}$		$\underset{\sim}{\underset{\sim}{\sim}}$	$\begin{aligned} & 0.0 \\ & \stackrel{0}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \text { m } \\ & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \text { Nฺ م } \\ & \stackrel{y}{N} \\ & \underset{\sim}{-} \end{aligned}$		
	$\begin{aligned} & \stackrel{8}{\mathrm{o}} \mathrm{i} \end{aligned}$	O-	$\stackrel{\mathrm{O}}{\mathrm{o}}$	$\begin{aligned} & \text { هi } \\ & \stackrel{i}{2} \end{aligned}$	$\stackrel{\otimes-}{\mathrm{\sim}}$	$\stackrel{\otimes-}{\mathrm{\sim}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { ®冂 }}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\text { O}}{2} \end{aligned}$
	$\begin{aligned} & \text { 으 } \\ & \stackrel{\rightharpoonup}{0} \\ & \frac{1}{1} \end{aligned}$		$\begin{aligned} & N \\ & \bar{O} \\ & \frac{1}{1} \\ & \hline \text { N } \end{aligned}$	$\begin{aligned} & \text { m} \\ & \stackrel{\rightharpoonup}{0} \\ & \frac{1}{1} \\ & \hline \end{aligned}$				$\begin{aligned} & \text { o, } \\ & \stackrel{\rightharpoonup}{6} \\ & \stackrel{1}{1} \\ & \hline \end{aligned}$

EMI

$\begin{aligned} & \circ \\ & \stackrel{\circ}{-} \\ & \underset{N}{\prime} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{N} \\ & \underset{N}{2} \end{aligned}$		\pm 1 10 0 0 0		$\begin{aligned} & \stackrel{\rightharpoonup}{寸} \\ & \stackrel{\rightharpoonup}{*} \\ & \underset{\sim}{N} \end{aligned}$		$\begin{aligned} & \text { of } \\ & \stackrel{+}{+} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ले } \\ & \text { O } \end{aligned}$	\circ $\stackrel{\circ}{\circ}$ $\stackrel{0}{\circ}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{j} \end{aligned}$
$\begin{aligned} & \text { חু } \\ & \underset{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { ®ু } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { ু } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { পু } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { 毋ু } \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \text { পু } \\ & \stackrel{1}{\circ} \end{aligned}$	$\begin{aligned} & \text { 毋ু } \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \text { 毋ু } \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \text { 毋ু } \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & 0 \end{aligned}$	80
	$\begin{aligned} & \infty \\ & 0 \\ & \underset{N}{N} \\ & \end{aligned}$			$\begin{aligned} & \text { or r } \\ & \stackrel{i}{0} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{N}} \\ & \stackrel{\rightharpoonup}{N} \\ & \underset{~}{n} \end{aligned}$	$\begin{aligned} & \bar{\Gamma} \\ & \underset{\sim}{\dot{G}} \end{aligned}$	$\begin{aligned} & \text { ס寸 } \\ & \underset{\sim}{\dot{~}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{*} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { Ṅ } \end{aligned}$
$\begin{aligned} & \mathrm{O}_{0}^{\circ} \\ & 0 \end{aligned}$	O_{0}°	ò o	$\stackrel{\circ}{0}^{\circ}$		óo	$\begin{aligned} & \mathrm{O}_{0}^{\circ} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { ó } \end{aligned}$	$\stackrel{\circ}{\circ}^{\circ}$
$\begin{aligned} & \text { U } \\ & \underset{\sim}{\sim} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { © } \\ & \text { O} \end{aligned}$	$\begin{array}{r} 2,039.4 \\ 7 \end{array}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & 10 \wedge \\ & \dot{\infty} \\ & \underset{N}{N} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & \stackrel{N}{N} \\ & \underset{m}{0} \end{aligned}$	$\begin{aligned} & \text { さ } \\ & \text { N } \\ & \text { D } \end{aligned}$	$\stackrel{-}{N}$	$\begin{aligned} & \text { N } \\ & \underset{\sigma}{\circ} \end{aligned}$	$\begin{aligned} & \text { m } \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{+} \\ & \underset{\sim}{\mid} \end{aligned}$
$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty_{\infty}^{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$	$\stackrel{\text { O}}{\bigcirc}$
$\begin{aligned} & \stackrel{\infty}{N} \\ & \underset{\sim}{\mu} \end{aligned}$						$\begin{aligned} & \text { o } \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \text { o્ల } \end{aligned}$	$$		$\begin{aligned} & \stackrel{\infty}{+} \\ & \underset{\sim}{+} \end{aligned}$
$\begin{aligned} & \stackrel{\infty}{\aleph} \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \underset{J}{\top} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\text { ® }}{ } \\ & \text { م } \\ & \text { O} \end{aligned}$		0 0 0 0 0 8	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { ®o } \\ & \text { oల } \end{aligned}$	$$	$\begin{aligned} & \text { N } \\ & \text { ò } \\ & \text { ö } \\ & \text { ம⿵ } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\dot{\sim}} \\ & \stackrel{1}{+} \end{aligned}$
$\begin{aligned} & \mathrm{O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { ヘ̀ } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { ヘ̀ } \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \text { 숭 } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { ヘ̀ } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { Ǹ } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { ì } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 1 \end{aligned}$	-
$\begin{aligned} & \bar{N} \\ & \text { O} \\ & \text { ָָ } \\ & \text { ָ } \end{aligned}$	$\begin{aligned} & \text { N్ } \\ & \text { O} \\ & \text { O} \\ & \text { ָ } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\text { N}} \\ & \text { O} \\ & \text { ָ } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { N్ } \\ & \text { Ò } \\ & \text { N్ } \\ & \text { U } \end{aligned}$				$\begin{aligned} & \text { 응 } \\ & \text { O} \\ & \text { 껀 } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { O} \\ & \text { ㄲ } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { గ్ } \\ & \text { O} \\ & \text { N} \\ & \text { T } \end{aligned}$	10 0 0 0

Appendix B: Validated Savings

			Insulation Conditioned									
Business Solutions Prescriptive	HVAC Controls	CHG0055	Optimal Start/Stop on Air Handling Units (Gas)	20.00	2,188.80	$\begin{array}{r} 2,188.8 \\ 0 \end{array}$	1.000	$\begin{array}{r} 2,188.8 \\ 0 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,969.9 \\ 2 \end{array}$	0.900	2,166.91
Business Solutions Prescriptive	Furnaces and Heaters	CHG0058	High Efficiency Furnace or Unit Heater (92-94\% AFUE)	15.00	$\begin{array}{r} 13,552.6 \\ 7 \end{array}$	$\begin{array}{r} 13,552 . \\ 67 \end{array}$	0.922	$\begin{array}{r} 12,495 . \\ 56 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 11,246 . \\ 00 \end{array}$	0.830	12,370.61
Business Solutions Prescriptive	HVAC Controls	CHG0059	Occupancy Sensor Controls on HVAC Units (Gas)	15.00	171.96	171.96	1.000	171.96	$\begin{array}{r} 0.90 \\ 0 \end{array}$	154.76	0.900	170.24
Business Solutions Prescriptive	Furnaces and Heaters	CHG0061	High Efficiency Furnace or Unit Heater (>94\% AFUE)	15.00	4,007.72	$\begin{array}{r} 4,007.7 \\ 2 \end{array}$	0.922	$\begin{array}{r} 3,695.1 \\ 2 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 3,325.6 \\ 0 \end{array}$	0.830	3,658.16
Business Solutions - Prescriptive	Boilers and Boiler Controls	CHG0063	Linkageless Boiler Controls	5.00	584.65	584.65	1.000	584.65	$\begin{array}{r} 0.90 \\ 0 \end{array}$	526.18	0.900	526.18
Business Solutions - Prescriptive	Boilers and Boiler Controls	CHG0064	Modulating Burner Control (GO)	15.00	6,043.24	$\begin{array}{r} 6,043.2 \\ 4 \end{array}$	1.000	$\begin{array}{r} 6,043.2 \\ 4 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 5,438.9 \\ 1 \end{array}$	0.900	5,982.80
Business Solutions Prescriptive	HVAC Controls	CHG0065	Occupancy Sensor for Toilet Room Exhaust Retrofit (GO)	8.00	18.60	18.60	1.000	18.60	$\begin{array}{r} 0.90 \\ 0 \end{array}$	16.74	0.900	16.74
Business Solutions Prescriptive	Boilers and Boiler Controls	CHG0067	Water Reset Control Retrofit (GO)	15.00	5,638.42	$\begin{array}{r} 5,638.4 \\ 2 \end{array}$	1.000	$\begin{array}{r} 5,638.4 \\ 2 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 5,074.5 \\ 8 \end{array}$	0.900	5,582.04
Business Solutions - Prescriptive	Steam Traps	CHG0102	Leaking Steam Trap Repair or	5.00	$\begin{array}{r} 39,682.8 \\ 7 \end{array}$	$\begin{array}{r} 39,682 . \\ 74 \end{array}$	0.881	$\begin{array}{r} 34,960 . \\ 49 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 31,464 . \\ 44 \end{array}$	0.793	31,464.44

2013 Certification Appendices

				$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{1}{\circ} \\ & \stackrel{\sim}{e} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{Y}} \\ & \stackrel{\rightharpoonup}{\mathrm{j}} \\ & \stackrel{\sim}{-} \end{aligned}$	$\begin{aligned} & \dot{J} \\ & \stackrel{y}{n} \\ & \stackrel{N}{N} \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{\mu} \\ & \stackrel{\sim}{\mathrm{N}} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { ì } \\ & \text { en } \\ & \text { oin } \end{aligned}$
	$\stackrel{刃}{\stackrel{\text { N}}{\circ}}$	$\underset{\substack{\dot{\infty} \\ \hline 0}}{ }$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline \text { O } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\stackrel{\text { ু }}{\substack{\mathrm{o}}}$	$\stackrel{\text { ু }}{\substack{\mathrm{o} \\ \hline}}$	O
	$\begin{aligned} & \infty \quad \infty \\ & \stackrel{N}{N} \\ & \stackrel{N}{\infty} \end{aligned}$		$\begin{aligned} & \text { N m } \\ & \stackrel{\sim}{\infty} \\ & \infty \\ & \text { oj } \end{aligned}$			$\begin{aligned} & \underset{\sim}{\dot{N}} \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\sigma}{\dot{\sigma}} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	$\begin{aligned} & \text { H. } \\ & \text { مٌ } \end{aligned}$	$\begin{aligned} & \dot{F}^{\prime} \\ & \underset{\sim}{\circ} \end{aligned}$	セֻ8
	$\stackrel{\circ}{0}$	$\stackrel{\circ}{\circ}^{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{80}{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{0}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}$	－
		$\begin{aligned} & 0_{0}^{0} \\ & \stackrel{0}{6} \\ & \underset{\omega}{2} \end{aligned}$		$\begin{aligned} & \infty \quad 8 \\ & \underset{\sim}{\infty} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \dot{\infty} \dot{\circ} \\ & \underset{\sim}{\circ} \\ & \underset{M}{2} \end{aligned}$	$\begin{aligned} & 00 \\ & \stackrel{0}{\stackrel{0}{0}} \\ & \stackrel{N}{N} \end{aligned}$	$\underset{\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{+}}{ }$	$\begin{aligned} & \stackrel{0}{\mathrm{~N}} \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\stackrel{N}{\stackrel{\rightharpoonup}{N}}}{\stackrel{n}{N}}$	¢
	$\begin{aligned} & \bar{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\stackrel{8}{8}$	$\stackrel{8}{+}$	$\stackrel{8}{8}$	$\stackrel{8}{\circ}$	$\stackrel{O}{\circ}$	－	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	N
	$\begin{aligned} & \text { fom } \\ & \stackrel{\sim}{n} \\ & \stackrel{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{o}{\varphi}^{\circ} \\ & \stackrel{1}{\omega} \\ & \underset{\omega}{n} \end{aligned}$		$\begin{aligned} & \infty \quad \circ \\ & \stackrel{\infty}{\infty} \\ & \stackrel{0}{0} \end{aligned}$				$\begin{aligned} & \text { Q } \\ & \stackrel{0}{\circ} \\ & \text { N } \end{aligned}$		¢゙
			$\begin{aligned} & \underset{\sim}{\dot{\circ}} \\ & \underset{\sim}{\circ} \\ & \stackrel{-}{\circ} \end{aligned}$		$\begin{aligned} & \dot{o}+0 \\ & \dot{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \stackrel{1}{5} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { Q } \\ & \text { O- } \end{aligned}$		¢
	$\begin{aligned} & \stackrel{\circ}{\mathrm{e}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\mathrm{O}}{\mathrm{o}} \\ & \stackrel{i}{2} \end{aligned}$	$\stackrel{8}{\circ}$	$\stackrel{8}{\circ}$	$\stackrel{8}{\circ}$	$\stackrel{\otimes}{\mathrm{N}}$	$\stackrel{\otimes}{\mathrm{N}}$	$\begin{aligned} & \stackrel{\mathrm{O}}{\mathrm{j}} \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\mathrm{O}}{\mathrm{j}} \\ & \stackrel{i}{2} \end{aligned}$	－
										¢
		$\begin{aligned} & \text { 人̀⿹\zh26灬} \\ & \text { O} \\ & \text { ్ָ } \end{aligned}$	$\begin{aligned} & \infty 0 \\ & \stackrel{0}{0} \\ & \text { © } \\ & \text { ָ } \end{aligned}$	$\begin{aligned} & \text { öd } \\ & \text { O} \\ & \text { © } \end{aligned}$		$\begin{aligned} & \text { No } \\ & \text { O} \\ & \sum_{0}^{0} \end{aligned}$		\bar{o} 0 0 0 0	N 0 0 0 0	0 0 0 0 0
										帝

Appendix B: Validated Savings
EMI

	$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{1}{i} \end{aligned}$	$\underset{\substack{\underset{\sim}{N} \\ \hline}}{\text { N }}$	$\begin{aligned} & \infty \\ & \stackrel{0}{\dot{N}} \\ & \stackrel{y}{+} \\ & \underset{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{̣} \\ & \stackrel{4}{\sim} \\ & \text { ले } \end{aligned}$		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{-}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{N}} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\infty} \\ & \stackrel{\sim}{\underset{\sim}{N}} \end{aligned}$	
	$\begin{aligned} & \text { O- } \\ & \text { O- } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { M } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline \text { O } \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \text { Oi } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \\ & 0 \end{aligned}$	\%	$\begin{aligned} & \text { O} \\ & \text { © } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { M } \\ & 0 \end{aligned}$	$\xrightarrow{\text { ® }}$
ヘ	$\begin{aligned} & \infty \quad \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{-} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\underset{\sim}{\circ}} \\ & \stackrel{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \dot{寸} \underset{F}{F} \\ & \underset{F}{F} \end{aligned}$	$\begin{aligned} & \infty \circ \\ & \underset{\sim}{\underset{N}{N}} \end{aligned}$	$\begin{aligned} & \stackrel{\text { ® }}{N} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\stackrel{\infty}{N}} \stackrel{1}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{+}} \\ & \stackrel{\sim}{N} \end{aligned}$		${\underset{\sim}{\mathrm{N}}}_{\substack{\mathrm{m}}}^{\stackrel{2}{-}}$
\bigcirc	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	8_{0}°	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{8}{0}^{\circ}$	$\stackrel{9}{0}_{0}^{\circ}$
®̋	$\begin{aligned} & \infty \text { m } \\ & \dot{\circ} \\ & \stackrel{\circ}{i} \end{aligned}$	$\begin{aligned} & \text { of } \\ & \dot{8} \\ & \stackrel{\sim}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \stackrel{n}{\sim} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { ¢- } \\ & \underset{\infty}{\infty} \\ & \stackrel{\sim}{\infty} \end{aligned}$	$\begin{aligned} & Z \\ & \dot{\infty} \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \text { م } \\ & \text { Oi } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\dot{N}}} \underset{\sim}{\underset{\sim}{+}}$	$\begin{aligned} & \text { ne } \\ & \text { í } \\ & \stackrel{0}{-} \end{aligned}$
	O-	$\begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{n} \end{gathered}$	$\stackrel{8}{8}$	O-	$\underset{\sim}{N}$	$\stackrel{8}{8}$	N	N	$\stackrel{\infty}{\infty}$
¢	$\begin{aligned} & \infty \text { m } \\ & \dot{\text { ® }} \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \dot{\alpha} \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \infty_{0}^{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\Gamma}{\infty}$		$\begin{aligned} & \text { م } \\ & \stackrel{\text { O}}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} \text { m n } \\ \underset{\sim}{\dot{G}} \\ \underset{\sim}{n} \end{gathered}$	
~	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\infty} \\ & \stackrel{\circ}{\circ} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \dot{W} \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\infty} \wedge \\ & \infty \\ & \underset{\sim}{\sim} \\ & \stackrel{N}{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \text { م } \\ & \text { O. } \\ & \text { © } \end{aligned}$	$\stackrel{\infty}{\infty} \underset{\sim}{\infty}$	¢ ¢ ¢ \sim	-
	$\begin{aligned} & \text { ه̣ } \\ & \stackrel{6}{6} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\mathrm{o}} \mathrm{i} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\mathrm{o}} \mathrm{i} \end{aligned}$	$\begin{aligned} & \stackrel{\mathrm{O}}{\mathrm{j}} \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	$\stackrel{\otimes}{\mathrm{i}}$	$\stackrel{\circ}{\dot{\sim}}$	$\stackrel{\otimes}{\mathrm{\sim}}$	$\stackrel{\otimes}{\mathrm{i}}$
	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & 0 \mathrm{O} \\ & 00 \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { O} \\ & \text { O్x } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { O} \\ & \text { Õ } \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { O్ర్ర } \\ & \hline \end{aligned}$	$\bar{\circ}$ 0 0 0	$\begin{aligned} & \text { OO } \\ & \text { O} \\ & \text { O} \end{aligned}$	O 0 0 0	\circ 0 0 0 0
$\begin{aligned} & \text { 리 } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{\check{~}} \end{aligned}$							¢	¢	¢

2013 Certification Appendices

		$\begin{aligned} & \text { N } \\ & \text { N} \\ & \text { مٌ } \end{aligned}$		9 8 			$\stackrel{\substack{\underset{\sim}{c} \\ \sim}}{ }$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\circ}{-1} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \text { Ǹ } \\ & \text { Ǹ } \end{aligned}$	N	∞ ∞ 0 i
$\begin{aligned} & \text { 毋ু } \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \text { חু } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { 毋ু } \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { ®ু } \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { © } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\circ} \end{aligned}$	\％	¢	∞ ∞ ∞ 0 0
$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{N}{N} \\ & \stackrel{N}{n} \end{aligned}$	$$	$\begin{aligned} & \Gamma \\ & \dot{\sim} \\ & \dot{O} \end{aligned}$		$\begin{aligned} & \text { ৪i } \\ & \stackrel{m}{-} \\ & \underset{\sim}{-} \end{aligned}$	$\begin{aligned} & \text { o } 0 \\ & \stackrel{0}{\infty} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \stackrel{0}{\circ} \\ & \underset{\sim}{m} \\ & \underset{j}{n} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\text { N}}{N} \end{aligned}$	$\begin{aligned} & \text { no } \\ & \stackrel{0}{8} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$		へ
o̊ o	$\begin{aligned} & \text { ö } \\ & \hline 0 \end{aligned}$	óo	$\begin{aligned} & \text { óo } \\ & 0 \end{aligned}$	$\stackrel{\circ}{\circ}^{\circ}$	ọ	oio	oio	৪o		oio	－
	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{m}} \\ \stackrel{N}{\mathrm{~N}} \end{gathered}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \stackrel{N}{\infty} \\ & \stackrel{N}{\sim} \end{aligned}$			$\begin{aligned} & \text { N } \\ & \stackrel{\text { No }}{ } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & \stackrel{\circ}{-} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \\ & \text { Ǹ } \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { Ni } \\ & \text { O} \end{aligned}$	¢
$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -\infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{gathered} \infty \\ \infty \\ 0 \\ 0 \end{gathered}$	\bigcirc	\bigcirc	O
	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \bullet \\ & \mathscr{O} \\ & \mathscr{O} \end{aligned}$	$\begin{aligned} & N \text { N } \\ & \stackrel{+}{\infty} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{j}_{\infty}^{\infty} \\ & \mathrm{N}^{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \underset{0}{0} \\ & \stackrel{\infty}{r} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \stackrel{\sim}{N} \\ & \underset{\sim}{*} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{1}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { No } \\ & \stackrel{\text { NiN }}{\text { N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { ம் } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { Ni } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { พ } \\ & \underset{\text { H}}{ } \end{aligned}$
$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { J } \\ & \text { oj } \\ & \infty \end{aligned}$	$\begin{aligned} & \bullet \\ & \mathbf{Q} \\ & \dot{0} \\ & \hline \mathbf{O} \end{aligned}$	$\begin{aligned} & \stackrel{0}{N} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{0} \end{aligned}$			$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{1}{N} \\ & \stackrel{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{1}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{\mathrm{~N}} \\ & \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ம் } \\ & \text { N- } \end{aligned}$	$\begin{aligned} & \text { Q } \\ & \stackrel{0}{\mathrm{~N}} \\ & \text { N} \end{aligned}$	¢
$\begin{aligned} & \text { O- } \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline 1 \end{aligned}$	8	$\begin{aligned} & 8 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { 숭 } \end{aligned}$	운	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { N}}{ } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { 숭 } \end{aligned}$	웅	$\begin{aligned} & \mathrm{O} \\ & \underset{\mathrm{~N}}{ } \end{aligned}$	\％
$\begin{aligned} & \bar{\circ} \\ & \hline \mathbf{O} \\ & 0 \\ & 0 \end{aligned}$	N 8 0 0 0	$\begin{aligned} & \text { గ్ర } \\ & \text { O} \\ & \text { ర్ర } \end{aligned}$	$\begin{aligned} & \text { J } \\ & \hline \mathbf{O} \\ & \text { ర్ } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ®O } \\ & \text { O} \\ & \text { O్ర } \\ & \text { O} \end{aligned}$	8 8 0 0 0	$\begin{aligned} & \hat{O} \\ & 0 \\ & \text { O} \\ & \text { Oै } \end{aligned}$	0 8 0 0 0	N $\stackrel{N}{8}$ 0 0 0	0 8 0 0 0	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { O} \\ & \text { ©ે } \end{aligned}$	さ O O ¢ 0
$\begin{aligned} & \bar{\Phi} \\ & \stackrel{5}{\square} \end{aligned}$	$\begin{aligned} & \bar{\Phi} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & \bar{\Phi} \\ & \stackrel{ \pm}{ \pm} \end{aligned}$	$\begin{aligned} & \bar{\Phi} \\ & \stackrel{5}{0} \end{aligned}$	$\begin{aligned} & \bar{\Phi} \\ & \stackrel{5}{0} \end{aligned}$	$\begin{aligned} & \bar{\Phi} \\ & \stackrel{5}{ \pm} \end{aligned}$	$\begin{aligned} & \bar{\Phi} \\ & \stackrel{5}{ \pm} \end{aligned}$		$\begin{aligned} & \bar{\oplus} \\ & \stackrel{5}{0} \end{aligned}$			D ¢ ¢ ¢ ¢ ¢

		$\begin{aligned} & \overline{0} \\ & \text { On } \end{aligned}$	$\underset{\underset{\sim}{\underset{\sim}{N}}}{\underset{\sim}{\prime}}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\ominus}{N} \\ & \end{aligned}$	$\stackrel{\infty}{\infty}$		$\begin{aligned} & \text { ® } \\ & \stackrel{1}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\stackrel{0}{\stackrel{\circ}{\mathrm{O}}}$	$\stackrel{\text { § }}{+}$	$\stackrel{¢}{i}$
	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ๗} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { 毋ু } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { ๗} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { 毋ু } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { 毋ু } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { N. } \\ & \stackrel{\text { No}}{ } \end{aligned}$
	$\begin{aligned} & \dot{8} \text { 으 } \\ & 0 \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \underset{\sim}{\prime} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{O}} \\ & \text { 악 } \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\stackrel{\wedge}{N}$	$\begin{aligned} & \text { 응 } \\ & \stackrel{\text { B }}{+} \end{aligned}$	$\underset{\sim}{\underset{\sim}{\infty}}$	$\begin{aligned} & \bar{\Gamma} \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	$\stackrel{\text { N}}{+}$	$\stackrel{\odot}{\odot}$
\bigcirc	8_{0}°	8_{0}°	$8{ }^{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{0}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}_{0}^{\circ}$	88°	$\stackrel{\circ}{\circ}_{\circ}^{\circ}$	8_{0}°
		$\begin{aligned} & \bar{\circ} \\ & \hline \mathbf{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{6} \\ & \stackrel{6}{6} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\stackrel{\otimes}{\stackrel{\circ}{\wedge}}$	$\begin{aligned} & \text { 毋 } \\ & \stackrel{6}{6} \end{aligned}$	$\begin{aligned} & \circ \circ \\ & \dot{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\frac{\underset{\sim}{\mathrm{H}}}{\stackrel{M}{\mathrm{O}}}$	$\underset{i}{\dot{i}}$	－
	$\stackrel{8}{\circ}$	$\stackrel{\otimes}{\circ}$	$\begin{gathered} -\infty \\ \infty \\ 0 \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} -\infty \\ \infty \\ 0 \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} -\infty \\ \infty \\ 0 \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{D}_{\infty}^{\infty} \\ & 0 \end{aligned}$	$\stackrel{-\infty}{\infty}$
		$\begin{aligned} & \bar{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { Ò } \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\mathrm{O}} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$	O.	$\begin{aligned} & \stackrel{\omega}{0} \\ & \stackrel{j}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{\underset{~}{⿺}} \\ & \underset{N}{\prime} \end{aligned}$	¢	¢
		$\begin{aligned} & \bar{\circ} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { Nิ } \\ & \text { ©̀ } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\mathrm{N}} \\ & \underset{\sim}{2} \end{aligned}$	ষ্்	$\begin{aligned} & \circ \\ & \stackrel{0}{\circ} \\ & \frac{\dot{O}}{6} \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{⿺}} \\ & \stackrel{\text { N }}{ } \end{aligned}$	¢	¢̣
	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { 冂1 }}{ } \end{aligned}$	©	웅	$\begin{aligned} & \text { ه } \\ & \stackrel{\text { 冂 }}{ } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { ® }}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\ominus}{\mathrm{e}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { ® }}{2} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline- \end{aligned}$	8	©
								$\begin{aligned} & \text { on } \\ & \frac{0}{0} \\ & 0.0 \\ & \frac{0}{\circ} \\ & \hline \end{aligned}$		
	$\begin{aligned} & \text { N్N } \\ & \text { Ò } \\ & \text { Ǒ } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \stackrel{\rightharpoonup}{3} \\ & \sum_{0} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \text { O} \\ & \text { So } \end{aligned}$	ơ 0 0 0	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { O} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \sum_{0} \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \text { O} \\ & \sum_{0} \end{aligned}$		8 0 0 0	N 0

2013 Certification Appendices

		$\begin{aligned} & \text { fo } \\ & \infty \\ & 0 \end{aligned}$	$\stackrel{\stackrel{\circ}{+}}{\stackrel{+}{+}}$			$\begin{gathered} \text { Ǹ } \\ \text { Nin } \\ \end{gathered}$	$\stackrel{\text { N }}{\text { N }}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	N্ণ
	$\begin{aligned} & \text { ® } \\ & \underset{\circ}{\circ} \end{aligned}$	$\stackrel{\text { N }}{\substack{\circ \\ \hline}}$	$\begin{aligned} & \text { ু } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { ๗ু } \\ & \stackrel{\text { Non}}{ } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\text { N }}{\substack{\mathrm{o}}}$	\％	$\begin{aligned} & \text { O} \\ & \text { ó } \\ & 0 \end{aligned}$	－
	$\stackrel{\stackrel{O}{\Gamma}}{\stackrel{\infty}{\infty}}$	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\stackrel{N}{N}} \\ & \stackrel{\pi}{N} \end{aligned}$		$\stackrel{ल}{\stackrel{N}{N}} \stackrel{0}{\stackrel{N}{\sim}}$	$\begin{aligned} & \text { Ňo } \\ & \text { Ñ } \\ & \text { N} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\stackrel{\sim}{\infty}$
	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}_{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	$\stackrel{\circ}{0}^{\circ}$	8_{0}°
	$\begin{aligned} & \text { in } \\ & \stackrel{y}{0} \\ & \text { ì } \end{aligned}$		$\begin{aligned} & \stackrel{+}{\underset{\text { ju }}{ }} \\ & \underset{\sim}{\mathcal{N}} \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{N}{i} \end{aligned}$		$\begin{aligned} & \infty \quad \infty \\ & \dot{8} \\ & \stackrel{+}{\circ} \\ & \stackrel{-}{2} \end{aligned}$	$\stackrel{\text { 囚 }}{\substack{\text { N }}}$	$\begin{aligned} & \underset{\sim}{\dot{N}} \end{aligned}$	$\stackrel{\underset{\sim}{i}}{\stackrel{\sim}{*}}$
	$\begin{aligned} & \bar{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\infty} \\ & \infty \\ & 0 \end{aligned}$	$\stackrel{8}{8}$	N	Nิ
		$\begin{aligned} & \text { İ } \\ & \stackrel{0}{8} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\underset{N}{N}}}$	$\begin{aligned} & \stackrel{8}{7} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & {\underset{N}{N}}^{\circ} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	－00	$\begin{gathered} \text { 囚 } \\ \text { N } \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\mp} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\underset{\sim}{N}} \end{aligned}$
	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \end{aligned}$		N $\stackrel{N}{N}$ $\stackrel{N}{N}$		$\begin{aligned} & \text { 을 } \\ & \underset{\sim}{N} \\ & \end{aligned}$		$\stackrel{\circ}{\infty}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\underset{\sim}{2}} \end{aligned}$	$\stackrel{6}{\underset{\sim}{\mathrm{~N}}}$
	$\stackrel{\otimes}{\mathrm{D}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{j}}{\mathrm{j}} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\mathrm{O}} \\ & \stackrel{\text { N }}{2} \end{aligned}$	$\stackrel{8}{\text { ® }}$	$\stackrel{\circ}{\text { ® }}$	$\stackrel{8}{\text { ® }}$	$\stackrel{\otimes}{\mathrm{\sim}}$	$\begin{aligned} & \text { هِ } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	-
$\begin{aligned} & \text { ITO} \\ & \stackrel{y}{+} \\ & \hline \end{aligned}$									
		$\stackrel{7}{8}$ $\frac{0}{0}$ 0	$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{0}{0} \\ & \sum_{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{0} \\ & \overbrace{0}^{3} \end{aligned}$		H 0 0 0	N0 0 0 0 0

Prescriptive			Hot Water Conditioned Space (120F) (GO)									
New Construction - Major Renovation 2013	Furnaces and Heaters	CHC0010	Infrared Heaters - Combination Customers	15.00	2,334.07	$2,334.0$ 7	0.881	2,056.3	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,850.6 \\ 8 \end{array}$	0.793	2,035.75
New Construction - Major Renovation 2013	DCV and Economizers	CHC0027	Demand Control Ventilation Combination Customers	15.00	636.06	636.06	0.881	560.37	$\begin{array}{r} 0.90 \\ 0 \end{array}$	504.34	0.793	554.77
New Construction - Major Renovation 2013	Furnaces and Heaters	CHG0010	Infrared Heaters - Gas Customer Only	15.00	1,511.21	$\begin{array}{r} 1,511.2 \\ 1 \end{array}$	0.881	$\begin{array}{r} 1,331.3 \\ 8 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,198.2 \\ 4 \end{array}$	0.793	1,318.07
New Construction - Major Renovation 2013	Boilers and Boiler Controls	CHG0016	High Efficiency Boiler with AFUE >= 90\%	20.00	2,902.69	$2,902.6$ 9	0.881	$\begin{array}{r} 2,557.2 \\ 7 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 2,301.5 \\ 4 \end{array}$	0.793	2,531.69
New Construction - Major Renovation 2013	Boilers and Boiler Controls	CHG0026	High Efficiency Process Boiler Replacemen t (Water)	20.00	$\begin{array}{r} 14,381.7 \\ 0 \end{array}$	$\begin{array}{r} 14,381 . \\ 70 \end{array}$	0.881	$\begin{array}{r} 12,670 . \\ 28 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 11,403 . \\ 25 \end{array}$	0.793	12,543.58
New Construction - Major Renovation 2013	Furnaces and Heaters	CHG0058	High Efficiency Furnace or Unit Heater (92-94\% AFUE)	15.00	209.65	209.65	0.922	193.30	$\begin{array}{r} 0.90 \\ 0 \end{array}$	173.97	0.830	191.36
New Construction - Major Renovation 2013	Furnaces and Heaters	CHG0061	High Efficiency Furnace or Unit Heater (>94\% AFUE)	15.00	102.14	101.68	0.922	93.75	$\begin{array}{r} 0.90 \\ 0 \end{array}$	84.37	0.821	92.81
New Construction	Other	CSG0003	Truck Loading	10.00	1,502.52	$\begin{array}{r} 1,502.5 \\ 1 \end{array}$	0.881	$\begin{array}{r} 1,323.7 \\ 1 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 1,191.3 \\ 4 \end{array}$	0.793	1,310.48

EMI

- Major Renovation 2013			Dock Leveler Ramp Seals									
New Construction - Major Renovation 2013	C\&I Waterheating	CWG0002	Gas Water Heater > 80 gal	15.00	54.82	54.82	0.881	48.30	$\begin{array}{r} 0.90 \\ 0 \end{array}$	43.47	0.793	47.81
New Construction - Major Renovation 2013	C\&I Waterheating	CWG0003	Gas Water Heater <= 80 gal	15.00	3.01	3.01	0.881	2.65	$\begin{array}{r} 0.90 \\ 0 \end{array}$	2.39	0.793	2.63
New Construction - Major Renovation 2013	C\&I Waterheating	CWG0015	High Eff Domestic Water Heater (90\%)	15.00	767.33	767.02	0.881	675.74	$\begin{array}{r} 0.90 \\ 0 \end{array}$	608.17	0.793	668.98
New Construction - Whole Building	NEW CONSTRUC TION	CNE0001	Design Incentive Building Owner	0.00	9,856.76	$\begin{array}{r} 9,856.7 \\ 6 \end{array}$	0.881	$\begin{array}{r} 8,683.8 \\ 0 \end{array}$	$\begin{array}{r} 0.90 \\ 0 \end{array}$	$\begin{array}{r} 7,815.4 \\ 2 \end{array}$	0.793	7,815.42
TOTAL					$\begin{array}{r} 843,204 . \\ 32 \end{array}$	$\begin{array}{r} 842,96 \\ 6.34 \end{array}$		$\begin{array}{r} 780,57 \\ 4.30 \end{array}$		$\begin{array}{r} 702,51 \\ 7.30 \end{array}$		$\begin{array}{r} 750,276.1 \\ 4 \end{array}$

Appendix B: Validated Savings

Program	Measure Category	Measu re Code	Measure Description	Measure Life	Reporte d kWh Savings	Adjusted Reported Gross kWh Savings	Verified Gross kWh Savings Adjustm ent Factor	Verified Gross kWh Savings	kWh NTG Adjust ment Factor	Verified Net kWh Savings	kWh Realizati on Rate	Verified Net kWh Savings Incl Bonus
CFL Buydown	Direct Install Non-lighting	$\begin{aligned} & \text { CDE } \\ & 0198 \end{aligned}$	CFL bulbs regular (buydown)	2.00	$\begin{gathered} 23,280, \\ 504.00 \end{gathered}$	$\begin{array}{r} 23,280,50 \\ 4.00 \end{array}$	0.955	$\begin{array}{r} 22,232, \\ 881.32 \end{array}$	0.900	$\begin{array}{r} 20,009 \\ 593.19 \end{array}$	0.859	$\begin{array}{r} 20,009,5 \\ 93.19 \end{array}$
CFL Buydown	Direct Install Non-lighting	$\begin{aligned} & \text { CDE } \\ & 0199 \end{aligned}$	CFL bulbs specialty (buydown)	2.00	$\begin{array}{r} 714,79 \\ 2.00 \end{array}$	$\begin{array}{r} 714,792.0 \\ 0 \end{array}$	0.955	$\begin{array}{r} 682,62 \\ 6.36 \end{array}$	0.900	$\begin{array}{r} 614,36 \\ 3.72 \end{array}$	0.859	$\begin{array}{r} 614,363 . \\ 72 \end{array}$
CFL - Drop Ship	Direct Install Non-lighting	$\begin{aligned} & \text { CDE } \\ & 0068 \end{aligned}$	CFL Box - Door Delivery	2.00	$\begin{array}{r} 22,685, \\ 520.00 \end{array}$	$\begin{array}{r} 22,685,52 \\ 0.00 \end{array}$	1.000	$\begin{gathered} 22,685, \\ 520.00 \end{gathered}$	0.900	$\begin{gathered} 20,416, \\ 968.00 \end{gathered}$	0.900	$\begin{array}{r} 20,416,9 \\ 68.00 \end{array}$
CFL - Drop Ship	Direct Install Non-lighting	$\begin{aligned} & \text { CDE } \\ & 0069 \end{aligned}$	CFL Box - Door Delivery (TC)	2.00	$\begin{array}{r} 2,609,1 \\ 00.00 \end{array}$	$\begin{array}{r} 2,609,100 \\ .00 \end{array}$	1.000	$\begin{array}{r} 2,609,1 \\ 00.00 \end{array}$	0.900	$\begin{array}{r} 2,348,1 \\ 90.00 \end{array}$	0.900	$\begin{array}{r} 2,348,19 \\ 0.00 \end{array}$
Core DI	Direct Install Lighting	$\begin{aligned} & \text { CDE } \\ & 0050 \end{aligned}$	Lighting Controls	12.00	$\begin{array}{r} 105,38 \\ 1.49 \end{array}$	$\begin{array}{r} 105,381.4 \\ 9 \end{array}$	0.999	$\begin{array}{r} 105,27 \\ 6.11 \end{array}$	0.900	$\begin{array}{r} 94,748 . \\ 50 \end{array}$	0.899	$\begin{array}{r} 104,223 . \\ 35 \end{array}$
Core DI	Direct Install Lighting	$\begin{aligned} & \text { CDE } \\ & 0051 \end{aligned}$	CFL Bulb -Screw-in	9.00	$\begin{array}{r} 123,74 \\ 2.98 \end{array}$	$\begin{array}{r} 123,742.9 \\ 8 \end{array}$	0.995	$\begin{array}{r} 123,12 \\ 4.26 \end{array}$	0.900	$\begin{array}{r} 110,81 \\ 1.83 \end{array}$	0.896	$\begin{array}{r} 110,811 . \\ 83 \end{array}$
Core DI	Direct Install Lighting	$\begin{aligned} & \text { CDE } \\ & 0052 \end{aligned}$	Hardwired CFL	12.00	$\begin{array}{r} 38,708 . \\ 80 \end{array}$	38,708.80	0.999	$\begin{array}{r} 38,670 . \\ 09 \end{array}$	0.900	$\begin{array}{r} 34,803 . \\ 08 \end{array}$	0.899	38,283.3
Core DI	Direct Install Lighting	$\begin{aligned} & \text { CDE } \\ & 0053 \end{aligned}$	Specialty CFL	2.00	$\begin{array}{r} 58,529 . \\ 90 \end{array}$	58,529.90	0.999	$\begin{array}{r} 58,471 . \\ 37 \end{array}$	0.900	$\begin{array}{r} 52,624 . \\ 23 \end{array}$	0.899	$\begin{array}{r} 52,624.2 \\ 3 \end{array}$
Core DI	Direct Install Lighting	$\begin{aligned} & \text { CDE } \\ & 0054 \end{aligned}$	T8s and UTube T8 Lamps	12.00	$\begin{array}{r} 8,997,4 \\ 12.20 \end{array}$	$\begin{array}{r} 8,997,412 \\ .20 \end{array}$	0.999	$\begin{array}{r} 8,988,4 \\ 14.78 \end{array}$	0.900	$\begin{array}{r} 8,089,5 \\ 73.31 \end{array}$	0.899	$\begin{array}{r} 8,898,53 \\ 0.64 \end{array}$
Core DI	Direct Install Lighting	$\begin{aligned} & \text { CDE } \\ & 0055 \end{aligned}$	T5 Lamps	12.00	$\begin{array}{r} 46,489 . \\ 94 \end{array}$	46,489.94	0.999	$\begin{array}{r} 46,443 . \\ 45 \end{array}$	0.900	$\begin{array}{r} 41,799 . \\ 10 \end{array}$	0.899	$\begin{array}{r} 45,979.0 \\ 1 \end{array}$
Core DI	Direct Install Lighting	$\begin{aligned} & \text { CDE } \\ & 0057 \end{aligned}$	LEDs, LED Exit Signs, Induction	15.00	$\begin{array}{r} 5,844,9 \\ 59.91 \end{array}$	$\begin{array}{r} 5,844,959 \\ .91 \end{array}$	0.999	$\begin{array}{r} 5,839,1 \\ 14.95 \end{array}$	0.900	$\begin{array}{r} 5,255,2 \\ 03.46 \end{array}$	0.899	$\begin{array}{r} 5,780,72 \\ 3.80 \end{array}$
Core DI	Direct Install Non-lighting	$\begin{aligned} & \text { CDE } \\ & 0059 \end{aligned}$	Anti-sweat Heater Control	15.00	$\begin{array}{r} 6,453,3 \\ 26.00 \end{array}$	$\begin{array}{r} 6,453,326 \\ .00 \end{array}$	0.999	$\begin{array}{r} 6,446,8 \\ 72.67 \end{array}$	0.900	$\begin{array}{r} 5,802,1 \\ 85.41 \end{array}$	0.899	$\begin{array}{r} 6,382,40 \\ 3.95 \end{array}$
Core DI	Direct Install Non-lighting	$\begin{aligned} & \text { CDE } \\ & 0064 \end{aligned}$	Small Business Custom Electric	0.00	$\begin{array}{r} 39,602 . \\ 26 \end{array}$	39,602.26	0.999	$\begin{array}{r} 39,562 . \\ 66 \end{array}$	0.900	$\begin{array}{r} 35,606 . \\ 39 \end{array}$	0.899	$\begin{array}{r} 35,606.3 \\ 9 \end{array}$
Core DI	Direct Install Non-lighting	$\begin{aligned} & \text { CDE } \\ & 0080 \end{aligned}$	ECM Case Motor	15.00	$\begin{array}{r} 36,256 . \\ 00 \end{array}$	36,256.00	0.999	$\begin{array}{r} 36,219 . \\ 74 \end{array}$	0.900	$\begin{array}{r} 32,597 . \\ 77 \end{array}$	0.899	$\begin{array}{r} 35,857.5 \\ 5 \end{array}$
Core DI	Direct Install Non-lighting	$\begin{aligned} & \text { CDE } \\ & 0081 \end{aligned}$	ECM Walk-in Cooler and	15.00	$\begin{array}{r} 412,23 \\ 0.00 \end{array}$	$\begin{array}{r} 412,230.0 \\ 0 \end{array}$	0.999	$\begin{array}{r} 411,81 \\ 7.77 \end{array}$	0.900	$\begin{array}{r} 370,63 \\ 5.99 \end{array}$	0.899	$\begin{array}{r} \text { 407,699. } \\ 59 \end{array}$

			Freezer Motor									
Core DI	Direct Install Lighting	$\begin{aligned} & \text { CDE } \\ & 0084 \end{aligned}$	Evaporator Fan Motor Controls on PSC motors	5.00	$\begin{array}{r} 8,756.0 \\ 0 \end{array}$	8,756.00	0.999	$\begin{array}{r} 8,747.2 \\ 4 \end{array}$	0.900	$\begin{array}{r} 7,872.5 \\ 2 \end{array}$	0.899	7,872.52
Core DI	Direct Install Lighting	$\begin{aligned} & \text { CDE } \\ & 0200 \end{aligned}$	Miscellaneous Lighting	9.00	$\begin{array}{r} 12,214 \\ 285.69 \end{array}$	$\begin{array}{r} 12,214,28 \\ 5.69 \end{array}$	0.999	$\begin{gathered} 12,202, \\ 071.41 \end{gathered}$	0.900	$\begin{gathered} 10,981, \\ 864.26 \end{gathered}$	0.899	$\begin{array}{r} 10,981,8 \\ 64.26 \end{array}$
Core DI	Direct Install Lighting	$\begin{aligned} & \text { CDE } \\ & 0201 \end{aligned}$	Fixture Removal	12.00	$\begin{array}{r} 851,82 \\ 6.66 \end{array}$	$\begin{array}{r} 851,826.6 \\ 6 \end{array}$	0.999	$\begin{array}{r} 850,97 \\ 4.83 \end{array}$	0.900	$\begin{array}{r} 765,87 \\ 7.35 \end{array}$	0.899	$\begin{array}{r} 842,465 . \\ 08 \end{array}$
Hospitality	Direct Install -- Hospitality	$\begin{aligned} & \text { CDE } \\ & 0044 \end{aligned}$	LED Lighting - 12 W LED Lamps replacing incandescent lights	8.00	$\begin{array}{r} 756,56 \\ 0.00 \end{array}$	$\begin{array}{r} 756,560.0 \\ 0 \end{array}$	0.980	$\begin{array}{r} 741,42 \\ 8.80 \end{array}$	0.900	$\begin{array}{r} 667,28 \\ 5.92 \end{array}$	0.882	$\begin{array}{r} 667,285 . \\ 92 \end{array}$
Hospitality	Direct Install -- Hospitality	$\begin{aligned} & \text { CDE } \\ & 0045 \end{aligned}$	LED Lighting 11 W LED Flood Lamp	15.00	$\begin{array}{r} 1,684,6 \\ 05.00 \end{array}$	$\begin{array}{r} 1,684,605 \\ .00 \end{array}$	0.924	$\begin{array}{r} 1,556,5 \\ 75.02 \end{array}$	0.900	$\begin{array}{r} 1,400,9 \\ 17.52 \end{array}$	0.832	$\begin{array}{r} 1,541,00 \\ 9.27 \end{array}$
Hospitality	Direct Install -- Hospitality	$\begin{aligned} & \text { CDE } \\ & 0046 \end{aligned}$	LED Lighting - 8 W LED Lamps replacing incandescent lights	8.00	$\begin{array}{r} 524,88 \\ 8.00 \end{array}$	$\begin{array}{r} 524,888.0 \\ 0 \end{array}$	0.924	$\begin{array}{r} 484,99 \\ 6.51 \end{array}$	0.900	$\begin{array}{r} 436,49 \\ 6.86 \end{array}$	0.832	$\begin{array}{r} 436,496 . \\ 86 \end{array}$
Hospitality	Direct Install Lighting	$\begin{aligned} & \text { CDE } \\ & 0087 \end{aligned}$	Vending Equipment Controller (Halo)	10.00	$\begin{array}{r} 9,600.0 \\ 0 \end{array}$	9,600.00	1.000	$\begin{array}{r} 9,600.0 \\ 0 \end{array}$	0.900	$\begin{array}{r} 8,640.0 \\ 0 \end{array}$	0.900	9,504.00
Hospitality	Direct Install -- Hospitality	$\begin{aligned} & \text { CDE } \\ & 0090 \end{aligned}$	3.5 W LED Candelabra	8.00	$\begin{array}{r} 107,52 \\ 5.00 \end{array}$	$\begin{array}{r} 107,525.0 \\ 0 \end{array}$	1.000	$\begin{array}{r} 107,52 \\ 5.00 \end{array}$	0.900	$\begin{array}{r} 96,772 . \\ 50 \end{array}$	0.900	$\begin{array}{r} 96,772.5 \\ 0 \end{array}$
Hospitality	Direct Install -- Hospitality	$\begin{aligned} & \text { CDE } \\ & 0100 \end{aligned}$	13W BR30 LED Downlight	15.00	585.00	585.00	0.980	573.30	0.900	515.97	0.882	567.57
Hospitality	Direct Install -- Hospitality	$\begin{aligned} & \text { CDE } \\ & 0101 \end{aligned}$	LED Exit Sign	15.00	$\begin{array}{r} 216,87 \\ 9.00 \end{array}$	$\begin{array}{r} 216,879.0 \\ 0 \end{array}$	0.980	212,54 1.42	0.900	$\begin{array}{r} 191,28 \\ 7.28 \end{array}$	0.882	$\begin{array}{r} 210,416 . \\ 01 \end{array}$
Hospitality	Direct Install -- Hospitality	$\begin{aligned} & \text { CDE } \\ & 0102 \end{aligned}$	LED Lighting - 9.5 W LED Lamps Replacing Incandescent Lights	8.00	$\begin{array}{r} 1,272,0 \\ 40.00 \end{array}$	$\begin{array}{r} 1,272,040 \\ .00 \end{array}$	1.000	$\begin{array}{r} 1,272,0 \\ 40.00 \end{array}$	0.900	$\begin{array}{r} 1,144,8 \\ 36.00 \end{array}$	0.900	$\begin{array}{r} 1,144,83 \\ 6.00 \end{array}$
Hospitality	Direct Install -- Hospitality	$\begin{aligned} & \text { CDE } \\ & 0103 \end{aligned}$	LED Lighting - 6 W LED Lamps Replacing	8.00	$\begin{array}{r} 321,44 \\ 0.00 \end{array}$	$\begin{array}{r} 321,440.0 \\ 0 \end{array}$	1.000	$\begin{array}{r} 321,44 \\ 0.00 \end{array}$	0.900	$\begin{array}{r} 289,29 \\ 6.00 \end{array}$	0.900	$\begin{array}{r} 289,296 . \\ 00 \end{array}$

Appendix B: Validated Savings

			Incandescent Lights									
Hospitality	Direct Install -- Hospitality	$\begin{aligned} & \text { CDE } \\ & 0104 \end{aligned}$	14 W CFL Replacing 60 W Globe Inc (Halo)	2.00	$\begin{array}{r} 13,332 . \\ 00 \end{array}$	13,332.00	1.000	$\begin{array}{r} 13,332 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 11,998 . \\ 80 \end{array}$	0.900	$\begin{array}{r} 11,998.8 \\ 0 \end{array}$
Programmable Thermostats	Direct Install Non-lighting	$\begin{aligned} & \text { CDC } \\ & 0058 \end{aligned}$	Programmable Thermostats -Combination Customers	9.00	$\begin{array}{r} 974,66 \\ 5.09 \end{array}$	$\begin{array}{r} 974,665.0 \\ 9 \end{array}$	0.993	$\begin{array}{r} 967,84 \\ 2.43 \end{array}$	0.900	$\begin{array}{r} 871,05 \\ 8.19 \end{array}$	0.894	$\begin{array}{r} 871,058 . \\ 19 \end{array}$
Programmable Thermostats	Direct Install Non-lighting	$\begin{aligned} & \text { CDE } \\ & 0058 \end{aligned}$	Programmable Thermostats	9.00	$\begin{array}{r} 1,581,0 \\ 80.58 \end{array}$	$\begin{array}{r} 1,581,080 \\ .58 \end{array}$	0.993	$\begin{array}{r} 1,570,0 \\ 13.02 \end{array}$	0.900	$\begin{array}{r} 1,413,0 \\ 11.71 \end{array}$	0.894	$\begin{array}{r} 1,413,01 \\ 1.71 \end{array}$
Programmable Thermostats	Direct Install Non-lighting	$\begin{aligned} & \text { CDE } \\ & 0072 \end{aligned}$	Programmable Thermostat DTE Shared Electric	9.00	$\begin{array}{r} 280,41 \\ 0.54 \end{array}$	$\begin{array}{r} 280,410.5 \\ 4 \end{array}$	0.993	$\begin{array}{r} 278,44 \\ 7.66 \end{array}$	0.900	$\begin{array}{r} 250,60 \\ 2.90 \end{array}$	0.894	$\begin{array}{r} 250,602 . \\ 90 \end{array}$
Programmable Thermostats	Direct Install Lighting	$\begin{aligned} & \text { CFE } \\ & 0014 \end{aligned}$	Linear Fluorescent to LED Retrofit	14.00	$\begin{array}{r} 128,61 \\ 3.21 \end{array}$	$\begin{array}{r} 128,613.2 \\ 1 \end{array}$	1.000	$\begin{array}{r} 128,61 \\ 3.21 \end{array}$	0.900	$\begin{array}{r} 115,75 \\ 1.89 \end{array}$	0.900	$\begin{array}{r} 127,327 . \\ 08 \end{array}$
TOTAL					$\begin{gathered} 92,393 \\ 647.24 \end{gathered}$	$\begin{array}{r} 92,393,64 \\ 7.24 \end{array}$		$\begin{gathered} \text { 91,070, } \\ 877.40 \end{gathered}$		$\begin{gathered} 81,963, \\ 789.66 \end{gathered}$		$\begin{array}{r} 84,184,2 \\ 43.32 \end{array}$

Program	Measure Category	Measure Code	Measure Description	Measure Life	Reported kW Savings	Adjusted Reported Gross kW Savings	Verified Gross kW Savings Adjustme nt Factor	Verified Gross kW Savings	kW NTG Adjust ment Factor	Verified Net kW Savings	kW Realiza tion Rate	Verified Net kW Savings Incl Bonus
CFL - Buydown	Direct Install Non-lighting	CDE0198	CFL bulbs regular (buydown)	2.00	6,327.52	5,700.74	0.955	$\begin{array}{r} 5,444.2 \\ 1 \end{array}$	0.900	$\begin{array}{r} 4,899.7 \\ 9 \end{array}$	0.774	$\begin{array}{r} 4,899.7 \\ 9 \end{array}$
CFL - Buydown	Direct Install Non-lighting	CDE0199	CFL bulbs specialty (buydown)	2.00	194.28	175.03	0.955	167.16	0.900	150.44	0.774	150.44
CFL - Drop Ship	Direct Install Non-lighting	CDE0068	CFL Box Door Delivery	2.00	5,549.23	5,549.23	1.000	$\begin{array}{r} 5,549.2 \\ 3 \end{array}$	0.900	$\begin{array}{r} 4,994.3 \\ 0 \end{array}$	0.900	$\begin{array}{r} 4,994.3 \\ 0 \end{array}$
CFL - Drop Ship	Direct Install Non-lighting	CDE0069	CFL Box Door Delivery (TC)	2.00	638.23	638.23	1.000	638.23	0.900	574.40	0.900	574.40
Core DI	Direct Install Lighting	CDE0051	CFL Bulb -Screw-in	9.00	36.82	36.82	0.925	34.06	0.900	30.65	0.833	30.65
Core DI	Direct Install Lighting	CDE0052	Hardwired CFL	12.00	9.80	9.80	0.873	8.55	0.900	7.70	0.786	8.47
Core DI	Direct Install Lighting	CDE0053	Specialty CFL	2.00	15.51	15.51	0.873	13.54	0.900	12.19	0.786	12.19
Core DI	Direct Install Lighting	CDE0054	T8s and U- Tube T8 Lamps	12.00	2,241.30	2,241.30	0.873	$\begin{array}{r} 1,956.6 \\ 5 \end{array}$	0.900	$\begin{array}{r} 1,760.9 \\ 9 \end{array}$	0.786	$\begin{array}{r} 1,937.0 \\ 9 \end{array}$
Core DI	Direct Install Lighting	CDE0055	T5 Lamps	12.00	10.76	10.76	0.873	9.39	0.900	8.45	0.786	9.30
Core DI	Direct Install Lighting	CDE0057	LEDs, LED Exit Signs, Induction	15.00	1,166.60	1,166.60	0.873	$\begin{array}{r} 1,018.4 \\ 4 \end{array}$	0.900	916.59	0.786	$\begin{array}{r} 1,008.2 \\ 5 \end{array}$
Core DI	Direct Install Non-lighting	CDE0064	Small Business Custom Electric	0.00	4.53	4.53	0.873	3.96	0.900	3.56	0.786	3.56
Core DI	Direct Install Non-lighting	CDE0080	ECM Case Motor	15.00	4.14	3.72	1.000	3.72	0.900	3.35	0.809	3.69
Core DI	Direct Install Non-lighting	CDE0081	ECM Walk-in Cooler and Freezer Motor	15.00	47.12	42.40	0.873	37.02	0.900	33.31	0.707	סָ,

Core DI	Direct Install Lighting	CDE0084	Evaporator Fan Motor Controls on PSC motors	5.00	1.00	0.90	1.000	0.90	0.900	0.81	0.811	0.81
Core DI	Direct Install Lighting	CDE0200	Miscellaneous Lighting	9.00	2,442.41	2,442.41	0.873	$\begin{array}{r} 2,132.2 \\ 2 \end{array}$	0.900	$\begin{array}{r} 1,919.0 \\ 0 \end{array}$	0.786	$\begin{array}{r} 1,919.0 \\ 0 \end{array}$
Core DI	Direct Install Lighting	CDE0201	Fixture Removal	12.00	216.90	216.90	0.873	189.36	0.900	170.42	0.786	187.46
Hospitality	Direct Install - - Hospitality	CDE0044	LED Lighting 12 W LED Lamps replacing incandescent lights	8.00	184.89	184.89	1.000	184.89	0.900	166.40	0.900	166.40
Hospitality	Direct Install - - Hospitality	CDE0045	LED Lighting 11 W LED Flood Lamp	15.00	412.08	412.08	0.924	380.76	0.900	342.69	0.832	376.95
Hospitality	Direct Install - - Hospitality	CDE0046	LED Lighting - 8 W LED Lamps replacing incandescent lights	8.00	128.28	128.28	0.924	118.53	0.900	106.67	0.832	106.67
Hospitality	Direct Install Lighting	CDE0087	Vending Equipment Controller (Halo)	10.00	0.50	0.50	1.000	0.50	0.900	0.45	0.900	0.50
Hospitality	Direct Install - - Hospitality	CDE0090	3.5 W LED Candelabra	8.00	26.27	26.27	1.000	26.27	0.900	23.65	0.900	23.65
Hospitality	Direct Install - - Hospitality	CDE0100	13W BR30 LED Downlight	15.00	0.14	0.14	1.000	0.14	0.900	0.13	0.900	0.14
Hospitality	Direct Install - - Hospitality	CDE0101	LED Exit Sign	15.00	24.82	24.82	1.000	24.82	0.900	22.34	0.900	24.57
Hospitality	Direct Install - - Hospitality	CDE0102	LED Lighting 9.5 W LED Lamps Replacing Incandescent Lights	8.00	310.87	310.87	1.000	310.87	0.900	279.78	0.900	279.78
Hospitality	Direct Install - - Hospitality	CDE0103	LED Lighting - 6 W LED Lamps Replacing	8.00	66.09	78.56	1.000	78.56	0.900	70.70	1.070	70.70

EMI

Program	Measure Category	Measure Code	Measure Description	Measure Life	Reported MCF Savings	Adjusted Reported Gross MCF Savings	Verified Gross MCF Savings Adjustme nt Factor	Verified Gross MCF Savings	MCF NTG Adjust ment Factor	Verified Net MCF Savings	MCF Realiza tion Rate	Verified Net MCF Savings Incl Bonus
Furnace Tuneup	Direct Install Non-lighting	CDG0011	DI - Gas Furnace or RTU Tune-up (>=40 and <300 MBH)	10.00	10,069.85	10,067.81	1.000	$\begin{array}{r} 10,067 . \\ 81 \end{array}$	0.900	9,061.03	0.900	9,967.13
Furnace Tuneup	Direct Install Non-lighting	CDG0012	DI - Gas Furnace or RTU Tune-up ($>=300 \mathrm{MBH}$)	10.00	3,170.77	3,170.77	1.000	$\begin{array}{r} 3,170.7 \\ 7 \end{array}$	0.900	2,853.69	0.900	3,139.06
Programmable Thermostats	Direct Install Non-lighting	CDC0058	Programmable Thermostats -Combination Customers	9.00	31,652.74	31,652.74	0.993	$\begin{array}{r} 31,431 . \\ 17 \end{array}$	0.900	28,288.05	0.894	28,288.05
Programmable Thermostats	Direct Install Non-lighting	CDG0033	Programmable Thermostat DTE Shared Gas	9.00	10,468.42	10,468.42	0.993	$\begin{array}{r} 10,395 . \\ 14 \end{array}$	0.900	9,355.63	0.894	9,355.63
Programmable Thermostats	Direct Install Non-lighting	CDG0058	Programmable Thermostat Gas Customers	9.00	91,598.70	91,598.70	0.993	$\begin{array}{r} 90,957 . \\ 51 \end{array}$	0.900	81,861.75	0.894	81,861.75
TOTAL					$\begin{array}{r} 146,960 . \\ 47 \end{array}$	$\begin{array}{r} 146,958 . \\ 43 \end{array}$		$\begin{aligned} & 146,0 \\ & 22.40 \end{aligned}$		$\begin{array}{r} 131,420 . \\ 16 \end{array}$		$\begin{array}{r} 132,611.6 \\ 3 \end{array}$

Table B-7: Multi-Family Program - Validated Electric Energy (kWh) Savings by Measure

	$\begin{aligned} & 0.0 \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { Mo m } \\ & \text { ơ } \\ & \underset{\sim}{\circ} \end{aligned}$				$\begin{aligned} & \dot{\circ}+0 \\ & \underset{\sim}{\top} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { oi io } \\ & \stackrel{\circ}{\sim} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & 0.6 \\ & \stackrel{\circ}{\circ} \\ & \stackrel{-}{5} \end{aligned}$	$\begin{aligned} & \dot{\bar{\circ}} \\ & \dot{\circ} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \infty \quad \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$

Nage 207 of 230

	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	O-	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	O-	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \text { O } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline \text { oj } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \text { O- } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & 0 \end{aligned}$	O-1
			$\begin{aligned} & 00 \\ & \text { M } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \underset{\circ}{\circ} \\ & \dot{\circ} \end{aligned}$	$\stackrel{\dot{\varphi}}{\stackrel{\circ}{\varphi}}$			$\begin{aligned} & \stackrel{\bullet}{\wedge} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \text { 아 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & N_{N}^{\infty} N \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \text { +i O } \\ & \text { N } \\ & \text { oे } \end{aligned}$	$\begin{aligned} & \dot{\infty} \mathrm{O} \\ & \infty \\ & \infty \\ & \sim_{N}^{-} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \dot{-} \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { óc } \\ & \stackrel{0}{\mathrm{C}} \\ & \stackrel{y}{n} \end{aligned}$

	8	8	응	$\stackrel{+}{\circ}$	$$	8	$\begin{aligned} & \infty \\ & \underset{O}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{O}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{O}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{O}{\infty} \\ & \hline 0 \end{aligned}$	-	8	-	응

		$\begin{aligned} & \text { No } \\ & \stackrel{N}{N} \\ & \stackrel{-}{t} \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$	O N N ó	$\begin{aligned} & \stackrel{O}{\mathrm{~N}} \\ & \stackrel{-}{\underset{\sim}{-}} \end{aligned}$	$\underset{\sim}{+}$ N N N	$\begin{aligned} & \text { ơ } \\ & \text { O} \\ & \text { oi } \\ & \text { eे } \end{aligned}$	$\begin{aligned} & \stackrel{O}{N} \\ & \underset{\infty}{\infty} \end{aligned}$	0 0 0 0 10 10	0 $\underset{\sim}{N}$ M O-	0 O O N O-	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \underset{\infty}{\infty} \\ & \underset{N}{\infty} \end{aligned}$	\circ - -	0 0 0 0 N-

$\begin{array}{ll}\text { O } & \text { O } \\ \text { iे } & \text { in }\end{array}$

$\begin{array}{lll}8 & 8 & 8 \\ 0 & 0 & 0 \\ \circ & 1 & 1\end{array}$
Measure Description C_I Multifamily
Custom - Electric
Common Area -
Hardwired CFL Fixture
Common Area -- LED Common Area -- LED
Exit Signs (Retrofit

Low Flow Bath Faucet
 Low Flow Kitchen Faucet Aerators-

T12 4-ft Lamp Removal (combined

CFL bulbs -13 W

CFL Bulbs Regular (30W or less in
common area)
 Prescriptive CFL Fixture Prescriptive Occupancy Sensors Sensors
over 500 W

0
0
0

CTE0002
CTE0003

CTE0004

CTE0019
CTE0020

CTE0023

CTE0025
 CTE0026 CTE0027

 CTE0031 CTE0032

C\&I Multifamily

C\&I Multifamily

C\&I Multifamily

C\&I Multifamily
C\&I Multifamily

Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family

Multi-Family

Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family

LED/Induction (Night Only) <175W	12.00	$\begin{array}{r} 96,212.0 \\ 0 \end{array}$	96,212.00	1.000	$\begin{array}{r} 96,212 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 86,590 \\ .80 \end{array}$
LED/Induction (Night Only) 175-250W	12.00	$\begin{array}{r} 12,270.0 \\ 0 \end{array}$	12,270.00	1.000	$\begin{array}{r} 12,270 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 11,043 \\ .00 \end{array}$
LED/Induction (Night Only) 250-400W	12.00	$\begin{array}{r} 141,200 . \\ 00 \end{array}$	$\begin{array}{r} 141,200.0 \\ 0 \end{array}$	1.000	$\begin{array}{r} 141,20 \\ 0.00 \end{array}$	0.900	$\begin{array}{r} 127,08 \\ 0.00 \end{array}$
$\begin{aligned} & \text { LED/Induction (} 24 \times 7 \text {) } \\ & <175 \mathrm{~W} \end{aligned}$	12.00	$\begin{array}{r} 25,662.0 \\ 0 \end{array}$	25,662.00	1.000	$\begin{array}{r} 25,662 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 23,095 \\ .80 \end{array}$
LED/Induction (24×7) 175-250W	12.00	$\begin{array}{r} 42,120.0 \\ 0 \end{array}$	42,120.00	1.000	$\begin{array}{r} 42,120 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 37,908 \\ .00 \end{array}$
CFL Speciality Common Area	2.00	5,580.00	5,580.00	1.000	$\begin{array}{r} 5,580.0 \\ 0 \end{array}$	0.900	$\begin{array}{r} 5,022 . \\ \hline \end{array}$
CFL Speciality - InUnit - DI	9.00	$\begin{array}{r} 142,839 . \\ 90 \end{array}$	$\begin{array}{r} 142,839.9 \\ 0 \end{array}$	1.000	$\begin{array}{r} 142,83 \\ 9.90 \end{array}$	0.900	$\begin{array}{r} 128,55 \\ 5.91 \end{array}$
Low Flow Showerhead - 1.5 gpm - Electric	12.00	$\begin{array}{r} 42,090.0 \\ 0 \end{array}$	42,090.00	1.000	$\begin{array}{r} 42,090 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 37,881 \\ .00 \end{array}$
Low Flow Showerhead - 1.5 gpm - Eectric Handheld	12.00	$\begin{array}{r} 13,110.0 \\ 0 \end{array}$	13,110.00	1.000	$\begin{array}{r} 13,110 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 11,799 \\ .00 \end{array}$
13W CFL - Common Area - Direct Install	2.00	$\begin{array}{r} 30,318.0 \\ 0 \end{array}$	30,318.00	1.000	$\begin{array}{r} 30,318 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 27,286 \\ .20 \end{array}$
1L HPT8 replacing T12-Common-24/7	8.00	4,738.00	4,738.00	1.000	$\begin{array}{r} 4,738.0 \\ 0 \end{array}$	0.900	$\begin{array}{r} 4,264 . \\ 20 \end{array}$
1L RW HPT8 replacing T12 -Common-24/7	8.00	$\begin{array}{r} 13,356.0 \\ 0 \end{array}$	13,356.00	1.000	$\begin{array}{r} 13,356 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 12,020 \\ .40 \end{array}$
2L HPT8 replacing T12 - Common-24/7	8.00	$\begin{array}{r} 21,804.0 \\ 0 \end{array}$	21,804.00	1.000	$\begin{array}{r} 21,804 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 19,623 \\ .60 \end{array}$
2L RW HPT8 replacing T12 Common - 24/7	8.00	$\begin{array}{r} 47,340.0 \\ 0 \end{array}$	47,340.00	1.000	$\begin{array}{r} 47,340 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 42,606 \\ .00 \end{array}$
4L HPT8 replacing T12-Common-24/7	8.00	8,448.00	8,448.00	1.000	$\begin{array}{r} 8,448.0 \\ 0 \end{array}$	0.900	$\begin{array}{r} 7,603 . \\ 20 \end{array}$
4L RW HPT8 replacing T12 -Common-24/7	8.00	$\begin{array}{r} 12,565.0 \\ 0 \end{array}$	12,565.00	1.000	$\begin{array}{r} 12,565 . \\ 00 \end{array}$	0.900	$\begin{array}{r} 11,308 \\ .50 \end{array}$
CFL Candelabra Lamp (5-13W) - Common 24/7 operation	1.00	3,576.00	3,576.00	1.000	$\begin{array}{r} 3,576.0 \\ 0 \end{array}$	0.900	$\begin{array}{r} 3,218 . \\ 40 \end{array}$
DI - CFL Candelabra	1.00	44,402.0	44,402.00	1.000	44,402.	0.900	39,961

	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{0}{\circ} \\ & \stackrel{\rightharpoonup}{\breve{0}} \end{aligned}$	$\begin{aligned} & \text { ö } \\ & \stackrel{\text { Ḧ }}{0} \end{aligned}$	$\begin{aligned} & \text { of } \\ & \text { o } \\ & \stackrel{u}{0} \end{aligned}$			$\begin{aligned} & \text { 응 } \\ & \text { O} \\ & \stackrel{4}{0} \end{aligned}$			$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{U} \\ & \stackrel{U}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{N} \\ & \stackrel{\mu}{6} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{5} \\ & \stackrel{3}{\breve{\omega}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \stackrel{3}{5} \end{aligned}$	$\begin{aligned} & \stackrel{\text { O}}{6} \\ & \stackrel{4}{5} \end{aligned}$	$\begin{gathered} \bar{m} \\ \stackrel{\rightharpoonup}{\omega} \\ \hline 0 \end{gathered}$	$$

Appendix B: Validated Savings

8		$\begin{aligned} & \text { moi } \\ & \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \infty \infty_{0}^{\circ} \\ & \stackrel{\circ}{i} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ヘiN N N N } \\ & \end{aligned}$	$\begin{aligned} & \dot{m} \dot{m}_{\circ}^{\prime} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{-}{\circ} \\ & \underset{\sim}{n} \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\sigma} \end{aligned}$	$\hat{N}_{\stackrel{\sim}{\sigma}}^{\circ}$	$\stackrel{\circ}{\circ}$		$\begin{aligned} & \stackrel{\sim}{N} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { d } \\ & \end{aligned}$	$\underset{{\underset{\sim}{0}}_{-\infty}^{-\infty}}{\substack{0 \\ \hline}}$	Witrgss: RDBordner Date: May 2014 $\stackrel{1}{\sim}$ Page 209 of 230

$\begin{aligned} & \hline 8 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	-	\%	$\begin{aligned} & \text { O- } \\ & \hline 0 \end{aligned}$	-	$\begin{aligned} & \mathrm{O} \\ & \hline \text { O- } \end{aligned}$	\%	\%	-	\%	-	\%

8

8
$\stackrel{\rightharpoonup}{0}$
\vdots
$\begin{array}{r}\circ \\ \hline \\ \hline \\ \hline\end{array}$

 100,426.0
\circ
$\stackrel{\circ}{\dot{\circ}}$
ू.

-

0	8
\dot{O}	0

\circ	∞
∞	∞
∞	∞
-	∞

$\begin{array}{ll}\infty & \infty \\ \infty & \stackrel{\infty}{\infty} \\ \infty & \circ \\ \infty & \stackrel{\circ}{\infty}\end{array}$

 Lamp (5-13W) - $24 / 7$
operation - DI DI - CFL Candelabra Lamp (5-13W) - DI DI - LED Candelabra Lamp (3-5W) - 24/7
operation - DI DI - LED Candelabra Lamp (3-5W) - DI Exterior CFL
 (
HPT8 replacing T12 -
per lamp - Common per lamp - Common
LED Fixture - In Unit
 Replacement - In Unit LED Lamp - 50-80W Replacement LED Lamp - 60W Replacement - In Unit LED Lamp-80-100W Replacement -
Common LED Lamp -

Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Multi-Family
Man

EMI
Table B-8: Multi-Family Program - Validated Electric Demand (Kw) Savings by Measure

Program	Measure Category	Measure Code	Measure Description	Measure Life	Reported kW Savings	Adjusted Reported Gross kW Savings	Verified Gross kW Savings Adjustme nt Factor	Verified Gross kW Savings	kW NTG Adjust ment Factor	Verified Net kW Savings	kW Realization Rate	Verified Net kW Savings Incl Bonus
Multi- Family	 Multifamily	$\begin{aligned} & \text { CCEOO } \\ & 01 \end{aligned}$	C_I Multifamily Custom Electric	Varies	88.74	88.74	1.000	88.74	0.900	79.86	0.900	87.85
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE00 } \\ & 03 \end{aligned}$	Common Area -- LED Exit Signs (Retrofit Only)	15.00	7.59	7.59	1.000	7.59	0.900	6.83	0.900	7.51
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTEOO } \\ & 04 \end{aligned}$	Low Flow Bath Faucet Aerators - Electric - DI	12.00	0.79	0.79	1.004	0.80	0.900	0.72	0.904	0.79
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE00 } \\ & 19 \end{aligned}$	Low Flow Kitchen Faucet AeratorsElectric - DI	12.00	1.82	1.82	1.004	1.82	0.900	1.64	0.900	1.81
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE00 } \\ & 20 \end{aligned}$	T12 4-ft Lamp Removal (combined with T8/T5 ballast retrofit)	12.00	3.06	3.06	1.000	3.06	0.900	2.76	0.900	3.03
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE00 } \\ & 23 \end{aligned}$	CFL bulbs - $13 \mathrm{~W}$	9.00	41.47	41.47	0.948	39.31	0.900	35.38	0.853	35.38
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE00 } \\ & 25 \end{aligned}$	CFL Bulbs 23W	9.00	0.10	0.10	0.948	0.09	0.900	0.08	0.853	0.08
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE00 } \\ & 27 \end{aligned}$	CFL Screw in Prescriptive	9.00	7.15	7.15	0.948	6.78	0.900	6.10	0.853	6.10
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE00 } \\ & 29 \end{aligned}$	CFL Fixture Prescriptive	12.00	3.61	3.61	1.000	3.61	0.900	3.25	0.900	3.57
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE00 } \\ & 31 \end{aligned}$	Occupancy Sensors under 500 W	10.00	7.13	7.13	1.000	7.13	0.900	6.42	0.900	7.06
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE00 } \\ & 32 \end{aligned}$	Occupancy Sensors over 500 W	10.00	0.24	0.24	1.000	0.24	0.900	0.22	0.900	0.24

$\underset{\dot{\ominus}}{\underset{\sim}{i}}$	$\underset{\text { N }}{\underset{\sim}{N}}$	$\stackrel{గ}{\sim}$		$\underset{\dot{\gamma}}{\underset{\sim}{2}}$	$\underset{\sim}{\underset{\sim}{f}}$	$\stackrel{1}{8}$	$\underset{\sim}{\stackrel{\rightharpoonup}{+}}$	$\stackrel{\circ}{\mathrm{O}}$	$\stackrel{\underset{\sim}{*}}{ }$	$\stackrel{\infty}{\sim}$	$\stackrel{\ominus}{\square}$
O- ৪	৪io	৪io	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline-\mathrm{O} \end{aligned}$	O-	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	O-	O-	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$
$\frac{ㅇ ㅡ ́ ~}{i}$	$\stackrel{\bar{i}}{\mathrm{~N}}$	$\stackrel{N}{\underset{\sim}{\sim}}$		$\underset{\sim}{\sim}$	$\stackrel{\sim}{c}$	$\stackrel{10}{0}$	$\stackrel{\text { ¢ }}{\sim}$	ヘٌ	$\stackrel{\text { F }}{\text { ¢ }}$	$\stackrel{\infty}{\sim}$	$\stackrel{\ominus}{\Gamma}$
$$	$$	$$	$$	$$	O-	$$	$$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \\ & \hline \end{aligned}$	$$	$$
$\underset{\ominus}{\underset{\ominus}{*}}$	$\stackrel{\text { g }}{\stackrel{1}{\sim}}$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\stackrel{N}{\stackrel{N}{N}}$	$\stackrel{\circ}{\stackrel{\circ}{\dot{\sigma}}}$	$\stackrel{\infty}{\stackrel{\infty}{\leftarrow}}$	مٌ	$\stackrel{+}{+}$	$\stackrel{\infty}{\mathrm{N}}$	$\stackrel{\sim}{+}$	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{\stackrel{1}{+}}$
$\stackrel{8}{8}$	$\stackrel{8}{8}$	$\stackrel{\text { O}}{\circ}$	$\stackrel{8}{\circ}$	$\stackrel{8}{\circ}$	$\stackrel{8}{8}$	$\stackrel{\bigcirc}{8}$	$\stackrel{\otimes}{8}$	$\stackrel{8}{8}$	$\stackrel{8}{8}$	$\stackrel{\bigcirc-}{\square}$	$\stackrel{\bigcirc-}{-}$
$\underset{\ominus}{\hat{\circ}}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{N}{\underset{\sim}{N}}$	$\stackrel{\bullet}{\stackrel{\circ}{\dot{\sim}}}$	$\stackrel{\infty}{\stackrel{\infty}{\leftarrow}}$		$\stackrel{+}{\square}$	$\stackrel{\infty}{\sim}$	$\underset{\sim}{\underset{\sim}{x}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{+}$
$\underset{\dot{6}}{\underset{\sim}{N}}$	$\begin{aligned} & \text { on } \\ & \text { í } \end{aligned}$	$\stackrel{\infty}{\sim}$	$\stackrel{\underset{\sim}{N}}{\stackrel{1}{2}}$	$\stackrel{\circ}{\underset{\sim}{*}}$	$\stackrel{\infty}{+}$	\bigcirc	$\stackrel{+}{\stackrel{+}{\square}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{+}$	$\stackrel{\otimes}{\circ}$	$\stackrel{\sim}{\sim}$
	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	$\stackrel{8}{\circ}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{j}} \end{aligned}$	$\underset{\infty}{\circ}$	$\stackrel{\circ}{\infty}$	$\stackrel{8}{\infty}$	$\stackrel{\circ}{\infty}$	\bigcirc	\bigcirc
	$\stackrel{\stackrel{\circ}{\mathrm{O}}}{\stackrel{\mathrm{U}}{\circ}}$	$\stackrel{\stackrel{8}{\mathrm{O}}}{\stackrel{\circ}{\circ}}$	$\stackrel{\stackrel{\circ}{4}}{\stackrel{3}{\cup}}$	$\stackrel{\stackrel{\circ}{4}}{\stackrel{\mathrm{O}}{\circ}}$	$\stackrel{\stackrel{8}{\mathrm{O}}}{\stackrel{\text { ® }}{5}}$	$\stackrel{-}{\stackrel{u}{6}}$	$\begin{aligned} & \stackrel{-}{山} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\stackrel{-}{\amalg}$	$\begin{aligned} & \stackrel{-}{山} \\ & \stackrel{\sim}{\cup} \end{aligned}$		$\stackrel{\stackrel{-}{u}}{\stackrel{0}{\circ}}$

$\sum_{\boldsymbol{*}}^{\boldsymbol{U}}$

$\underset{o}{\hat{0}}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\sim} \end{aligned}$	©	$\begin{aligned} & \bar{F} \\ & \dot{G} \end{aligned}$	$\stackrel{\substack{\mathrm{N}}}{ }$	$\stackrel{M}{\underset{\sim}{\dot{J}}}$	No		$\begin{aligned} & \text { Ǹ } \\ & \text { © } \end{aligned}$	$\underset{\sim}{\dot{\circ}}$	$\stackrel{\text { § }}{\sim}$
$\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline \text { - } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline \text { - } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	-80
$\stackrel{N}{0}$	$\stackrel{\circ}{\circ}$	$\stackrel{ֻ}{\sim}$	$\begin{aligned} & \dot{F} \\ & \dot{G} \end{aligned}$	$\stackrel{\circ}{\sim}$	$\begin{aligned} & \text { م } \\ & \stackrel{\text { in }}{ } \end{aligned}$	$\stackrel{N}{0}$	$\stackrel{\text { N }}{\stackrel{\text { N }}{+}}$	$\begin{aligned} & \text { Ǹ } \\ & \text { O} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\sim}$
$$	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	$$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{\circ} \end{aligned}$	$\stackrel{\circ}{\mathrm{O}}$	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	$\stackrel{\circ}{\mathrm{O}}$	-	$\stackrel{\circ}{\mathrm{O}}$	-8
$\underset{O}{\dot{J}}$	$\stackrel{\hat{\circ}}{\stackrel{\rightharpoonup}{\circ}}$	$\begin{aligned} & \text { ~ } \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { بٌ } \\ & \hline \end{aligned}$	$\underset{\sim}{\text { N }}$	$\begin{aligned} & \stackrel{\infty}{\underset{~}{\dot{~}}} \end{aligned}$	$\stackrel{\sim}{0}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{+}{\sim}}$	$\stackrel{\Gamma}{0}$	¢0\%
웅	$\stackrel{8}{\mathrm{O}}$	$\stackrel{8}{\mathrm{O}}$	$\stackrel{\bigcirc-}{\square}$	$\stackrel{8}{\mathbf{O}}$	$\stackrel{8}{\mathrm{O}}$	$\stackrel{8}{\mathrm{O}}$	$\stackrel{8}{\circ}$	$\stackrel{8}{-}$	$\stackrel{8}{8}$	$\stackrel{\bigcirc}{8}$
$\stackrel{\square}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\sim}{\underset{\sim}{⿺}}$	$\frac{0}{\stackrel{0}{6}}$	$\underset{\infty}{\text { No }}$	$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{+}} \end{aligned}$	$\stackrel{\infty}{\sim}$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\stackrel{-}{\infty}}{\stackrel{\text { ¢ }}{+}}$	$\bar{\circ}$	¢¢
$\stackrel{\square}{\circ}$	$\stackrel{\text { No}}{ }$	$\begin{aligned} & \text { ®̀ } \\ & \text { ̇ } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	$\stackrel{\sim}{\infty}$	$\stackrel{\sim}{\underset{\sim}{\sim}}$	$\stackrel{\sim}{0}$	$\stackrel{\text { ® }}{\stackrel{\circ}{-}}$	$\stackrel{+}{\infty}$	$\stackrel{\square}{\circ}$	¢
-	$\stackrel{8}{-}$	$\stackrel{\text { O-}}{-}$	$\stackrel{\circ}{\text { i }}$	$\stackrel{\circ}{\text { ® }}$	$\begin{aligned} & \text { O- } \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\text { N }}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \hline- \end{aligned}$	\bigcirc	$\stackrel{\circ}{\circ}$	-

MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 39 \end{aligned}$
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 43 \end{aligned}$
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 44 \end{aligned}$
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 45 \end{aligned}$
MultiFamily	C\&I Multifamily	CTE01 46
Multi- Family	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 53 \end{aligned}$
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 57 \end{aligned}$
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 58 \end{aligned}$
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 60 \end{aligned}$
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 61 \end{aligned}$
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 63 \end{aligned}$

Appendix B: Validated Savings												EM
			Replacement Common									
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 64 \end{aligned}$	LED Lamp Flood/PAR Common	8.00	0.10	0.10	1.000	0.10	0.900	0.09	0.900	0.09
MultiFamily	C\&1 Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 66 \end{aligned}$	LED Lamp - PAR - In Unit	10.00	0.24	0.24	1.000	0.24	0.900	0.21	0.900	0.23
MultiFamily	$\begin{aligned} & \text { C\&I } \\ & \text { Multifamily } \end{aligned}$	$\begin{aligned} & \text { CTE01 } \\ & 68 \end{aligned}$	PTHP - In Unit	15.00	3.15	3.15	1.000	3.15	0.900	2.84	0.900	3.12
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 71 \end{aligned}$	VFD - Pump	10.00	0.72	0.72	1.000	0.72	0.900	0.64	0.900	0.71
MultiFamily	 Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 72 \end{aligned}$	Low Flow Bath Faucet Aerators 1.0 gpm - Electric - D	12.00	0.53	0.66	1.000	0.66	0.900	0.59	1.114	0.65
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 74 \end{aligned}$	DI-LED Candelabra Lamp (3-5W) -In-Unit - DI	12.00	17.32	0.61	1.000	0.61	0.900	0.55	0.032	0.61
MultiFamily	C\&I Multifamily	$\begin{aligned} & \text { CTE01 } \\ & 75 \end{aligned}$	DI-CFL Candelabra Lamp (5-13W) - In-Unit - DI	9.00	2.28	0.36	1.000	0.36	0.900	0.32	0.140	0.32
TOTAL					463.09	444.58		$\begin{array}{r} 442.0 \\ 6 \end{array}$		$\begin{array}{r} 397.8 \\ 5 \end{array}$		411.83

EMI
Table B－9：Multi－Family Program－Validated Natural Gas（Mcf）Savings by Measure

	$\begin{aligned} & \text { mo } \\ & \stackrel{\circ}{N} \\ & \underset{\sim}{0} \end{aligned}$	$\stackrel{+}{6}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{6} \end{aligned}$		$\begin{aligned} & \bar{n} \\ & \stackrel{\rightharpoonup}{m} \end{aligned}$	$\begin{aligned} & \text { B0 } \\ & \stackrel{1}{\mathrm{~N}} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { No n } \\ & \underset{N}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \check{6} \\ & \stackrel{子}{子} \end{aligned}$	$\stackrel{\stackrel{\infty}{\infty}}{\stackrel{\infty}{\infty}}$	$\underset{\infty}{\infty}$		Witness： Bate Fing	RDBordner e：May 2014 ge 215 of 230
	$\stackrel{8}{\circ}$	$\stackrel{8}{8}$	ষ্ণ	$\begin{aligned} & \mathrm{O} \\ & \hline-8 \end{aligned}$	O-	ஃ-৪	$\stackrel{ষ}{\mathrm{O}}$	O-	O-	$\stackrel{8}{\circ}$	O-	$\stackrel{8}{\circ}$	
	$\begin{aligned} & \text { eio } \\ & \text { én } \\ & \text { ì } \end{aligned}$	$\stackrel{9}{\square}$	$\begin{aligned} & \bar{\sigma} \\ & \dot{\infty} \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{N}} \\ & \underset{\infty}{\mathrm{o}} \end{aligned}$	$\begin{gathered} \underset{\sim}{\underset{\sim}{N}} \end{gathered}$	$$	$\begin{aligned} & \text { N্N M } \\ & \stackrel{N}{N} \end{aligned}$	$\underset{\stackrel{i}{2}}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{\infty}{\stackrel{\infty}{\infty}}$	$\stackrel{\text { ® }}{\sim}$	$\begin{aligned} & \text { N } \\ & \text { ल̈ } \\ & \text { Ni } \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\dot{\sigma}}}$	
	$\stackrel{8}{8}$	$\stackrel{8}{8}$	$\begin{aligned} & \text { O- } \\ & \hline \text { O } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline-8 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline-1 \end{aligned}$	O-	$\begin{aligned} & \text { O} \\ & \hline \text { O- } \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline \text { O } \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline \text { O } \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline \text { O } \end{aligned}$	O-	$\stackrel{8}{\circ}$	
	$\begin{aligned} & \text { 읕 } \\ & \stackrel{\circ}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\square}{\square}$	$\begin{aligned} & \text { ! } \\ & \stackrel{1}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \end{aligned}$	$\begin{aligned} & \Gamma \\ & \stackrel{j}{\circ} \\ & \bar{m} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\dot{N}} \\ & \underset{\sim}{6} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{m}{0}$	$\stackrel{\text { N }}{\stackrel{N}{\kappa}}$	$\stackrel{\text { ¢ }}{\infty}$		$\begin{aligned} & \underset{+}{+} \\ & \dot{\text { In}} \end{aligned}$	
	$\stackrel{\circ}{8}$	$\stackrel{8}{8}$	$\underset{\sim}{\mathrm{O}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{8}$	$\stackrel{\circ}{8}$	$\underset{\sim}{\mathrm{O}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\text { O}}{+}$	$\stackrel{\text { O}}{-}$	$\stackrel{\text { O}}{+}$	$\stackrel{8}{8}$	
	$\begin{aligned} & \text { 읕 } \\ & \stackrel{\circ}{\underset{\sim}{\sim}} \end{aligned}$	$\stackrel{7}{\square}$	$\begin{aligned} & \text { مِ } \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{N}}$	$\begin{aligned} & \text { స } \\ & \stackrel{j}{\circ} \\ & \stackrel{j}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\bullet}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{N}} \\ & \underset{\sim}{\mathcal{Y}} \end{aligned}$	$\stackrel{m}{0}$	$\begin{aligned} & \text { Ny } \\ & \stackrel{y}{n} \\ & \end{aligned}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \text { 우 } \\ & \stackrel{1}{8} \\ & \stackrel{0}{i} \end{aligned}$	$\begin{aligned} & \underset{+}{+} \\ & \dot{\text { O}} \end{aligned}$	
	$\begin{aligned} & \text { 읕 } \\ & \stackrel{\circ}{\infty} \\ & \underset{\sim}{0} \end{aligned}$	$\stackrel{9}{\square}$	$\begin{aligned} & \text { مٌ } \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{N}}$	$\begin{aligned} & \text { స } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { ค } \\ & \underset{\sim}{U} \\ & \underset{\sim}{~} \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{y}{N} \\ & \end{aligned}$	$\stackrel{\text { ¢ }}{\infty}$		$\begin{aligned} & \text { J } \\ & \dot{\text { O}} \end{aligned}$	
$\begin{aligned} & \stackrel{0}{\bar{亏}} \\ & \stackrel{0}{\mathscr{E}} \\ & \sum_{\Sigma}^{\infty} \end{aligned}$	$\begin{aligned} & \mathscr{e} \\ & \stackrel{0}{\sqrt{\pi}} \\ & \hline \end{aligned}$	운	$\begin{aligned} & \text { O- } \\ & \stackrel{\text { ن}}{ } \end{aligned}$	$\stackrel{\otimes}{\circ}$	$\begin{aligned} & \text { O. } \\ & \stackrel{\text { ® }}{2} \end{aligned}$	$\stackrel{\text { ® }}{\mathrm{i}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{i}}{ } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\mathrm{i}} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \text { 8 } \\ & \stackrel{\circ}{\mathrm{b}} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\mathrm{i}} \end{aligned}$	-	
		을 0 0 \vdots 1											
	\bar{O} 0 0 0 0	$\begin{aligned} & \text { ㄷ } \\ & \stackrel{\rightharpoonup}{u} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	\square 0 	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	0 0 0	\bar{O} 0	$\stackrel{H}{8}$ $\stackrel{0}{\circ}$	Ko O 0	$\begin{aligned} & \text { O} \\ & \text { O } \\ & \text { O} \\ & \hline \end{aligned}$	\ddagger 		¢ $\stackrel{1}{0}$ $\stackrel{0}{6}$ 0	
													倍

		$\begin{aligned} & \stackrel{\infty}{\infty} \underset{\underset{\sim}{\infty}}{\stackrel{\infty}{\infty}} \end{aligned}$		$\stackrel{ \pm}{\underset{\sim}{+}}$	$\begin{aligned} & \stackrel{\text { N}}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{\Gamma} \end{aligned}$	$\underset{\infty}{\infty}$	$\begin{aligned} & \text { O N } \\ & \stackrel{0}{0} \\ & \stackrel{y}{i} \end{aligned}$	$\begin{aligned} & \underset{\sim}{m} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\sim} \end{aligned}$	
	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { to } \\ & \text { O- } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { O. } \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \text { O- } \end{aligned}$	-8	
	$\begin{aligned} & \stackrel{0}{\circ} \mathrm{O} \\ & \stackrel{1}{5} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\infty}{\text { N゙ }}$	$\stackrel{\text { N}}{\stackrel{1}{N}}$	$\stackrel{\text { ơ }}{\underset{\sim}{~}}$	$\stackrel{\text { M }}{\stackrel{\sim}{\mathrm{N}}}$	$\begin{aligned} & \overline{\mathrm{O}} \\ & \stackrel{\mathrm{D}}{2} \end{aligned}$	$\begin{aligned} & \text { 见o } \\ & \stackrel{\text { O}}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\dot{m}} \\ & \stackrel{\text { Ni }}{N} \end{aligned}$	$\begin{aligned} & 00 \\ & \dot{\circ} \\ & \dot{\infty} \\ & \infty \\ & \end{aligned}$	
	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{\circ} \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline \mathbf{\circ} \end{aligned}$	$$	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	O-	O-	$\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$	
	8 10 0 0	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \mathscr{\infty} \\ & \stackrel{1}{\sim} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\mathrm{M}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \overline{+} \\ & \stackrel{\circ}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{+}{0} \\ & \stackrel{0}{0} \\ & \stackrel{1}{\circ} \end{aligned}$	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \hat{N}^{\infty} \\ & \stackrel{N}{N} \\ & \stackrel{N}{m} \end{aligned}$
	$\stackrel{8}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{8}{\circ}$	$\underset{\sim}{\mathrm{O}}$	$\underset{\sim}{\mathrm{O}}$	$\stackrel{\circ}{\circ}$	$\stackrel{8}{\circ}$	$\stackrel{\text { O}}{+}$	-	
	\circ $\stackrel{\circ}{10}$ $\stackrel{0}{0}$ 0	$\underset{\sim}{N}$	$\begin{aligned} & \text { N} \\ & \stackrel{0}{\infty} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \underset{\sim}{\prime} \end{aligned}$		$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \dot{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{+}{0} \\ & \stackrel{1}{0} \\ & \stackrel{1}{2} \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \\ & \stackrel{n}{m} \end{aligned}$
	8 10 10 0 0	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \underset{\sim}{\dot{N}} \end{aligned}$		$\begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \mathscr{\circ} \\ & \stackrel{\circ}{\infty} \\ & \infty \end{aligned}$	8 $\stackrel{0}{0}$ $\stackrel{0}{0}$ 	$\begin{aligned} & \text { ๙̈ } \\ & \underset{\sim}{\mathbf{m}} \\ & \underset{\sim}{2} \end{aligned}$	
	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{U}} \end{aligned}$	$\stackrel{\circ}{\mathrm{i}}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{U}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{j}} \end{aligned}$	©	$\begin{aligned} & \text { 8 } \\ & \stackrel{\omega}{6} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{\rho}}{\mathrm{e}} \end{aligned}$	

Appendix C: Application Variances

Table C-1: Business Solutions Applications with Customer-Level Errors
Table C-2: New Construction Pilot Program Applications with Customer-Level Errors
Table C-3: Direct Install Applications with Customer-Level Errors
Table C-4: Programmable Thermostat Program Application Variances
Table C-5: Hospitality Initiative Application Variances
Table C-6: Multi-Family Program Application Variances
Table C-7: Furnace Tune-up Initiative Program Application Variances

Table C-1. Business Solutions Program Applications with Customer-Level Errors

Project Number	Error Description
CE-12-23023	Address incorrect
CE-12-24787	Address incorrect
CE-12-22765	Address incorrect; Phone Number incorrect; Customer type incorrect
CE-12-25360	Address incorrect; Customer type incorrect
CE-12-23224	Address incorrect; City incorrect
CE-12-23223	Contact name incorrect; Address incorrect; City incorrect
CE-12-23219	Contact name incorrect; Address incorrect; City incorrect
CE-12-22549	Phone number incorrrect
CE-12-25179	Address incorrect
CE-12-27968	Contact name incorrect; Address incorrect
CE-12-24206	Address incorrect
CE-12-25720	Customer type incorrect
CE-12-26138	Address incorrect
CE-12-26580	Customer name incorrect
CE-12-25337	Contact name incorrect; Customer type incorrect
CE-12-27466	Contact name incorrect; Customer type incorrect
CE-12-26936	Customer name incorrect
CE-12-24921	Contact name incorrect
CE-12-27698	Contact name incorrect
CE-12-24228	Contact name incorrect; Customer type incorrect
CE-12-41386	Customer name incorrect; Address incorrect
CE-12-27215	Customer name incorrect; Phone number incorrect
CE-12-25861	Customer type incorrect
CE-12-26529	Contact name incorrect; Phone number incorrect
CE-12-25071	Phone number incorrrect
CE-12-23685	Contact name incorrect; Address incorrect; Customer type incorrect
CE-12-23681	Contact name incorrect; Address incorrect; Customer type incorrect
CE-12-25753	Customer type incorrect
CE-12-25069	Customer name incorrect; City incorrect
CE-12-41345	Address incorrect; Phone Number incorrect

CE-12-41338	Address incorrect; Customer type incorrect
CE-12-41623	Customer name incorrect; Address incorrect; Customer type incorrect
CE-12-26463	Customer type incorrect
CE-12-27971	Address incorrect
CE-12-24418	Customer name incorrect
CE-12-27948	Address incorrect
CE-12-25837	Phone number incorrrect; Customer type incorrect
CE-12-24888	Customer name incorrect; City incorrect
CE-12-27696	Contact name incorrect; Address incorrect; Customer type incorrect
CE-12-27881	Contact name incorrect; Address incorrect; Customer type incorrect
CE-12-26793	Contact name incorrect; City incorrect
CE-12-21635	Contact name incorrect; Address incorrect
CE-12-21634	Contact name incorrect
CE-12-26972	Contact name incorrect
CE-12-21822	Address incorrect
CE-12-25328	Contact name incorrect; Customer type incorrect
CE-12-20953	Customer type incorrect
CE-13-57546	Address incorrect; Phone Number incorrect
CE-12-27549	Contact name incorrect; Address incorrect
CE-13-57145	Address incorrect
CE-12-24101	Contact name incorrect
CE-12-56762	Customer type incorrect
CE-12-41973	Address incorrect
CE-12-26709	Contact name incorrect
CE-13-58492	Address incorrect
CE-13-58565	Customer type incorrect
CE-13-58642	Address incorrect
CE-13-58693	Contact name incorrect; Address incorrect
CE-13-56885	Contact name incorrect
CE-13-57596	Address incorrect
CE-13-57711	Contact name incorrect; Address incorrect; Customer type incorrect
CE-13-59056	Customer type incorrect
CE-13-59431	Address incorrect

CE-12-41683	Address incorrect
CE-13-59572	Contact name incorrect; Address incorrect
CE-13-60059	Contact name incorrect; Address incorrect
CE-13-56772	Contact name incorrect; Address incorrect; Customer type incorrect
CE-13-56878	Address incorrect
CE-13-57739	Contact name incorrect
CE-12-26761	Contact name incorrect
CE-13-56785	Customer name incorrect
CE-13-60810	Contact name incorrect
CE-13-57420	Contact name incorrect; Address incorrect
CE-12-24893	Address incorrect
CE-13-58411	Address incorrect
CE-12-23025	Contact name incorrect; Address incorrect
CE-13-76992	Address incorrect
CE-13-77538	Address incorrect
CE-13-77800	Address incorrect
CE-13-59236	Contact name incorrect; Address incorrect
CE-13-78069	Contact name incorrect; Customer type incorrect
CE-13-58199	Contact name incorrect; City incorrect; Customer type incorrect
CE-13-78425	Contact name incorrect
CE-13-58255	Address incorrect; Customer type incorrect
CE-11-15036	Address incorrect
CE-13-58762	Address incorrect
CE-13-58669	Contact name incorrect
CE-12-26850	City incorrect
CE-13-59660	Customer name incorrect
CE-13-57606	Address incorrect
CE-13-57449	Customer name incorrect; Address incorrect
CE-13-60702	Customer name incorrect

Table C-2. New Construction Pilot Program Applications with Customer-Level Errors

Project Number	Error Description
CE-12-25302	Address incorrect
CE-12-27338	City incorrect
CE-12-22507	Address incorrect
CE-12-23105	Customer type incorrect Address incorrect
CE-12-25733	Customer name incorrect; CE-12-27248Customer name incorrect CE-12-41695Contact name incorrect; Phone number incorrect
CE-13-57221	Address incorrect

Table C-3. Direct Install Applications with Customer-Level Errors

Project Number	Error Description
CEDI-13-19324	Account number incorrect; Phone number incorrect
CEDI-13-15081	Customer name incorrect; Phone number incorrect
CEDI-13-15122	Customer name incorrect; Phone number incorrect
CEDI-13-15123	Customer name incorrect; Address incorrect
CEDI-13-15372	Customer name incorrect; Phone number incorrect
CEDI-13-15579	Customer name incorrect; Phone number incorrect
CEDI-13-15743	Customer name incorrect
CEDI-13-16313	Customer name incorrect
CEDI-13-16345	Customer name incorrect
CEDI-13-16490	Customer name incorrect; Phone number incorrect
CEDI-13-16525	Customer name incorrect; Phone number incorrect
CEDI-13-16727	Customer name incorrect
CEDI-13-16888	Customer name incorrect
CEDI-13-17226	Customer name incorrect; City incorrect; Phone number incorrect
CEDI-13-17349	Customer name incorrect
CEDI-13-17535	Customer name incorrect; City incorrect
CEDI-13-17834	Customer name incorrect; Address incorrect
CEDI-13-18848	Customer name incorrect; Phone number incorrect
CEDI-13-19324	Customer name incorrect
CEDI-13-15756	Address incorrect
CEDI-13-15866	Address incorrect
CEDI-13-17191	Address incorrect
CEDI-13-15436	Address incorrect
CEDI-13-15285	ZIP code incorrect
CEDI-13-15525	ZIP code incorrect
CEDI-13-15235	Phone number incorrect
CEDI-13-15513	Phone number incorrect
CEDI-13-15525	Phone number incorrect

CEDI-13-15832	Phone number incorrect
CEDI-13-15870	Phone number incorrect
CEDI-13-16037	Phone number incorrect
CEDI-13-16060	Phone number incorrect
CEDI-13-16086	Phone number incorrect
CEDI-13-16176	Phone number incorrect
CEDI-13-16345	Phone number incorrect
CEDI-13-16401	Phone number incorrect
CEDI-13-16526	Phone number incorrect
CEDI-13-16888	Phone number incorrect
CEDI-13-16947	Phone number incorrect
CEDI-13-17477	Phone number incorrect
CEDI-13-17542	Phone number incorrect
CEDI-13-18240	Phone number incorrect
CEDI-13-18305	Phone number incorrect
CEDI-13-18568	Phone number incorrect
CEDI-13-18590	
CEDI-13-19026	Phone number incorrect
CEDI-13-19229	Phone number incorrect
CEDI-13-19284	
CEDI-13-19480	
CEDI-13-19486	

Table C-4. Programmable Thermostat Program Application Variances

Project Number	Error Description
CEDF-13-57763	Phone number incorrect; Energy type incorrect
CEDF-13-58555	Phone number incorrect
CEDF-13-59833	Phone number incorrect
CEDF-13-59911	Address incorrect
CEDF-13-60090	Phone number incorrect; Address incorrect
CEDF-13-60332	Phone number incorrect
CEDF-13-77367	Phone number incorrect
CEDF-13-78361	Address incorrect
CEDF-13-78618	Phone number incorrect
CEDF-13-78665	City incorrect
CEDF-13-78976	City incorrect
CEDF-13-79004	Phone number incorrect; Customer name incorrect
CEDF-13-79247	City incorrect
CEDF-13-79515	Phone number incorrect
CEDF-13-79901	Phone number incorrect; Customer name incorrect
CEDF-13-80252	Phone number incorrect
CEDF-13-80814	Address incorrect; City incorrect: ZIP code incorrect
CEDF-13-92661	Phone number incorrect; Customer name incorrect
CEDF-13-92705	Phone number incorrect
CEDF-13-92708	Address incorrect; City incorrect
CEDF-13-93532	Phone number incorrect; Address incorrect
CEDF-13-93555	Zip code incorrect

Table C-5. Hospitality Initiative Application Variances

Project Number	Error Description
CEDF-13-93237	Customer name incorrect
CEDF-13-93297	Customer name incorrect
CEDF-13-58066	Customer name incorrect
CEDF-13-58702	Customer name incorrect; Phone number incorrect
CEDF-13-58755	Customer name incorrect
CEDF-13-60213	Customer name incorrect
CEDF-13-77268	Customer name incorrect; Phone number incorrect
CEDF-13-78089	Customer name incorrect
CEDF-13-58739	Customer name incorrect
CEDF-13-60194	Customer name incorrect; Phone number incorrect
CEDF-13-78126	Customer name incorrect
CEDF-13-77253	Address incorrect
CEDF-13-93297	Address incorrect
CEDF-13-58059	Address incorrect
CEDF-13-79746	ZIP code incorrect; Phone number incorrect; Energy type incorrect
CEDF-13-60199	Phone number incorrect
CEDF-13-60376	Phone number incorrect
CEDF-13-77253	Phone number incorrect
CEDF-13-92891	Phone number incorrect
CEDF-13-93226	Phone number incorrect
CEDF-13-93237	Phone number incorrect
CEDF-13-93320	Phone number incorrect
CEDF-13-58706	Phone number incorrect
CEDF-13-58718	Phone number incorrect
CEDF-13-59155	Phone number incorrect
CEDF-13-59195	Phone number incorrect
CEDF-13-77292	Phone number incorrect
CEDF-13-77483	Phone number incorrect
CEDF-13-77785	Phone number incorrect

CEDF-13-78122	Phone number incorrect
CEDF-13-78382	Phone number incorrect
CEDF-13-78908	Phone number incorrect
CEDF-13-58059	Phone number incorrect
CEDF-13-92926	Measure description incorrect; Quantity
incorrect	

Table C-6. Multi-Family Program Application Variances

Project Number	Error Description
a0RC000000AZCd3MAH	Customer name incorrect; Address incorrect; Phone number incorrect
a0RC000000CcFJMMA3	Customer name incorrect; Phone number incorrect
a0RC000000D4IEqMAJ	Customer name incorrect; Phone number incorrect
a0RC0000007cYiZMAU	Address incorrect
a0RC000000CbvOLMAZ	Address incorrect
a0RC000000CdCEEMA3	Address incorrect; Phone number incorrect
a0RC000000CdfcrMAB	Address incorrect; Phone number incorrect
a0RC000000Cbh7jMAB	Address incorrect; Phone number incorrect
a0RC0000004CGfPMAW	Phone number incorrect
a0RC0000007ca1fMAA	Phone number incorrect
a0RC000000AaOJvMAN	Phone number incorrect
a0RC000000AbtCKMAZ	Phone number incorrect
a0RC000000AcdT4MAJ	Phone number incorrect
a0RC000000AcQOYMA3	Phone number incorrect
a0RC000000AYoFHMA1	Phone number incorrect
a0RC000000AZOU5MAP	Phone number incorrect
a0RC000000C3cdCMAR	Phone number incorrect
a0RC000000C3OceMAF	Phone number incorrect
a0RC000000C4U3IMAF	Phone number incorrect
a0RC000000C5EwmMAF	Phone number incorrect
a0RC000000C5oulMAB	Phone number incorrect
a0RC000000C688JMAR	Phone number incorrect
a0RC000000C6HIFMAV	Phone number incorrect
a0RC000000C6IFZMA3	Phone number incorrect
a0RC000000C6kLzMAJ	Phone number incorrect
a0RC000000C6QerMAF	Phone number incorrect
a0RC000000C6ryZMAR	Phone number incorrect
a0RC000000C6w2LMAR	Phone number incorrect
a0RC000000Ccpy6MAB	Phone number incorrect

a0RC000000CdfYpMAJ	Phone number incorrect
a0RC000000CeLEGMA3	Phone number incorrect
a0RC000000CKhTJMA1	Phone number incorrect
a0RC000000CMdvUMAT	Phone number incorrect
a0RC000000CN2CrMAL	Phone number incorrect
a0RC000000CNIxeMAH	Phone number incorrect
a0RC000000CNrtIMAT	Phone number incorrect
a0RC000000D62dGMAR	Phone number incorrect
a0RC000000D6SJVMA3	Phone number incorrect
a0RC000000DO0VjMAL	Phone number incorrect
a0RC000000C6w2LMAR	

Table C-7. Furnace Tune-up Initiative Program Application Variances

Project Number	Error Description
CEDF-13-57084	Account number incorrect
CEDF-13-57108	Account number incorrect; Customer name incorrect; Address incorrect
CEDF-13-59395	Account number incorrect
CEDF-13-56906	Customer name incorrect; Phone number incorrect
CEDF-13-56916	Customer name incorrect; Phone number incorrect; Energy type incorrect
CEDF-13-57139	Customer name incorrect
CEDF-13-57265	Customer name incorrect
CEDF-13-57833	Customer name incorrect
CEDF-13-57929	Customer name incorrect; Phone number incorrect
CEDF-13-58514	Customer name incorrect; Phone number incorrect
CEDF-13-58515	Customer name incorrect; Phone number incorrect
CEDF-13-58583	Customer name incorrect; Phone number incorrect
CEDF-13-58588	Customer name incorrect; Address incorrect
CEDF-13-59395	Customer name incorrect
CEDF-13-59396	Customer name incorrect
CEDF-13-59466	Customer name incorrect
CEDF-13-59536	Customer name incorrect; Phone number incorrect
CEDF-13-57264	Address incorrect; Energy type incorrect
CEDF-13-58792	Address incorrect; Phone number incorrect
CEDF-13-59405	Address incorrect
CEDF-13-57631	ZIP code incorrect
CEDF-12-56676	Phone number incorrect
CEDF-12-56719	Phone number incorrect
CEDF-12-56727	Phone number incorrect
CEDF-13-56943	Phone number incorrect
CEDF-13-56948	Phone number incorrect
CEDF-13-56952	Phone number incorrect
CEDF-13-57084	Phone number incorrect

CEDF-13-57101	Phone number incorrect
CEDF-13-57139	Phone number incorrect
CEDF-13-57254	Phone number incorrect
CEDF-13-57257	Phone number incorrect
CEDF-13-57260	Phone number incorrect
CEDF-13-57277	Phone number incorrect
CEDF-13-57395	Phone number incorrect
CEDF-13-57631	Phone number incorrect
CEDF-13-57833	Phone number incorrect
CEDF-13-57837	Phone number incorrect
CEDF-13-57840	Phone number incorrect
CEDF-13-58345	Phone number incorrect
CEDF-13-58513	Phone number incorrect
CEDF-13-59134	Phone number incorrect
CEDF-13-59138	Phone number incorrect
CEDF-13-59246	Phone number incorrect
CEDF-13-59276	Phone number incorrect
CEDF-13-59281	Phone number incorrect
CEDF-13-59286	Phone number incorrect
CEDF-13-59290	Phone number incorrect
CEDF-13-59379	Phone number incorrect
CEDF-13-59395	Phone number incorrect
CEDF-13-59396	Phone number incorrect
CEDF-13-59405	Phone number incorrect
CEDF-13-59466	Phone number incorrect
CEDF-13-59513	Phone number incorrect
CEDF-13-59526	Phone number incorrect
CEDF-13-59543	Phone number incorrect
CEDF-13-59600	Phone number incorrect

In the matter of the application of Consumer) Energy Company for Authority to Reconcile) Its 2013 Energy Optimization Plan Costs)

Case No. U-17601

Associated With the Plan Approved in)
Case Nos. U-16670 and U-17138.))

DIRECT TESTIMONY

OF

LAURA M. COLLINS

ON BEHALF OF
CONSUMERS ENERGY COMPANY
Q. Please state your name and business address.
A. Laura M. Collins, One Energy Plaza, Jackson, Michigan.
Q. By whom are you employed and in what capacity?
A. I am employed by Consumers Energy Company ("Consumers Energy" or the "Company") as a Senior Rate Analyst II in the Pricing section of the Rates Department.
Q. Please describe your educational background and business experience.
A. I received a Bachelor of Business Administration degree in Finance in December 2000 from the University of Michigan - Flint. In January 2001, I joined Consumers Energy as a Rate Analyst in the Revenue Requirements section of the Rates Department. In August 2003, I was promoted to a General Rate Analyst. In August 2007, I was promoted to a Senior Rate Analyst I and in July 2010 I was promoted to a Senior Rate Analyst II. In April 2012 I joined the Pricing section of the Rates Department.
Q. What are your responsibilities as a Senior Rate Analyst II for Consumers Energy?
A. My current responsibilities include rate design, research and development of additional services, analyses for Senior Management, and customer-specific rate analyses.
Q. Have you previously filed testimony with the Michigan Public Service Commission ("MPSC" or the "Commission")?
A. Yes. I filed testimony in the Gas Cost Recovery ("GCR") Plan Case Nos. U-13220, U-13570, U-13916, U-14403, U-14716, and U-15454 and the GCR Reconciliation Case Nos. U-12752-R, U-13570-R, U-14403-R, and U-14716-R. I also filed testimony in the Gas General Rate Case Nos. U-13730 and U-17197; Power Supply Cost Recovery ("PSCR") Plan Case Nos. U-16045, U-16432, and U-16890; PSCR Reconciliation Case Nos. U-13917-R, U-14274-R, U-14701-R, U-15001-R, U-15415-R, U-15675-R,

LAURA M. COLLINS

DIRECT TESTIMONY

U-16045-R, and U-16432-R; and Energy Optimization ("EO") Reconciliation Case Nos. U-16736 and U-17281. In addition, I testified in the Electric General Rate Case No. U-14347.
Q. What is the purpose of your testimony in this proceeding?
A. The purpose of my testimony is to present a comparison of the actual EO surcharge revenue collected during 2013 to the anticipated 2013 revenue for the Company's Commission-approved EO Plan. I will also discuss the Company’s proposal for recovery of the EO program performance incentives earned in 2013 and introduce the proposed tariff sheets for the surcharges.
Q. Are you sponsoring any exhibits?
A. Yes, I am sponsoring the following exhibits:

Exhibit A-6 (LMC-1) Electric EO Surcharge Incentive Component
Exhibit A-7 (LMC-2)
Gas EO Surcharge Incentive Component
Exhibit A-8 (LMC-3)
Electric Surcharge Tariff Sheet
Exhibit A-9 (LMC-4)
Gas Surcharge Tariff Sheet
Q. Were these exhibits prepared by you or under your supervision?
A. Yes.
Q. What amount of EO revenue was collected during the year 2013?
A. As shown on Exhibit A-1 (KLA-1), page 1 of 4, the actual 2013 electric EO surcharge collections of $\$ 66.1$ million were $\$ 3.1$ million lower than the Company’s electric plan spending of approximately $\$ 69.2$ million. As shown on Exhibit A-2 (KLA-2), page 1 of 4, the actual 2013 gas EO surcharge collections of $\$ 48.0$ million were $\$ 172,000$ higher than the Company's gas plan spending of approximately $\$ 47.8$ million.
Q. Given your observations of the actual program collections during 2013 versus the Plan program spending, are you proposing any adjustments to the program surcharges at this time?
A. No, the Company does not believe it necessary to propose any surcharge adjustments for the programs at this time. The EO program is funded by surcharges that are levelized over multiple years and re-evaluated with each EO Plan case filing. Therefore, it is not necessary to make any surcharge adjustments in the Reconciliation case.
Q. Did the Company earn an EO program performance incentive in 2013?
A. Yes. As testified to by Company witness James P. Schwanitz, the Company earned a $\$ 10.4$ million performance incentive in 2013 for its electric business and a $\$ 7.2$ million performance incentive in 2013 for its gas business.
Q. Please describe the manner in which the Company proposes to recover the earned program performance incentive.
A. The Company proposes to recover this performance incentive through a 12-month surcharge to its electric and gas EO customers. As shown on Exhibits A-16 (JPS-1) and A-17 (JPS-2), \$10.4 million would be recovered from electric customers, while $\$ 7.2$ million would be recovered from gas customers. In addition to these amounts, the Company will roll-in the cumulative over-collection amounts from the 2010 and 2011 incentive surcharges, as shown on Exhibit A-3 (KLA-3) and Exhibit A-4 (KLA-4). The Company is proposing that the 12-month performance incentive surcharge be implemented prospectively, beginning with the January 2015 billing cycle for a period of 12 months.

LAURA M. COLLINS

DIRECT TESTIMONY

Q. Why is the Company proposing to collect the incentive over 12 months?
A. As discussed by Company witness Katherine L. Allen, based on accounting rules the incentive needs to be fully collected no later than December 31, 2015. Ms. Allen discusses this further in her testimony.
Q. Is the Company proposing to collect interest on the incentive?
A. No. While the Company feels that spreading the collection of the incentive out over 12 months reduces the value of the award due to the time value of money, the Company recognizes that the collection of interest has been rejected in prior EO Reconciliation cases.
Q. Typically surcharges are issued beginning with the first cycle of the first billing month 30 days following the issuance of a Commission order approving the surcharge. Why is the Company proposing to start the 12-month performance incentive surcharge with the January 2015 billing cycle instead?
A. There is currently an incentive surcharge in place from the 2012 EO Reconciliation case Order (Case No. U-17281). This surcharge will be completed in December of 2014. In order to avoid having two incentive surcharges in place at the same time and to minimize the burden on customers, the Company is proposing to wait until the 2012 performance incentive surcharge is complete before implementing the surcharge for the 2013 performance incentive.
Q. How would the incentive be allocated to each customer rate class and in what amount?
A. The Company proposes that the rate design for any incentive approved for collection be allocated to each customer class in the same manner the approved low-income expenses were allocated to each customer class in the approved EO Plan, on the basis of Plan year customer class program cost allocation. As reflected in Exhibit A-6 (LMC-1), the total electric surcharge obligation of each customer group (col. D, line 1-9) was established utilizing a proration factor derived from the customer group low-income cost responsibility of the approved EO Plan. The customer obligation was divided by the forecasted billing determinants (col. E, lines 1-9) for each customer group to establish the EO incentive component (col. F, line 1-9) to be added to their existing surcharge for the months of application. The surcharges should be billed on the same basis as the current EO surcharges, i.e., the gas customers billed on a volumetric per Mcf basis, electric residential customers on a volumetric per kWh basis, and the electric commercial and industrial customers on a per customer meter basis.

The calculations of the gas customer EO incentive surcharge components are shown on Exhibit A-7 (LMC-2) and follow the same derivation as explained above for the electric surcharges. The Company proposes that any difference between the incentive amount collected and that amount approved be rolled into the following year's EO Reconciliation filing.
Q. Please describe Exhibit A-8 (LMC-3) Electric Surcharge Tariff Sheet.
A. Exhibit A-8 (LMC-3) provides the surcharges proposed to be billed to electric customers, inclusive of both the approved EO program costs and the proposed EO earned performance incentives starting in January 2015.
Q. Please describe Exhibit A-9 (LMC-4) Gas Surcharge Tariff Sheet.
A. Exhibit A-9 (LMC-4) provides the surcharges proposed to be billed to gas customers, inclusive of both the approved EO program costs and the proposed EO earned performance incentives starting in January 2015.

LAURA M. COLLINS
DIRECT TESTIMONY
Q. What impact will the incentive surcharge proposed in this docket have on a typical residential electric customer's bill?
A. Moving from the 2012 incentive surcharge amount to the 2013 surcharge will have no impact on the average residential electric customer's bill.
Q. What impact will the incentive surcharge have on a typical residential gas customer's bill?
A. Moving from the 2012 incentive surcharge amount to the 2013 surcharge will decrease the average residential gas customer's bill by about $\$ 0.02 /$ month.
Q. Does this conclude your testimony?
A. Yes.

In the matter of the application of Consumer)
Energy Company for Authority to Reconcile)
Its 2013 Energy Optimization Plan Costs)
Case No. U-17601
Associated With the Plan Approved in) Case Nos. U-16670 and U-17138.

EXHIBITS

OF
LAURA M. COLLINS
ON BEHALF OF
CONSUMERS ENERGY COMPANY

May 2014
Case No.: U-17601

[^16]Case No．：U－17601 Exhibit：A－7（LMC－2） Witness：LMCollins
Date：May 2014 Date．May 1 of 1

		（G）	Lt9＇6zL＇9	\＄	00＇T	979＇268＇く\＄	letol	\downarrow
0too 0 \＄	676＇St8＇0¢		20て＇6t	\＄	$\overline{\text { ELOOO }}$	SOL＇Ls		ε
OSzo 0 \＄	TSO＇ZLE＇s8		Sts＇LET「て	\＄	9くさと0	976＇90s＇乙		乙
0080\％${ }^{\circ}$	$000 '$＇sce＇t¢		ท68＇で¢＇t	\＄	TSL9 0		гฺ！！uәp！səy	τ
（ ${ }^{\text {）}}$	（a）		（p）		（）	（q）	（e）	
（ JW dad）	（Jow）		（\＄）			（\＄）		
	（t）stueu！umproa		（ع）पоп！eb！！qo		（z）1010¢	（T）Kı！！！！！	ū！̣autusəo	गบप़
әб．eyэ．．ns	ıenuuv əbieyons		ә8лечэ．．ns		uolpexodd	1505		
Oヨ se9	dnox ¢əшо⿺𠃊⿴囗					әшоэии－моา		
人ıuruow								

[^17]
SURCHARGES

Rate Schedule

Residential Rates
Rate GS and GSD ${ }^{(1)}$
Tier 1: $0-1,250 \mathrm{kWh} / \mathrm{mo}$.
Tier 2: 1,251-5,000 kWh/mo.
Tier 3: 5,001-30,000 kWh/mo.
Tier 4: 30,001-50,000 kWh/mo.
Tier 5: > 50,000 kWh/mo.
Rate GP, GPD, GPTU and MMPP ${ }^{(1)}$
Tier 1: $0-5,000 \mathrm{kWh} / \mathrm{mo}$.
Tier 2: 5,001-10,000 kWh/mo.
Tier 3: 10,001-30,000 kWh/mo.
Tier 4: 30,001-50,000 kWh/mo.
Tier 5: > 50,000 kWh/mo.
Rate E-1
Rate GSG-1
Rate GSG-2
Rate GML ${ }^{(6)}$
Tier 1: $0-1,250 \mathrm{kWh} / \mathrm{mo}$.
Tier 2: 1,251-5,000 kWh/mo.
Tier 3 : $>5,000 \mathrm{kWh} / \mathrm{mo}$.
Rate GUL ${ }^{(6)}$
Rate GU-XL ${ }^{(6)}$
Rate GU
Tier 1: $0-1,250 \mathrm{kWh} / \mathrm{mo}$.
Tier 2: 1,251-5,000 kWh/mo.
Tier 3: >5,000 kWh/mo.
Rate PA
Rate ROA-R, ROA-S, ROA-P

Energy Efficiency
Electric Program Surcharge
(Case No. U-17601)
Effective beginning the
January 2015 Bill Month
$\$ 0.002843 / \mathrm{kWh}$

\$ 0.90/billing meter
\$ 1.80/billing meter
\$ 2.70/billing meter
\$ 0.25/luminaire
\$ 0.25/luminaire
\$ 0.20/billed account
\$ 0.80/billed account
\$ 1.40/billed account
NA
NA
\$ 1.64/billing meter
\$ 8.91 /billing meter
\$ 54.05 /billing meter
\$ 54.05 /billing meter
\$ 54.05 /billing meter
\$ 3.31 /billing meter
\$ 24.42 /billing meter
\$ 61.05 /billing meter
\$ 146.53 /billing meter
\$ 709.10 /billing meter
NA
NA
$N A^{(4)}$
Energy Efficiency Self-Directed
Customer Surcharge
(Case No. U-17351)
Effective beginning the
January 2014 Bill Month ${ }^{(2)}$
NA
\$ 0.08 /billing meter
\$ 0.42 /billing meter
\$ 2.54 /billing meter
\$ 2.54 /billing meter
\$ 2.54 /billing meter
\$ 0.16 /billing meter
\$ 1.18 /billing meter
\$ 2.95 /billing meter
\$ 7.04 /billing meter
\$ 31.88 /billing meter
NA
NA
NA

NA	NA
NA	NA
NA	NA
NA	NA
NA	NA
NA	NA
NA	NA
NA	NA
NA	NA

As in Delivery Rate Schedule

All Surcharges shall be applied on a monthly basis. The customer's consumption will be reviewed annually in the January bill month. Following the annual review, the customer may be subsequently moved to the Surcharge level for their applicable rate for the next billing period based on the customer's average consumption for the previous year. In situations where no historical consumption is available, the monthly Surcharge level will be based on the lowest consumption category for the secondary rate schedules or the lowest consumption category for primary rate schedules. No retroactive adjustment will be made due to the application of the REP or EE Surcharges associated with increases or decreases in consumption.
${ }^{(1)}$ Municipal Pumping customers shall be excluded from the Renewable Energy Plan Surcharge.
${ }^{(2)}$ An eligible customer who files and implements a self-directed plan in compliance with Rule C12 is required to pay the Energy Efficiency Self-Directed Program Surcharge.
${ }^{(3)}$ An Energy Efficiency Program Surcharge will be in effect for the period of the June 2009 Bill Month through the December 2015 Bill Month. The amount may vary during specific months as authorized by the Michigan Public Service Commission. Applicable cases include Case Nos. U-15805, U-16302, U16303, U-16412, U-16670, U-16736, U-17281, U-17351, and U-17601. The Surcharge for the period of the January 2015 Bill Month through the December 2015 Bill Month includes a financial incentive award approved by the Michigan Public Service Commission in Case No. U-17601. The Company will file a new tariff sheet to reflect the change in surcharges once the financial incentive recovery period has been completed.
${ }^{(4)}$ Rate GSG-2 Customers are eligible to opt-in to the Energy Efficiency Electric Program Surcharge for a two year pilot program beginning with the June 2012 bill month. A GSG-2 customer electing to participate in the Energy Efficiency Electric Program will be charged the GPD, Tier 5: > 50,000 kWh/mo rate of $\$ 709.10$ per billing meter per month.
${ }^{(5)}$ A Renewable Energy Plan Surcharge will be in effect for the period of the September 2009 Bill Month through the August 2029 Bill Month. The amount may vary during specific months as authorized by the Michigan Public Service Commission. Applicable cases include Case Nos. U-15805, U-16543 and U-16581.
${ }^{(6)}$ Customer-Owned lighting fixtures served on Rate GML, GUL and Rate GU-XL are eligible to opt-in to the Energy Efficiency Electric Program Surcharge. A GML, GUL or GU-XL customer electing to participate in the Energy Efficiency Electric Program will be charged the applicable surcharge as shown for Rate GS and GSD or rate GP, GPD, GPTU and MMPP as applicable per participating account per month.

Issued XXXXX XX, 2014 by	Effective for bills rendered on and after J. G. Russell, (he Company's January 2015 Billing Month
Jackson, Michigan	Issued under authority of the
	Michigan Public Service Commission dated XXXXX XX, 2014
in Case No. U-17601	

SURCHARGES

Each Rate Schedule may be subject to Rule No. C8., Customer Attachment Program.

	Energy Efficiency ${ }^{(1)}$ Program Surcharge (Case No. U-17601) Effective beginning the		
January 2015 Bill Month		\quad	Energy Efficien Large Gas Transpor Opt-Out Pilot Program Surcha (Case No. U-16670
:---:			
Rate Schedule			

${ }^{(1)}$ All surcharges shall be applied on a monthly basis. The customer's consumption will be reviewed annually in the January bill month. Following the annual review, the customer may be subsequently moved to the surcharge level for their applicable rate for the next billing period based on the customer's average consumption for the previous year. No retroactive adjustment will be made due to the application of EE surcharges associated with increases or decreases in consumption.
${ }^{(2)}$ An Energy Efficiency Program Surcharge will be in effect for the period of the June 2009 Bill Month through the December 2015 Bill Month. The amount may vary during specific months as authorized by the Michigan Public Service Commission. Applicable cases include Case Nos. U-15889, U-16302, U-16303, U-16412, U-16770, U-16736, U-17281, U-17351, and 17601. The surcharge for the period of the January 2015 Bill Month through the December 2015 Bill Month includes a financial incentive award approved by the Michigan Public Service Commission in Case No. U-17601. The Company will file a new tariff sheet to reflect the change in surcharges once the financial incentive recovery period has been completed.
${ }^{(3)}$ Gas Transportation customers on Rate ST, LT or XLT using more than 100,000 Mcf per year may be eligible to opt-out of the Energy Efficiency program. Eligible customers who elect to opt-out of the Energy Efficiency program will pay the Energy Efficiency Large Gas Transportation Opt-Out Pilot Program surcharge per Mcf on a monthly basis. Eligibility is determined solely by the Company and is dependent upon terms and conditions of the Energy Efficiency Large Gas Transportation Customer Opt-Out Pilot Program as authorized in the April 17, 2012 order in Case No. U-16670.

Issued XXXXX XX, 2014 by
J. G. Russell,

President and Chief Executive Officer, Jackson, Michigan

Effective for bills rendered on and after

 the Company's January 2015 Billing MonthIssued under authority of the Michigan Public Service Commission dated XXXXX XX, 2014
in Case No. U-17601

In the matter of the application of Consumer) Energy Company for Authority to Reconcile) Its 2013 Energy Optimization Plan Costs)
Associated With the Plan Approved in)
Case Nos. U-16670 and U-17138.)
\qquad

DIRECT TESTIMONY

OF

M. SAMI KHAWAJA

ON BEHALF OF
CONSUMERS ENERGY COMPANY

May 2014

M. SAMI KHAWAJA
 DIRECT TESTIMONY

Q. Please state your name and business address.
A. My name is M. Sami Khawaja. My business address is 720 SW Washington, Suite 400, Portland, Oregon 97205.
Q. Please describe your position and responsibilities.
A. I am employed by The Cadmus Group, Inc. ("Cadmus"). My title is Executive Consultant in the Energy Services Division ("ESD"). ESD provides program and market analysis, statistical and economic analysis, and measurement and engineering services. We currently employ over 200 Demand Side Management ("DSM") professionals in five major offices. Our clients include investor-owned utilities, public utilities commissions, state agencies, and international organizations. We currently run portfolio evaluations in: Ohio, Illinois, Missouri, New York, Massachusetts, Oregon, Washington, Idaho, Utah, Arizona, Maryland, Pennsylvania, Indiana, Arkansas, Wisconsin, South Carolina, North Carolina, and California.
Q. Please describe your education and professional experience.
A. I hold a Ph.D. in Systems Science and Economics from Portland State University. Prior to my present position with Cadmus, I owned and ran Quantec, LLC for ten years. Quantec was a DSM planning and evaluation consulting firm with offices in Portland, Oregon and Boulder, Colorado. Earlier in my career, I was employed as a Project Director at Barakat and Chamberlin (another DSM planning and evaluation firm). I also was employed as a Senior Analyst at PacifiCorp. I am currently an adjunct professor of economics at the Graduate Applied Energy Economics and Policy Program at Portland State University. I have conducted various kinds of energy-efficiency program evaluations for international and domestic clients. Throughout my 30 years of work in

M. SAMI KHAWAJA
 DIRECT TESTIMONY

the energy industry, I have performed and directed over 100 DSM program evaluations. I have also written extensively on the subject. I have presented at over 50 conferences. I am published in Public Utilities Fortnightly, Energy Journal, American Journal of Agricultural Economics, Contemporary Policy Issues, Journal of Applied Mathematics and Decision Sciences, and Home Energy. I have taught workshops to clients in the United States and internationally on Evaluation, Statistics, Financial Modeling, Cost Effectiveness Analysis, and Introductory Demand Side Management. I am a contributing author to national and international protocols for conducting evaluations, measurement, and verification of DSM programs. In particular, I have contributed to the following guides and protocols:

- International Performance Measurement and Verification Protocol ("IPMVP");
- Program Impact Evaluation Guide for the National Action Plan for Energy Efficiency ("NAPEE");
- Impact Evaluation Guide for the Electric Power Research Institute ("EPRI"); and
- United States Department of Energy ("DOE") Uniform Method Protocols ("UMP").

I have also provided expert testimony to the following entities:

- Washington Utilities and Transportation Commission;
- Public Utilities Commission of Ohio;
- Utah Public Utilities Commission; and
- Oregon Public Utilities Commission.
Q. What is the purpose of your testimony in this proceeding?
A. The purpose of my testimony is to present certified energy savings produced by Consumers Energy Company ("Consumers Energy" or the "Company") for it residential programs for the 2013 program year.

M. SAMI KHAWAJA

DIRECT TESTIMONY

Q. Are you sponsoring any exhibits with your direct testimony?
A. Yes, I am sponsoring one exhibit.

- Exhibit A-10 (MSK-1): Consumers Energy 2013 Residential Energy Optimization Certification Report.

This is a 129-page report produced by Cadmus. Cadmus has worked with the Company as an independent, third-party evaluator. In this capacity, Cadmus audited and certified the 2013 residential electric and gas energy savings achieved by the Company's residential Energy Optimization ("EO") programs.
Q. Has this exhibit been prepared by you or under your supervision?
A. Yes.
Q. How has Cadmus certified the Company's 2013 residential EO program energy and demand savings?
A. The Company engaged Cadmus to perform this duty. Cadmus employed a rigorous process to certify energy and demand savings for the Company's residential EO programs that included:

- Comparison of reported savings results to data maintained in Consumers Energy's and implementation contractor's tracking systems to ensure utilization of an accurate process for calculating total savings values by measure, program, and the total portfolio;
- Confirmation that the equipment specified on the incentive applications and logged in the tracking system met program incentive requirements;
- Review of random, statistically significant samples of incentive applications for each program to determine that data were consistently and accurately represented in the tracking systems; and
- Verification that correct factors were used to calculate savings, including: Michigan Energy Measures Database ("MEMD") saving values; evaluation derived installation rates and engineering adjustments; appropriate net-to gross factors; and the application of the long-life equipment savings multiplier for measures with lives greater than ten years.

M. SAMI KHAWAJA
 DIRECT TESTIMONY

Q. Has Cadmus reviewed other performance metrics related to the Company's residential EO program?
A. Yes. Cadmus verified savings from the low-income programs and compared those to the targets established in the Company's EO plan filed with the Michigan Public Service Commission in Case No. U-16670. In addition, Cadmus verified the number of ENERGY STAR ${ }^{\circledR}$ homes constructed under the New Homes Program in 2013 and compared that to the number verified in 2012.
Q. What are Cadmus' qualifications for certifying the residential energy savings and other performance metrics?
A. In more than two decades of working in the energy industry, Cadmus has conducted more than 1,000 process, impact, and program evaluations. Much of this work has involved multi-year, multi-program (portfolio) projects, most of which were residential evaluations. Cadmus team members have contributed to some of the most widely used evaluation protocols, including the IPMVP, NAPEE Evaluation Guidelines, DOE UMP, EPRI Impact Evaluation Guide, and the California Evaluation Protocols.
Q. What were Cadmus' conclusions regarding the amount of electric savings for the Company's 2013 residential EO programs?
A. Table 7 in Cadmus' certification report, (Exhibit A-10 (MSK-1)), shows that the Company calculated $186,208,777 \mathrm{kWh}$ of net savings. Cadmus' audit of this calculation validated that the Company saved 99.85% of that amount, $185,935,693 \mathrm{kWh}$.

M. SAMI KHAWAJA
 DIRECT TESTIMONY

Q. What were Cadmus' conclusions regarding the amount of electric demand savings for the Company's 2013 residential EO programs?
A. Table 9 in Cadmus' certification report (Exhibit A-10 (MSK-1)) shows that the Company calculated 19,709 kW of net demand savings. Cadmus' audit of this calculation validated that the Company saved 99.17% of that amount, $19,546 \mathrm{~kW}$.
Q. What were Cadmus' conclusions regarding the amount of gas savings for the Company's 2013 residential EO programs?
A. Table 11 of Cadmus' certification report (Exhibit A-10 (MSK-1) shows that the Company calculated 1,117,621 MCF of net residential savings. Cadmus' audit of the Company's calculation validated that the Company saved 100.76% of that amount, 1,126,119 MCF.
Q. What were Cadmus' conclusions regarding the amount of savings from the Company's 2013 programs for low-income customers?
A. Table 13 of Cadmus' certification report (Exhibit A-10 (MSK-1) shows that Cadmus calculated electric savings from low-income programs of $2,075,472 \mathrm{kWh}$. This is 134.77% of the established savings target of $1,540,000 \mathrm{kWh}$. In addition, Cadmus calculated gas savings of 89,201 MCF. Gas savings were 138.58% of the savings target of 64,366 MCF.
Q. What were Cadmus’ conclusions regarding the number of ENERGY STAR ${ }^{\circledR} 3.0$ new homes constructed?
A. Table 14 of Cadmus' certification report (Exhibit A-10 (MSK-1) shows that Cadmus verified 318 ENERGY STAR ${ }^{\circledR} 3.0$ homes were constructed through the Company's new construction program in 2013. This compares to 194 ENERGY STAR ${ }^{\circledR} 3.0$ program
M. SAMI KHAWAJA

DIRECT TESTIMONY
homes constructed in 2012. Participation in 2013 represents a 163.92% increase over 2012 participation.
Q. Does that conclude your testimony?
A. Yes.

In the matter of the application of Consumer)
Energy Company for Authority to Reconcile)
Its 2013 Energy Optimization Plan Costs)
Case No. U-17601
Associated With the Plan Approved in
) Case Nos. U-16670 and U-17138.

EXHIBIT
OF

M. SAMI KHAWAJA

 ON BEHALF OFCONSUMERS ENERGY COMPANY

May 2014

2013 Program Year

May 21, 2014

Presented to:

Joseph Forcillo
Director, Energy Efficiency Research \& Evaluation
Consumers Energy Company
One Energy Plaza
Jackson, MI 49201

Presented by:
Cadmus
333 Albert Avenue | Suite 610
East Lansing, MI 48823
517.333.3361

This report is a deliverable submitted to Consumers Energy as part of a multiyear, independent evaluation contract to conduct impact, process, and market assessment studies of residential Energy Optimization programs administered by Consumers Energy.

The independent evaluation team includes the following firms:
Cadmus, Contract Lead
Tetra Tech
NMR Group

Prepared by:
M. Sami Khawaja, Ph.D.

Jill Steiner
Tyler Browne
David MoIner
Adam Wirtshafter

Table of Contents

Certification Letter
Introduction 1
Overview 1
Objective and Scope 1
Methodology 2
Task 1: Database Collection 3
Task 2: Database Review 3
Task 3: Documentation Review 3
Task 4: Measure-Level Savings Analysis 6
Summary of Certified Savings 7
Certified Net kWh Savings 8
Certified Net kW Savings 10
Certified Net MCF Savings 12
Measure Life and Lifetime Savings 14
Certification of Other Performance Incentive Metrics 15
Appendix A: ENERGY STAR Lighting Program 17
Task 2: Database Review 17
Task 3: Documentation Review 17
Task 4: Measure-Level Savings Analysis 18
Major Findings by Fuel Type 20
Appendix B: ENERGY STAR Appliances Program 22
Task 2: Database Review 22
Task 3: Documentation Review 22
Task 4: Measure-Level Savings Analysis 24
Major Findings by Fuel Type. 26
Appendix C: HVAC and Water Heating Program 32
Task 2: Database Review 32
Task 3: Documentation Review 32
Task 4: Measure-Level Savings Analysis 33
Major Findings by Fuel Type. 35
Appendix D: Income Qualified Program 40
Task 2: Database Review 40
Task 3: Documentation Review 41
Task 4: Measure-Level Savings Analysis 42
Major Findings by Fuel Type 45
Appendix E: Appliance Recycling Program 54
Task 2: Database Review 54
Task 3: Documentation Review 54
Task 4: Measure-Level Savings Analysis 54
Major Findings by Fuel Type. 56
Appendix F: Multifamily Program 58
Task 2: Database Review 58
Task 3: Documentation Review 58
Task 4: Measure-Level Savings Analysis 60
Major Findings by Fuel Type. 63
Appendix G: THINK! Energy Program. 73
Task 2: Database Review 73
Task 3: Documentation Review 73
Task 4: Measure-Level Savings Analysis 73
Major Findings by Fuel Type 75
Appendix H: Home Performance with ENERGY STAR Program 78
Task 2: Database Review 78
Task 3: Documentation Review 78
Task 3: Measure-Level Savings Analysis 80
Major Findings by Fuel Type 83
Appendix I: Home Energy Analysis Program 93
Task 2: Database Review 93
Task 3: Documentation Review 93
Task 4: Measure-Level Savings Analysis 95
Major Findings by Fuel Type. 97
Appendix J: Insulation and Windows Program 103
Task 2: Database Review 103
Task 3: Documentation Review 103
Task 4: Measure-Level Savings Analysis 104
Major Findings by Fuel Type. 106

Appendix K: New Home Construction Program.. 111
Task 2: Database Review 111
Task 3: Documentation Review 111
Task 4: Measure-Level Savings Analysis 112
Performance Incentive Metric 113
Major Findings by Fuel Type. 114
Appendix L: Home Energy Reports Program. 117
Task 2: Database Review 117
Task 3: Documentation Review 117
Task 4: Measure-Level Savings Analysis 117
Major Findings by Fuel Type. 119
Appendix M: Measure Descriptions by Program 121

May 21, 2013
Consumers Energy Company
One Energy Plaza Drive
Jackson, MI 49201-2357
RE: Residential Energy Optimization Certification Report: 2013 Program Year
Dear Consumers Energy Company:
This document reports the certified 2013 electric demand and energy savings and natural gas savings from the Residential Energy Optimization Programs offered by Consumers Energy. Cadmus performed a comprehensive audit of the Consumers Energy and Program Implementer data tracking systems for the following programs: (1) ENERGY STAR ${ }^{\circledR}$ Lighting; (2) ENERGY STAR Appliances; (3) HVAC and Water Heating; (4) Income Qualified Weatherization; (5) Appliance Recycling; (6) Multifamily; (7) Think! Energy; (8) Home Performance with ENERGY STAR; (9) Home Energy Analysis; (10) Insulation and Windows; (11) New Home Construction; and (12) Home Energy Reports.

The objective of this certification was to review the accuracy of the electric and gas savings of the 2013 programs tracked by Consumers Energy and its implementation contractors. As indicated in the attached report, Cadmus herby certifies the following:

- $185,935,693 \mathrm{kWh}$ of annual energy savings, or 99.85% of the $186,208,777 \mathrm{kWh}$ tracked by Consumers Energy for all residential programs;
- $19,546 \mathrm{~kW}$ savings, or 99.17% of the $19,709 \mathrm{~kW}$ tracked by Consumers Energy for all residential programs; and
- $1,126,119$ MCF savings, or 100.76% of the $1,117,621$ MCF tracked by Consumers Energy for all residential programs.

The certified savings include savings from the Long-Life Equipment Savings Multiplier of 1,195,677 kWh, 218 kW , and 78,417 MCF.

A second objective of this certification is to review Consumers Energy's achievements against the following performance metrics defined by the Michigan Public Service Commission (MPSC):

- Savings from the Income Qualified Program exceed targets established in Consumers Energy's Energy Optimization Plan (Case No. U-16670) by more than 20\%; and
- The number of ENERGY STAR 3.0 new homes constructed and incented through the New Home Construction Program in 2013 increase by more than 60% over 2012 levels.

As indicated in the attached report, Cadmus also certifies the following:

- Income Qualified Program electric energy savings are 2,075,472 kWh and exceed the established target of 1,540,000 kWh by 34.77\%;
- Income Qualified Program natural gas energy savings are 89,201 MCF and exceed the established target of 64,366 MCF by 38.58%; and
- The number of ENERGY STAR 3.0 homes constructed and incented through the New Home Construction Program in 2013 is 318 and exceeds the 2012 number of 194 by 63.92%.

The certification did not include evaluation of the achieved energy impact results from the 2013 Residential Energy Optimization programs. Results of comprehensive impact evaluations will be documented in subsequent reports submitted under separate cover.

Sincerely,

M. Sami Khawaja, Ph.D.

Executive Consultant, The Cadmus Group, Inc.

Introduction

Overview

This report presents certified energy savings from all 2013 residential energy optimization (EO) programs administered by Consumers Energy Company. Cadmus reviewed and certified these energy savings as part of our comprehensive evaluation of Consumers Energy's residential EO portfolio.

Objective and Scope

The purpose of this certification was for Cadmus to review, reconcile, and certify program-level energy savings tracked by both Consumers Energy and third-party implementation firms. Cadmus reviewed reported participation and installation data as well as reported kWh, kW, and MCF savings data for each program in the Consumers Energy residential EO portfolio. Table 1 lists the Consumers Energy residential EO programs and their respective third-party implementers.

Table 1. Consumers Energy Residential EO Programs and Third-Party Implementers

Program	Third-Party Implementer
ENERGY STAR ${ }^{\circledR}$ Lighting	ICF International
ENERGY STAR Appliances	ICF International
HVAC and Water Heating	ICF International
Income Qualified	CLEAResult
Appliance Recycling	JACO Environmental
Multifamily	Franklin Energy
THINK! Energy	National Energy Foundation
Home Performance with ENERGY STAR	ICF International
Home Energy Analysis	ICF International
Insulation and Windows	ICF International
New Home Construction	CLEAResult
Home Energy Reports	ICF International

Cadmus completed the following actions for this certification:

- Compared 2013 reported net savings results to certified net savings results for each program and for the entire portfolio of residential EO programs.
- Reviewed participation and installation data in Consumers Energy and implementer databases and confirmed that they accurately reflect actual program participation and measure installation throughout the 2013 program year.
- For each program with customer applications, installation reports, or other hard copy documentation, reviewed a random and statistically significant sample of documents to ensure that data are consistently and accurately represented in tracking databases.
- Confirmed that the kWh, kW, and MCF savings attributed to individual program measures accurately reflect the values maintained in the 2013 Michigan Energy Measures Database
(MEMD) or, when savings are weather sensitive, confirmed that weighted values were independently calculated by a third party.
- Verified the application of appropriate installation rates and net-to-gross (NTG) values to accurately calculate net savings for each measure and each program in the 2013 Consumers Energy residential EO portfolio.
- Verified measure life and applied a 10% long-life equipment savings multiplier (LLESM) to qualifying measures that had measure lives of 10 years or greater, as authorized by the Michigan Public Service Commission (MPSC).
- Calculated lifetime kWh and MCF net certified savings.

Methodology

Cadmus performed four primary tasks to certify the energy savings for each residential EO program:

1. Task 1: Database Collection: Cadmus collected tracking databases for each program from implementation contractors and Consumers Energy.
2. Task 2: Database Review: Cadmus reviewed and compared the Consumers Energy and implementer tracking databases for each program, then documented and reconciled all discrepancies.
3. Task 3: Documentation Review: For all programs with hard copy documentation, Cadmus reviewed a random and statistically significant sample of program documents, such as incentive applications, installation tally sheets, and product invoices.
4. Task 4: Measure-Level Savings Analysis: Cadmus reviewed and certified reported measure-level savings values, measure lives, and installation rates, as referenced in the 2013 MEMD, as well as third-party calculation workbooks and 2013 evaluation reports.

Details about each of these tasks are discussed in the following sections. Figure 1 presents the general steps Cadmus took to certify energy savings from the 2013 program year.

Figure 1. Methodology Overview

Task 1: Database Collection

Our first step was to reach out to the implementation contractors and retrieve their program tracking databases. Cadmus simultaneously worked with Consumers Energy to secure its equivalent tracking databases, which are managed on a web-based tracking system, Etracker.

Task 2: Database Review

Once Cadmus received databases from both Consumers Energy and the implementation contractor for each program, we reviewed these databases to verify that:

- The number of participants matched;
- Reported quantities of installed measures matched for each measure code;
- Energy savings for installed measures were applied appropriately according to customer type (e.g., that a gas customer received only MCF savings); and
- Reported measures were installed during the 2013 program year.

Task 3: Documentation Review

For all programs with hard copy documentation, Cadmus reviewed a random and statistically significant sample of the available documentation, including customer applications, purchase orders and/or receipts, and installation documents. Cadmus certified that the following data matched between documents and their respective entries in Consumers Energy's program tracking databases:

- Customer type (gas, electric, or combination);
- Rebate amount;
- Measure types; and
- Measure installation quantities.

Consumers Energy does not use customer-level applications for the ENERGY STAR Lighting Program, unlike its other residential programs. Instead, for this program, Cadmus reviewed memorandums of understanding (MOUs) and invoices from the retailers, and certified total bulb sales under those MOUs.

For some other programs, customer-level applications and/or installation forms were unavailable, due to either the program design or the delivery method. Task 3 was not applicable for the programs and measures outlined in Table 2.

Table 2. Alternate Application and Installation Documentation

Program	Alternate Delivery Approach or Documentation
Appliance Recycling	Participants apply online, by telephone, or through a participating retailer and therefore do not complete a paper application.
THINK! Energy	For this program, Consumers Energy provides Energy Efficiency Kits to teachers at participating schools, who subsequently deliver the kits to their students. Individual program participants do not apply for incentives. The program implementer tracks the number of kits administered to each school, but does not create customer-level documentation.
Home Energy Reports	Customers selected to receive these reports are identified by the program implementer. Customers opting out (requesting to not receive the reports), as well as customers that move or otherwise cease participation, are also tracked by the program implementer.
ENERGY STAR	For this program, Consumers Energy delivers Energy Efficiency Kits by mail to combination customers. The program implementer tracks the kits sent to each customer through the program database.

Sampling and Calculating Realization Rates

Cadmus reviewed program documentation for a random, representative sample of each relevant program's participant population. Using a finite population adjustment factor, we designed sample sizes to support findings with at least 90% confidence and 10% precision at the program level.

Table 3 summarizes our sampling effort for each residential EO program.

Table 3. Selected Sample Sizes and Descriptions by Program

Program	Sample Size (n)	Achieved Precision at 90\% Confidence Level	
ENERGY STAR Lighting	69	9.95%	Rample Description

Cadmus determined inconsistencies between data recorded in program documents and data reported in program tracking databases. We then identified those inconsistencies as being random or systematic errors. In general, random errors are unpredictable mistakes in transcription or data entry, while systematic errors result from some inaccuracy persistent across numerous records.

To determine whether a given sample contained random or systematic errors, we tested whether each sample's mean kWh , kW, and MCF realization ratios were statistically equal to one (or a realization rate of 100%). If we determined a sample's mean realization ratio to be statistically equal to one at the 90% confidence level, we considered the errors as random and did not apply the sample mean realization ratio to the relevant participant population. In these cases, we included individual data discrepancies in final net savings calculations. If, on the other hand, we determined a sample's mean realization ratio to be statistically unequal to one at the 90% confidence level, we considered the errors as systematic and applied the sample's mean realization ratio to the relevant participant population.

Cadmus first calculated $\mathrm{kWh}, \mathrm{kW}$, and MCF realization rates for individual records in each program's sample (calculations were identical for kWh, kW, and MCF). To do this, we compared reported and certified savings by fuel type (shown by the equation below). Differences between reported and certified savings occurred due to discrepancies in customer types, measure types, or installed measure quantities.

Where:
RR = Calculated realization rate
$i=$ Unique record ' i '
$j=$ Individual application, invoice, etc.
We then used the following equation to calculated mean realization rates for each fuel type at the sample level (calculations were identical for $\mathrm{kW}, \mathrm{kWh}$, and MCF):

$$
\overline{k W R R}=\frac{\sum_{i} k W R R_{i}}{n}
$$

Where:
$\mathrm{n}=$ Number of unique records in the sample
Next, for each fuel type, we calculated a t-statistic for the null hypothesis that the sample's mean realization ratio was equal to one (or realization rate equal to 100%). The resulting t -statistics revealed whether or not the errors discovered during the documentation review were random or systematic. We calculated t -statistics using the following equations (calculations were identical for $\mathrm{kW}, \mathrm{kWh}$, and MCF):

$$
\begin{gathered}
S t d D e v_{k W R R}=\sqrt{\frac{\sum_{i}\left(k W R R_{i}-\overline{k W R R}\right)^{2}}{n}} \\
S E_{k W R R}=\frac{S t d D e v_{k W ~}+\frac{\sqrt{n}}{\sqrt{n}}}{} \\
t_{k W R R}=\left|\frac{100 \%-\overline{k W R R}}{S E_{k W R R}}\right|
\end{gathered}
$$

Where:

```
StdDev = Standard deviation
SE = Standard error
```


Task 4: Measure-Level Savings Analysis

Cadmus retrieved measure-level data for each residential EO program from Consumers Energy's webbased tracking system, Etracker. Each of the measure-level databases in Etracker includes: information about measure codes and descriptions; units of measure; kWh, kW, and MCF savings per unit of measure; sensitivities to weather; evaluated installation rates; and verified measure lives.

First, we mapped each program measure to appropriate source data. This included mapping non-weather-sensitive measures to the 2013 MEMD. We also mapped weather-sensitive measures to databases developed independently by Navigant Consulting, Inc. Navigant weighted the kWh, kW, and MCF savings for each weather-sensitive measure, according to characteristics of program measure
installations (i.e., geographic distribution, size). The results from Navigant's analysis represent programspecific kWh, kW, and MCF savings for each unique weather-sensitive measure installed during the 2013 program year. We mapped other measures with efficiency levels that varied from MEMD measuresfaucet aerators and showerheads in particular-to savings calculation workbooks developed using MEMD supporting documentation.

Once we had mapped each measure to an appropriate data source, we certified kWh , kW , and MCF savings per unit of measure. Cadmus documented and corrected any discrepancies as necessary. We also confirmed installation rates matched those calculated through program evaluation activities. Finally, we verified that each measure life was accurate, based on appropriate source data, then documented and corrected discrepancies as necessary.

Summary of Certified Savings

This section presents a summary of certified net savings as well as certified net savings with an additional 10\% long-life equipment savings multiplier for measures lasting 10 or more years, by program and fuel type.

Table 4 presents the certified net savings without the long-life equipment savings multiplier for each residential EO program by fuel type.

Table 4. Residential EO Program Certified Net Savings without
Long-Life Equipment Savings Multiplier by Fuel Type*

Program	2013 Certified Net Savings without LLESM		
	kWh	kW	MCF
ENERGY STAR Lighting	$101,877,868.1497$	$12,087.5081$	-
ENERGY STAR Appliances	$421,385.3097$	94.2268	$8,491.4825$
HVAC and Water Heating	$5,501,506.4120$	$1,095.9078$	$410,921.9816$
Income Qualified	$2,032,722.3424$	213.4483	$84,675.7302$
Appliance Recycling	$31,357,336.5000$	$3,706.6689$	-
Multifamily	$7,626,133.7319$	916.3936	$184,682.1291$
THINK! Energy	$2,640,580.0538$	260.1595	$64,948.3223$
Home Performance with ENERGY STAR	$706,388.6650$	223.9941	$46,787.9061$
Home Energy Analysis	$3,354,479.3142$	367.3659	$116,929.1788$
Insulation and Windows	$659,673.5475$	361.3660	$65,421.0030$
New Home Construction	$152,052.3393$	0.1584	$12,985.7886$
Home Energy Reports	$28,409,888.6773$	-	$51,858.2914$
Total	$184,740,015.0427$	$19,327.1974$	$1,047,701.8135$

*Columns in all tables may not sum to totals due to rounding.

Table 5 presents the certified net savings with the long-life savings multiplier for each residential EO program by fuel type.

Table 5. Residential EO Program Certified Net Savings with Long-Life Equipment Savings Multiplier by Fuel Type

Program	2013 Certified Net Savings with LLESM		
	kWh	kW	MCF
ENERGY STAR Lighting	$101,918,308.5157$	$12,090.8671$	-
ENERGY STAR Appliances	$446,495.5576$	101.9897	$9,037.7253$
HVAC and Water Heating	$6,001,640.2052$	$1,197.2427$	$444,640.7327$
Income Qualified	$2,075,471.6734$	218.0604	$89,201.0039$
Appliance Recycling	$31,357,336.5000$	$3,706.6689$	-
Multifamily	$7,955,182.2794$	955.4525	$199,005.6580$
THINK! Energy	$2,685,276.2570$	260.1595	$71,443.1545$
Home Performance with ENERGY STAR	$758,870.4500$	242.9232	$50,999.3418$
Home Energy Analysis	$3,434,594.2780$	374.5671	$123,693.1102$
Insulation and Windows	$725,640.9022$	397.5026	$71,963.1033$
New Home Construction	$166,987.2093$	0.1584	$14,276.5931$
Home Energy Reports	$28,409,888.6773$	-	$51,858.2914$
Total	$185,935,692.5052$	$19,545.5923$	$1,126,118.7144$

The reported and certified net savings, both with and without the long-life equipment savings multiplier, from the 2013 program year are presented by fuel type in the following sections. The realization rates represent differences between Consumers Energy's and Cadmus' net savings analyses. These differences could be a result of:

- Reconciled discrepancies between the Consumers Energy and third-party implementer tracking databases;
- Differences between randomly selected participant records in the Consumers Energy tracking database and associated documentation, such as incentive applications or installation tally sheets; and/or
- Discrepancies in measure-level savings between those reported in the Consumers Energy tracking database and either: 1) values maintained in the MEMD; or 2) weighted, weathersensitive savings calculated by Navigant or EWG stakeholders.

Specific discrepancies are identified and discussed in Appendices A through L.

Certified Net kWh Savings

Table 6 summarizes reported gross and certified net kWh savings without the long-life equipment savings multiplier for each program and the entire portfolio.

Table 6. Summary of Reported Gross and Certified Net kWh Savings without Long-Life Equipment Savings Multiplier by Program

Program	2013 Reported Gross kWh Savings	2013 Certified Net kWh Savings	Realization Rate
ENERGY STAR Lighting	$118,720,951.0000$	$101,877,868.1497$	85.81%
ENERGY STAR Appliances	$476,731.0522$	$421,385.3097$	88.39%
HVAC and Water Heating	$6,112,784.9022$	$5,501,506.4120$	90.00%
Income Qualified	$2,412,736.1538$	$2,032,722.3424$	84.25%
Appliance Recycling	$34,841,485.0000$	$31,357,336.5000$	90.00%
Multifamily	$8,583,011.3200$	$7,626,133.7319$	88.85%
THINK! Energy	$3,102,157.6000$	$2,640,580.0538$	85.12%
Home Performance with ENERGY STAR	$816,124.4444$	$706,388.6650$	86.55%
Home Energy Analysis	$3,858,172.1166$	$3,354,479.3142$	86.94%
Insulation and Windows	$732,970.6083$	$659,673.5475$	90.00%
New Home Construction	$168,680.1643$	$152,052.3393$	90.14%
Home Energy Reports	$32,955,512.7929$	$28,409,888.6773$	86.21%
Total	$212,781,317.15$	$184,740,015.0427$	86.82%

Table 7 summarizes reported and certified net kWh savings with the long-life equipment savings multiplier for each program and the entire portfolio.

Table 7. Summary of Reported and Certified Net kWh Savings with
Long-Life Equipment Savings Multiplier by Program

Program	2013 Reported Net kWh Savings	2013 Certified Net kWh Savings	Certified Net kWh Savings/Reported Net kWh Savings
ENERGY STAR Lighting	$102,099,296.6222$	$101,918,308.5157$	99.82%
ENERGY STAR Appliances	$446,495.6373$	$446,495.5576$	100.00%
HVAC and Water Heating	$5,999,144.2493$	$6,001,640.2052$	100.04%
Income Qualified	$2,200,638.6403$	$2,075,471.6734$	94.31%
Appliance Recycling	$31,357,326.3300$	$31,357,336.5000$	100.00%
Multifamily	$7,945,386.7820$	$7,955,182.2794$	100.12%
THINK! Energy	$2,685,276.2581$	$2,685,276.2570$	100.00%
Home Performance with ENERGY STAR	$758,870.4490$	$758,870.4500$	100.00%
Home Energy Analysis	$3,414,979.0324$	$3,434,594.2780$	100.57%
Insulation and Windows	$725,640.8689$	$725,640.9022$	100.00%
New Home Construction	$165,835.1763$	$166,987.2093$	100.69%
Home Energy Reports	$28,409,887.0904$	$28,409,888.6773$	100.00%
Total	$186,208,777.1362$	$185,935,692.5052$	99.85%

Over half of the portfolio kWh savings with the long-life equipment savings multiplier came from the ENERGY STAR Lighting Program, over 16% of the portfolio kWh savings with the long-life equipment
savings multiplier came from the Appliance Recycling Program, and more than 15\% of the portfolio kWh savings with the long-life equipment savings multiplier came from the Home Energy Reports Program.

Figure 2 depicts how each residential EO program contributed to the overall certified kWh savings with the long-life equipment savings multiplier.

Figure 2. Summary of Certified Net kWh Savings with Long-Life Equipment Savings Multiplier by Program

Certified Net kW Savings

Table 8 summarizes reported gross and certified net kW savings without the long-life equipment savings multiplier for each program and the entire portfolio.

Table 8. Summary of Reported Gross and Certified Net kW Savings without Long-Life Equipment Savings Multiplier by Program

Program	2013 Reported Gross kW Savings	2013 Certified Net kW Savings	Realization Rate
ENERGY STAR Lighting	$14,086.6734$	$12,087.5081$	85.81%
ENERGY STAR Appliances	105.7349	94.2268	89.12%
HVAC and Water Heating	$1,217.6753$	$1,095.9078$	90.00%
Income Qualified	242.5718	213.4483	87.99%
Appliance Recycling	$4,118.5210$	$3,706.6689$	90.00%
Multifamily	$1,119.5425$	916.3936	81.85%
THINK! Energy	307.1904	260.1595	84.69%
Home Performance with ENERGY STAR	250.8681	223.9941	89.29%
Home Energy Analysis	495.3412	367.3659	74.16%
Insulation and Windows	401.5178	361.3660	90.00%
New Home Construction	0.1760	0.1584	90.00%
Home Energy Reports	-	-	N/A
Total	$22,345.8124$	$19,327.1974$	86.49%

Table 9 summarizes reported and certified net kW savings with the long-life equipment savings multiplier for each program and the entire portfolio.

Table 9. Summary of Reported and Certified Net kW Savings with Long-Life Equipment Savings Multiplier by Program

Program	2013 Reported Net kW Savings	2013 Certified Net kW Savings	Certified Net kW Savings/Reported Net kW Savings
ENERGY STAR Lighting	$12,112.3620$	$12,090.8671$	99.82%
ENERGY STAR Appliances	101.9515	101.9897	100.04%
HVAC and Water Heating	$1,196.9553$	$1,197.2427$	100.02%
Income Qualified	217.9672	218.0604	100.04%
Appliance Recycling	$3,706.6593$	$3,706.6689$	100.00%
Multifamily	$1,034.2332$	955.4525	92.38%
THINK! Energy	260.1600	260.1595	100.00%
Home Performance with ENERGY STAR	241.6818	242.9232	100.51%
Home Energy Analysis	439.7723	374.5671	85.17%
Insulation and Windows	397.5910	397.5026	99.98%
New Home Construction	0.1584	0.1584	100.00%
Home Energy Reports	-	-	N/A
Total	$19,709.4920$	$19,545.5923$	99.17%

Almost two-thirds of the portfolio kW savings with the long-life equipment savings multiplier came from the ENERGY STAR Lighting Program. The Appliance Recycling Program contributed almost one-fifth of all 2013 kW savings with the long-life equipment savings multiplier.

Figure 3 depicts how each residential EO program contributed to the overall certified kW savings with the long-life equipment savings multiplier.

Figure 3. Summary of Certified Net kW Savings with Long-Life Equipment Savings Multiplier by Program

Certified Net MCF Savings

Table 10 summarizes reported gross and certified MCF savings for each program and the entire portfolio.

Table 10. Summary of Reported Gross and Certified Net MCF Savings without Long-Life Equipment Savings Multiplier by Program

| Program | 2013 Reported
 Gross MCF Savings | 2013 Certified Net
 MCF Savings | Realization Rate |
| :--- | ---: | ---: | ---: |$|$| N/A |
| :---: |
| ENERGY STAR Lighting |

Table 11 summarizes reported and certified MCF savings with the long-life equipment savings multiplier for each program and the entire portfolio.

Table 11. Summary of Reported and Certified Net MCF Savings with Long-Life Equipment Savings Multiplier by Program

Program	2013 Reported Net MCF Savings	2013 Certified Net MCF Savings	Certified Net MCF Savings/Reported Net MCF Savings
ENERGY STAR Lighting	-	-	N/A
ENERGY STAR Appliances	9,085.3434	9,037.7253	99.48\%
HVAC and Water Heating	444,644.8637	444,640.7327	100.00\%
Income Qualified	89,006.7860	89,201.0039	100.22\%
Appliance Recycling	-	-	N/A
Multifamily	196,369.5416	199,005.6580	101.34\%
THINK! Energy	71,443.1539	71,443.1545	100.00\%
Home Performance with ENERGY STAR	50,999.3304	50,999.3418	100.00\%
Home Energy Analysis	117,972.9904	123,693.1102	104.85\%
Insulation and Windows	71,963.1110	71,963.1033	100.00\%
New Home Construction	14,276.5949	14,276.5931	100.00\%
Home Energy Reports	51,859.2817	51,858.2914	100.00\%
Total	1,117,620.9970	1,126,118.7144	100.76\%

Over one-third of all MCF savings with the long-life equipment savings multiplier came from the HVAC and Water Heating Program. Other programs that contributed significantly to overall MCF savings with

CADMUS

the long-life equipment savings multiplier include the Multifamily Program and the Home Energy Analysis Program.

Figure 4 depicts how each Consumers Energy residential EO program contributed to the overall certified MCF savings with the long-life equipment savings multiplier.

Figure 4. Summary of Certified Net MCF Savings with Long-Life Equipment Savings Multiplier by Program

Measure Life and Lifetime Savings

Cadmus calculated lifetime savings and the weighted average measure life for each program, verifying that appropriate measure lifetime values from the MEMD were used for these calculations

Table 12 summarizes the lifetime kWh and MCF savings for each program and provides the weighted average measure life by fuel type.

Table 12. Lifetime Savings and Weighted Average Measure Life

Program	Lifetime Savings		Weighted Average Measure Life (years)	
	kWh	MCF	Electric	Natural Gas
ENERGY STAR Lighting	921,349,253.6073	-	9.04	N/A
ENERGY STAR Appliances	4,329,416.7730	90,038.5831	10.27	10.60
HVAC and Water Heating	79,107,952.6760	5,704,407.6868	14.38	13.88
Income Qualified	18,598,427.6305	773,894.6959	9.15	9.14
Appliance Recycling	250,858,692.0000	-	8.00	N/A
Multifamily	75,725,181.1804	2,414,799.8449	9.93	13.08
THINK! Energy	25,106,106.5806	779,379.8673	9.51	12.00
Home Performance with ENERGY STAR	9,694,841.5130	708,523.6256	13.72	15.14
Home Energy Analysis	31,617,596.6414	1,132,574.9519	9.43	9.69
Insulation and Windows	13,193,470.9494	1,308,420.0606	20.00	20.00
New Home Construction	3,011,306.7540	255,035.3134	19.80	19.64
Home Energy Reports	28,409,888.6773	51,858.2914	1.00	1.00
Total/Weighted Average	1,461,002,134.9829	13,218,932.9208	7.91	12.62

Certification of Other Performance Incentive Metrics

Consumers Energy had the two following performance metrics that Cadmus reviewed in addition to energy savings:

- Savings from the Income Qualified Program exceeded the targets established in Consumers Energy's Energy Optimization Plan (Case No. U-16670) by more than 20\%.
- The number of ENERGY STAR 3.0 new homes constructed and incented through the New Home Construction Program in 2013 increased by more than 60% over 2012 levels.

Table 13 compares the actual savings achievement in 2013 to the established metrics. Cadmus certifies that the net kWh and MCF savings from the Income Qualified Program exceeded the targets by more than 20%. The kW savings and target are shown but are not part of the performance metric.

Table 13. Income Qualified Program Savings Achievements

	kWh	kW	MCF
2013 Targets	$1,540,000$	200	64,366
2013 Achievement	$2,075,472$	219	89,201
Achievement/Target	134.77%	109.50%	138.58%

Table 14 shows the number of ENERGY STAR new homes constructed through the New Home Construction Program in 2012 and 2013, along with the percentage increase in the number of certified homes across those years.

Table 14. Number of ENERGY STAR 3.0 Homes, by Fuel Type

	Number of ENERGY STAR 3.0 Homes (Combination)	Number of ENERGY STAR 3.0 Homes (Gas Only)	Number of ENERGY STAR 3.0 Homes (Total)
2012 Achievement	137	57	194
2013 Achievement	202	116	318
2013 Achievement/ 2012 Achievement	147.44%	203.51%	163.92%

Appendix A: ENERGY STAR Lighting Program

Table 15 presents reported gross and certified net energy savings for the ENERGY STAR Lighting Program by fuel type. The realization rates reflect the adjustments Cadmus made, based on our certification tasks and the application of installation rate and NTG adjustments. The following sections discuss changes we made to reported gross energy savings.

Table 15. ENERGY STAR Lighting Program Participation and Savings without Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	$3,147,691$	$118,720,951.0000$	$14,086.6734$	0.0000
Certified Net	$3,147,690$	$101,877,868.1497$	$12,087.5081$	0.0000
Difference	-1	$-16,843,082.8503$	$-1,999.1653$	0.0000
Realization Rate	100.00%	85.81%	85.81%	N/A

Table 16 presents reported and certified net energy savings with the long-life equipment savings multiplier for the ENERGY STAR Lighting Program by fuel type.

Table 16. ENERGY STAR Lighting Program Participation and Savings with
Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	$3,147,691$	$102,099,296.6222$	$12,112.3620$	0.0000
Certified Net	$3,147,690$	$101,918,308.5157$	$12,090.8671$	0.0000
Difference	-1	$-180,988.1065$	-21.4949	0.0000
Certified/Reported	100.00%	99.82%	99.82%	$\mathrm{~N} / \mathrm{A}$

Task 2: Database Review

The Consumers Energy and implementer databases matched across all areas of inquiry: (a) number of participants; (b) quantities of installed measures; and (c) appropriate application of savings according to customer type. Cadmus also verified that the measures were installed during the 2013 program year.

Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

Cadmus reviewed program documents ${ }^{1}$ from a sample of 69 randomly selected Job ID numbers. Table 17 documents reported and certified sales, as well as reported and certified energy savings by fuel type.

[^18]Table 17. ENERGY STAR Lighting Program Sample Participation and Savings by End Use

Measure	Reported				Certified			
Code	n	kWh	kW	MCF	n	kWh	kW	MCF
RBE0002	31,287	1,160,747.7000	137.6628	-	31,286	1,160,710.6000	137.6584	-
RBE0003	2,515	110,911.5000	13.3295	-	2,515	110,911.5000	13.3295	-
RLE0009	87	3,480.0000	0.4176	-	87	3,480.0000	0.4176	-
RLE0010	-1	-50.0000	-0.0059	-	-1	-50.0000	-0.0059	-
Total	33,888	1,275,089.2000	151.4040	-	33,887	1,275,052.1000	151.3996	-

The reported sale quantities for one Job ID sample record did not match its associated invoice. In total, the database sample overstated bulb sales quantity by 1, for measure RBEOOO2 (CFL bulbs regular, buydown). A statistical t-test indicated that the error was unique to sampled records, and therefore not applicable to the program population.

Table 18 provides the sample realization rates by fuel type and the t-test statistics Cadmus used to analyze errors in the sample.

Table 18. ENERGY STAR Lighting Program Sample Realization Rates and t-Statistic

	kWh	kW	MCF
Sample Realization Rate	99.99%	99.99%	N/A
Standard Error	0.0001	0.0001	N/A
t-Statistic	1.0000	1.0000	N/A
p-Value	0.3209	0.3209	N/A
Apply to Program Population?	No	No	N/A

As a result of this analysis, we considered specific errors in reported bulb sales and savings as random and included all discrepancies discovered during the documentation review in the final net savings calculations. We did not apply calculated realization rates to the program population.

Task 4: Measure-Level Savings Analysis

Cadmus found no discrepancies between per-unit measure savings or measure lives reported by Consumers Energy and values either maintained in the MEMD or calculated by Navigant. When reviewing the installation rates, however, Cadmus found measures RBEOOO2 and RBEOOO3 to have the incorrect installation rate value of 0.9553 . Cadmus adjusted the installation rate to 0.9533 for both measure codes in the final certified savings values.

Table 19 presents the reported and certified per-unit savings for all measures delivered through the 2013 ENERGY STAR Lighting Program.

Table 19. ENERGY STAR Lighting Program Reported and Certified Per-Unit Measure Savings

Measure Code	Reported			Certified			Certified LLESM			
	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RBE0002	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RBE0003	44.1000	0.0053	0.0000	44.1000	0.0053	0.0000	9	44.1000	0.0053	0.0000
RBE0005	10.6000	0.0000	0.0000	10.6000	0.0000	0.0000	20	11.6600	0.0000	0.0000
RLE0009	40.0000	0.0048	0.0000	40.0000	0.0048	0.0000	20	44.0000	0.0053	0.0000
RLE0010	50.0000	0.0059	0.0000	50.0000	0.0059	0.0000	20	55.0000	0.0065	0.0000
RLE0012	54.0000	0.0064	0.0000	54.0000	0.0064	0.0000	20	59.4000	0.0070	0.0000

Major Findings by Fuel Type

The tables below present certified program participation and energy savings by measure. Table 20 and Table 21 document kWh savings, while
Table 22 documents kW savings. The ENERGY STAR Lighting Program did not result in any MCF savings.

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $\text { (D) }=(\mathrm{B} \times \mathrm{C})$	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
RBE0002	2,804,319	2,804,318	104,040,234.9000	104,040,197.8000	0.9533	99,181,520.5627	0.9000	89,263,368.5065
RBE0003	322,707	322,707	14,231,378.7000	14,231,378.7000	0.9533	13,566,773.3147	0.9000	12,210,095.9832
RBE0005	13,019	13,019	138,001.4000	138,001.4000	1.0000	138,001.4000	0.9000	124,201.2600
RLE0009	7,212	7,212	288,480.0000	288,480.0000	1.0000	288,480.0000	0.9000	259,632.0000
RLE0010	145	145	7,250.0000	7,250.0000	1.0000	7,250.0000	0.9000	6,525.0000
RLE0012	289	289	15,606.0000	15,606.0000	1.0000	15,606.0000	0.9000	14,045.4000
Total	3,147,691	3,147,690	118,720,951.0000	118,720,913.9000		113,197,631.2775	0.9000	101,877,868.1497

Appendix B: ENERGY STAR Appliances Program

Table 23 presents reported gross and certified net energy savings for the ENERGY STAR Appliances Program by fuel type. The realization rates reflect the adjustments Cadmus made, based on our certification tasks and applying installation rate and NTG adjustments. The following sections discuss the changes we made to reported gross energy savings.

Table 23. ENERGY STAR Appliances Program Participation and Savings without Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	14,483	$476,731.0522$	105.7349	$11,948.5282$
Certified Net	14,483	$421,385.3097$	94.2268	$8,491.4825$
Difference	0	$-55,345.7425$	-11.5081	$-3,457.0457$
Realization Rate	100.00%	88.39%	89.12%	71.07%

Table 24 presents reported and certified net energy savings with the long-life equipment savings multiplier for the ENERGY STAR Appliances Program by fuel type.

Table 24. ENERGY STAR Appliances Program Participation and Savings with Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	14,483	$446,495.6373$	101.9515	$9,085.3434$
Certified Net	14,483	$446,495.5576$	101.9897	$9,037.7253$
Difference	0	-0.0797	0.0382	-47.6181
Certified/Reported	100.00%	100.00%	100.04%	99.48%

Task 2: Database Review

The Consumers Energy and implementer databases matched across all areas of inquiry: (a) number of participants; (b) quantities of installed measures; and (c) appropriate application of savings according to customer type. Cadmus also verified that the measures were installed during the 2013 program year.

Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

Cadmus reviewed the rebate applications from a sample of 68 randomly selected account numbers. Table 25 documents reported and certified measure counts as well as reported and certified energy savings by fuel type for the general population sample.

Table 25. ENERGY STAR Appliances Program General Sample Participation and Savings by End Use*

Measure Code	Reported				Certified			
	n	kWh	kW	MCF	n	kWh	kW	MCF
RAC0100	1	132.6325	-	7.1919	1	132.6325	-	7.1919
RAE0002	1	84.1000	0.0520	-	1	84.1000	0.0520	-
RAE0003	1	44.0000	0.0760	-	1	44.0000	0.0760	-
RAE0005	2	267.0364	-	-	2	267.0364	-	-
RAE0006	2	644.0000	. 2198	-	2	644.0000	. 2198	-
RAE0008	1	123.0000	0.0420	-	1	123.0000	0.0420	-
RAE0010	3	1,116.0000	0.3810	-	3	1,116.0000	0.3810	-
RAE0012	2	308.0000	0.1052	-	2	308.0000	0.1052	-
RAE0013	6	45.0000	0.0156	-	6	45.0000	0.0156	-
RAE9010	1	372.0000	0.1270	-	1	372.0000	0.1270	-
RAE9011	1	225.0000	0.0768	0.5735	1	225.0000	0.0768	0.5735
RAG0005	8	-	-	55.7576	8	-	-	55.7576
RAG0008	2	-	-	1.7496	2	-	-	1.7496
RAG0009	6	-	-	7.9896	6	-	-	7.9896
RAG0011	2	-	-	1.1470	2	-	-	1.1470
RAG0012	3	-	-	2.8578	3	-	-	2.8578
RAG0013	11	-	-	16.7860	11	-	-	16.7860
RAG9008	2	246.0000	0.0840	1.7496	2	246.0000	0.0840	1.7496
RAG9009	1	7.5000	0.0026	1.3316	1	7.5000	0.0026	1.3316
RAG9012	7	1,078.0000	. 3682	6.6682	7	1,078.0000	. 3682	6.6682
RAG9013	5	37.5000	0.0130	7.6300	5	37.5000	0.0130	7.6300
Total	68	4,729.7689	1.5632	111.4324	68	4,729.7689	1.5632	111.4324

* This sample does not include Energy Efficiency Kit measures.

With our documentation review, Cadmus found zero discrepancies between the Consumers Energy Etracker database and invoices, applications, and any other additional documentation that may have been uploaded to support validation of the measure installation. Table 26 provides the sample realization rates by fuel type and the t-test statistics Cadmus used to analyze errors in the general sample.

Table 26. ENERGY STAR Appliances Program General Sample Realization Rates and t-Statistic*

	kWh	kW	MCF
Sample Realization Rate	100.00%	100.00%	100.00%
Standard Error	N / A	N / A	N / A
t-Statistic	N / A	N / A	N / A
p-Value	N / A	N / A	N / A
Apply to Program Population?	N / A	N / A	N

* The sample realization rates do not apply to Energy Efficiency Kit measures.

CADMUS

Task 4: Measure-Level Savings Analysis

Cadmus conducted a measure-level savings review and found only one difference between what was reported by Consumers Energy and what could be verified in the MEMD. Cadmus found that measure RAG9020 had an incorrect value of 1.812 MCF due to a unit conversion error. Cadmus updated the savings to reflect the appropriate conversion from the MEMD value of 18.12 therms to 1.7611 MCF. We then applied the updated savings value to the certified installation quantity for that measure.

Table 27 presents the reported and certified per-unit savings for all measures delivered through the 2013 ENERGY STAR Appliances Program.

Table 27. ENERGY STAR Appliances Program Reported and Certified Per-Unit Measure Savings

	Reported			Certified			Certified LLESM			
Code	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RAC0100	132.6325	0.0000	7.1919	132.6325	0.0000	7.1919	9	132.6325	0.0000	7.1919
RAE0002	84.1000	0.0520	0.0000	84.1000	0.0520	0.0000	12	92.5100	0.0572	0.0000
RAE0003	44.0000	0.0760	0.0000	44.0000	0.0760	0.0000	15	48.4000	0.0836	0.0000
RAE0005	133.5182	0.0000	0.0000	133.5182	0.0000	0.0000	9	133.5182	0.0000	0.0000
RAE0006	322.0000	0.1099	0.0000	322.0000	0.1099	0.0000	11	354.2000	0.1209	0.0000
RAE0007	207.0000	0.0706	0.0000	207.0000	0.0706	0.0000	11	227.7000	0.0777	0.0000
RAE0008	123.0000	0.0420	0.0000	123.0000	0.0420	0.0000	11	135.3000	0.0462	0.0000
RAE0009	7.5000	0.0026	0.0000	7.5000	0.0026	0.0000	11	8.2500	0.0029	0.0000
RAE0010	372.0000	0.1270	0.0000	372.0000	0.1270	0.0000	11	409.2000	0.1397	0.0000
RAE0011	225.0000	0.0768	0.0000	225.0000	0.0768	0.0000	11	247.5000	0.0845	0.0000
RAE0012	154.0000	0.0526	0.0000	154.0000	0.0526	0.0000	11	169.4000	0.0579	0.0000
RAE0013	7.5000	0.0026	0.0000	7.5000	0.0026	0.0000	11	8.2500	0.0029	0.0000
RAE9001	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RAE9006	322.0000	0.1099	0.0000	322.0000	0.1099	0.0000	11	354.2000	0.1209	0.0000
RAE9007	207.0000	0.0706	0.4568	207.0000	0.0706	0.4568	11	227.7000	0.0777	0.5025
RAE9010	372.0000	0.1270	0.0000	372.0000	0.1270	0.0000	11	409.2000	0.1397	0.0000
RAE9011	225.0000	0.0768	0.5735	225.0000	0.0768	0.5735	1	247.5000	0.0845	0.6309
RAE9018	22.0000	0.0000	0.0000	22.0000	0.0000	0.0000	12	24.2000	0.0000	0.0000
RAG0004	0.0000	0.0000	2.6244	0.0000	0.0000	2.6244	12	0.0000	0.0000	2.8868
RAG0005	0.0000	0.0000	6.9697	0.0000	0.0000	6.9697	9	0.0000	0.0000	6.9697
RAG0007	0.0000	0.0000	0.4568	0.0000	0.0000	0.4568	11	0.0000	0.0000	0.5025
RAG0008	0.0000	0.0000	0.8748	0.0000	0.0000	0.8748	11	0.0000	0.0000	0.9623
RAG0009	0.0000	0.0000	1.3316	0.0000	0.0000	1.3316	11	0.0000	0.0000	1.4648
RAG0011	0.0000	0.0000	0.5735	0.0000	0.0000	0.5735	11	0.0000	0.0000	0.6309
RAG0012	0.0000	0.0000	0.9526	0.0000	0.0000	0.9526	11	0.0000	0.0000	1.0479
RAG0013	0.0000	0.0000	1.5260	0.0000	0.0000	1.5260	11	0.0000	0.0000	1.6786
RAG9002	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	12	0.0000	0.0000	0.9088
RAG9003	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	12	0.0000	0.0000	0.9088

Measure Code	Reported			Certified				Certified LLESM			
	123.0000	0.0420	0.8748	123.0000	0.0420	0.8748	11	135.3000	0.0462	0.9623	
RAG9009	7.5000	0.0026	1.3316	7.5000	0.0026	1.3316	11	8.2500	0.0029	1.4648	
RAG9012	154.0000	0.0526	0.9526	154.0000	0.0526	0.9526	11	169.4000	0.0579	1.0479	
RAG9013	7.5000	0.0026	1.5260	7.5000	0.0026	1.5260	11	8.2500	0.0029	1.6786	
RAG9020	0.0000	0.0000	1.8120	0.0000	0.0000	1.7611	12	0.0000	0.0000	1.9372	

2013 Certified Net kWh Savings (F) $=(\mathrm{D} x \mathrm{E})$
$16,210.3442$
$3,604.9633$
542.9160
$14,118.4682$
$13,620.6000$
$1,490.4000$
$4,538.7000$
378.0000
$60,598.8000$
$6,480.0000$
$28,551.6000$
$1,937.2500$
$139,954.0181$
$3,477.6000$
372.6000
$22,431.6000$
$5,265.0000$
$28,967.4000$
$7,859.7000$
506.2500

0.9000

0.9000
0.9000
0.9000
0.9000
.
O

| \circ |
| :--- | 웅 0.9000 0.9000

$\stackrel{8}{\circ}$
0.9000
0.9000

O ơ 응 O | 2013 |
| :---: |
| Certified |
| Gross kWh |
| Savings |
| (D) $=(\mathrm{B} \mathrm{x} \mathrm{C)}$ |

 67,332.0000
 $2,152.5000$

$155,504.4645$ 3,864.0000 24,924.0000 | \circ |
| :--- |
| 0 |
| 0 |
| O. |
| in |
| in | $32,186.0000$

$8,733.0000$ $1.0000 \quad 562.5000$

(C)

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $(D)=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
RAG9012	416	416	64,064.0000	64,064.0000	1.0000	64,064.0000	0.9000	57,657.6000
RAG9013	418	418	3,135.0000	3,135.0000	1.0000	3,135.0000	0.9000	2,821.5000
Total	8,122	8,122	476,731.0522	476,731.0522		468,205.8996	0.9000	421,385.3097

Table 29. Certified ENERGY STAR Appliances Program Long-Life Equipment Savings Multiplier and Lifetime kWh Savings by Measure

Measure ID	2013 Certified Net kWh Savings $(F)=(D \times E)$	Measure Life (G)	2013 Certified New kWh LLESM Savings $(H)=(F \times 1.1)^{*}$	2013 Realization Rate $(I)=(F / A)$	Lifetime kWh Savings $(J)=(F \times G)$
RAC0100	16,210.3442	9	16,210.3442	87.30\%	145,893.0974
RAE0002	3,604.9633	12	3,965.4597	87.48\%	43,259.5598
RAE0003	542.9160	15	597.2076	82.26\%	8,143.7400
RAE0005	14,118.4682	9	14,118.4682	87.39\%	127,066.2134
RAE0006	13,620.6000	11	14,982.6600	90.00\%	149,826.6000
RAE0007	1,490.4000	11	1,639.4400	90.00\%	16,394.4000
RAE0008	4,538.7000	11	4,992.5700	90.00\%	49,925.7000
RAE0009	378.0000	11	415.8000	90.00\%	4,158.0000
RAE0010	60,598.8000	11	66,658.6800	90.00\%	666,586.8000
RAE0011	6,480.0000	11	7,128.0000	90.00\%	71,280.0000
RAE0012	28,551.6000	11	31,406.7600	90.00\%	314,067.6000
RAE0013	1,937.2500	11	2,130.9750	90.00\%	21,309.7500
RAE9001	139,954.0181	9	139,954.0181	85.95\%	1,259,586.1625
RAE9006	3,477.6000	11	3,825.3600	90.00\%	38,253.6000
RAE9007	372.6000	11	409.8600	90.00\%	4,098.6000

Measure ID	2013 Certified Net kWh Savings $(F)=(D \times E)$	Measure Life (G)	2013 Certified New kWh LLESM Savings $(H)=(F \times 1.1)^{*}$	2013 Realization Rate $(I)=(F / A)$	Lifetime kWh Savings $(J)=(F \times \operatorname{l})$
RAE9010	22,431.6000	11	24,674.7600	90.00\%	246,747.6000
RAE9011	5,265.0000	11	5,791.5000	90.00\%	57,915.0000
RAE9018	28,967.4000	12	31,864.1400	90.00\%	347,608.8000
RAG9008	7,859.7000	11	8,645.6700	90.00\%	86,456.7000
RAG9009	506.2500	11	556.8750	90.00\%	5,568.7500
RAG9012	57,657.6000	11	63,423.3600	90.00\%	634,233.6000
RAG9013	2,821.5000	11	3,103.6500	90.00\%	31,036.5000
Total	421,385.3097		446,495.5576	88.39\%	4,329,416.7730

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kW Savings (A)	2013 Adjusted Gross kW Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kW Savings $\begin{gathered} (D)= \\ (B \times C) \end{gathered}$	Deemed Net-to- Gross Adjustment Factor (E)	Certified Net kW Savings $\begin{gathered} (F)= \\ (D \times E) \end{gathered}$	Measure Life (G)	2013 Certified New kW LLESM Savings $(H)=(F \times 1.1)^{*}$	2013 Realization Rate $(I)=(F / A)$
RAE0002	49	49	2.5480	2.5480	0.9720	2.4767	0.9000	2.2290	12	2.4519	87.48\%
RAE0003	15	15	1.1400	1.1400	0.9140	1.0420	0.9000	0.9378	15	1.0315	82.26\%
RAE0006	47	47	5.1653	5.1653	1.0000	5.1653	0.9000	4.6488	11	5.1136	90.00\%
RAE0007	8	8	0.5648	0.5648	1.0000	0.5648	0.9000	0.5083	11	0.5592	90.00\%
RAE0008	41	41	1.7220	1.7220	1.0000	1.7220	0.9000	1.5498	11	1.7048	90.00\%
RAE0009	56	56	0.1456	0.1456	1.0000	0.1456	0.9000	0.1310	11	0.1441	90.80) ${ }^{\text {\% }}$

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater.

Measure ID	2013 Reported Gross Participation	2012 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings $(D)=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings $(F)=(D \times E)$
RAC0100	140	140	1,006.8660	1,006.8660	0.9700	976.6600	0.9000	878.9940
RAE9007	2	2	0.9136	0.9136	1.0000	0.9136	0.9000	0.8222
RAE9011	26	26	14.9110	14.9110	1.0000	14.9110	0.9000	13.4199
RAG0004	45	45	118.0980	118.0980	0.8890	104.9891	0.9000	94.4902
RAG0005	353	353	2,460.3041	2,460.3041	0.9710	2,388.9553	0.9000	2,150.0598
RAG0007	6	6	2.7408	2.7408	1.0000	2.7408	0.9000	2.4667
RAG0008	47	47	41.1156	41.1156	1.0000	41.1156	0.9000	37.0040
RAG0009	162	162	215.7192	215.7192	1.0000	215.7192	0.9000	194.1473
RAG0011	31	31	17.7785	17.7785	1.0000	17.7785	0.9000	16.0007
RAG0012	265	265	252.4390	252.4390	1.0000	252.4390	0.9000	227.1951
RAG0013	874	874	1,333.7240	1,333.7240	1.0000	1,333.7240	0.9000	1,200.3516
RAG9002	1,525	1,525	1,259.9550	1,259.9550	0.5190	653.9166	0.9000	588.5250
RAG9003	1,525	1,525	1,259.9550	1,259.9550	0.5190	653.9166	0.9000	588.5250
RAG9008	71	71	62.1108	62.1108	1.0000	62.1108	0.9000	55.8997
RAG9009	75	75	99.8700	99.8700	1.0000	99.8700	0.9000	89.8830
RAG9012	416	416	396.2816	396.2816	1.0000	396.2816	0.9000	356.6534
RAG9013	421	421	642.4460	642.4460	1.0000	642.4460	0.9000	578.2014
RAG9020	1,525	1,525	2,763.3000	2,685.6775	0.5870	1,576.4927	0.9000	1,418.8434
Total	7,509	7,509	11,948.5282	11,870.9057		9,434.9805	0.9000	8,491.4825

Table 32．Certified ENERGY STAR Appliances Program Long－Life Equipment Savings Multiplier and Lifetime MCF Savings by Measure
 910.9462
9.0446
147.6189 $\stackrel{\sim}{n}$ $\stackrel{\infty}{\infty}$ カカカロースOt นOZ9＇sยโ＇て
 90．00\％2，499．1461 9L98＇モ0て＇とI \％00＇06 866でて90＇L
 $90.00 \% \quad 614.8969$
 90．00\％$\quad 3,923.1878$七STで09と＇9 51．35\％17，026．1211 71．07\％90，038．5831
＊Long－life equipment savings multiplier of 1.1 is only applied where the measure life（G）is 10 years or greater．

Appendix C: HVAC and Water Heating Program

Table 33 presents reported gross and certified net energy savings for the HVAC and Water Heating Program by fuel type. The realization rates reflect the adjustments Cadmus made based on our certification tasks and applying installation rate and NTG adjustments. The changes we made to reported gross energy savings are discussed in the following sections.

Table 33. HVAC and Water Heating Program Participation and Savings without Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	38,605	$6,112,784.9022$	$1,217.6753$	$456,583.8492$
Certified Net	38,605	$5,501,506.4120$	$1,095.9078$	$410,921.9816$
Difference	0	$-611,278.4902$	-121.7675	$-45,661.8676$
Realization Rate	100.00%	90.00%	90.00%	90.00%

Table 34 presents reported and certified net energy savings with the long-life equipment savings multiplier for the HVAC and Water Heating Program by fuel type.

Table 34. HVAC and Water Heating Program Participation and Savings with Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	38,605	$5,999,144.2493$	$1,196.9553$	$444,644.8637$
Certified Net	38,605	$6,001,640.2052$	$1,197.2427$	$444,640.7327$
Difference	0	$2,495.9559$	0.2874	-4.1310
Certified/Reported	100.00%	100.04%	100.02%	100.00%

Task 2: Database Review

The Consumers Energy and implementer databases matched across all areas of inquiry: (a) number of participants; (b) quantities of installed measures; and (c) appropriate application of savings according to customer type. Cadmus also verified that the measures were installed during the 2013 program year.

Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

Cadmus reviewed program documents from a sample of 70 randomly selected account numbers.
Table 35 documents reported and certified measure counts as well as reported and certified energy savings by fuel type.

Table 35. HVAC and Water Heating Program Sample Participation and Savings by End Use

Measure Code	Reported				Certified			
	n	kWh	kW	MCF	n	kWh	kW	MCF
RHC0100	3	419.8050	-	22.6167	3	419.8050	-	22.6167
RHE0001	18	13,140.0000	1.1826	-	18	13,140.0000	1.1826	-
RHE0004	4	602.6824	-	-	4	602.6824	-	-
RHE0006	3	1,447.0137	0.9330	-	3	1,447.0137	0.9330	-
RHE0007	2	699.7896	0.6958	-	2	699.7896	0.6958	-
RHE0016	7	643.9902	0.9527	-	7	643.9902	0.9527	-
RHG0004	24	-	-	166.5384	24	-	-	166.5384
RHG0010	17	-	-	341.9907	17	-	-	341.9907
RHG0011	22	-	-	502.3150	22	-	-	502.3150
RHG0012	8	-	-	191.4776	9	-	-	215.4123
RHG0013	1	-	-	27.8044	-	-	-	-
RHG0017	8	-	-	57.4120	8	-	-	57.4120
Total	117	16,953.2809	3.7641	1,310.1548	117	16,953.2809	3.7641	1,306.2851

Cadmus' documentation review revealed a single discrepancy between the Consumers Energy tracking database and application documents uploaded to the Consumers Energy Etracker website. Consumers Energy provided a furnace savings value based on 98% AFUE efficiency, while the documentation revealed an actual 97\% AFUE efficiency. This finding led Cadmus to remove one installed quantity from measure RHG0013 and to add one installed quantity to RHG0012.

Table 36 provides the sample realization rates by fuel type and the t-test statistics Cadmus used to analyze errors in the sample.

Table 36. HVAC and Water Heating Program Sample Realization Rates and t-Statistic

	kWh	kW	MCF
Sample Realization Rate	100.00%	$\mathrm{~N} / \mathrm{A}$	100.00%
Standard Error	N / A	N / A	99.80%
t-Statistic	N / A	N / A	0.0020
p-Value	N / A	N / A	1.0000
Apply to Program Population?	N/A	0.3218	

Task 4: Measure-Level Savings Analysis

Cadmus found no discrepancies between per-unit measure savings reported by Consumers Energy and values either maintained in the MEMD or calculated by Navigant.

Table 37 presents the reported and certified per-unit savings for all measures delivered through the 2013 HVAC and Water Heating Program.

Table 37. HVAC and Water Heating Program Reported and Certified Per-Unit Measure Savings

	Reported			Certified			Certified LLESM			
Code	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RHC0100	139.9350	0.0000	7.5389	139.9350	0.0000	7.5389	9	139.9350	0.0000	7.5389
RHE0001	730.0000	0.0657	0.0000	730.0000	0.0657	0.0000	15	803.0000	0.0723	0.0000
RHE0004	150.6706	0.0000	0.0000	150.6706	0.0000	0.0000	9	150.6706	0.0000	0.0000
RHE0006	482.3379	0.3110	0.0000	482.3379	0.3110	0.0000	15	530.5717	0.3421	0.0000
RHE0007	349.8948	0.3479	0.0000	349.8948	0.3479	0.0000	15	384.8843	0.3827	0.0000
RHE0008	1,418.4206	0.2557	0.0000	1,418.4206	0.2557	0.0000	15	1,560.2627	0.2813	0.0000
RHE0009	2,218.9722	0.4667	0.0000	2,218.9722	0.4667	0.0000	15	2,440.8694	0.5134	0.0000
RHE0011	904.2776	0.5942	0.0000	904.2776	0.5942	0.0000	15	994.7054	0.6536	0.0000
RHE0012	1,421.4139	0.5915	0.0000	1,421.4139	0.5915	0.0000	15	1,563.5553	0.6507	0.0000
RHE0016	91.9986	0.1361	0.0000	91.9986	0.1361	0.0000	5	91.9986	0.1361	0.0000
RHG0002	0.0000	0.0000	6.5124	0.0000	0.0000	6.5124	15	0.0000	0.0000	7.1636
RHG0004	150.7432	0.0000	6.9391	150.7432	0.0000	6.9391	9	150.7432	0.0000	6.9391
RHG0006	0.0000	0.0000	10.2232	0.0000	0.0000	10.2232	20	0.0000	0.0000	11.2455
RHG0007	0.0000	0.0000	17.1646	0.0000	0.0000	17.1646	15	0.0000	0.0000	18.8811
RHG0008	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	15	0.0000	0.0000	3.8491
RHG0010	0.0000	0.0000	20.1171	0.0000	0.0000	20.1171	15	0.0000	0.0000	22.1288
RHG0011	0.0000	0.0000	22.8325	0.0000	0.0000	22.8325	15	0.0000	0.0000	25.1158
RHG0012	0.0000	0.0000	23.9347	0.0000	0.0000	23.9347	15	0.0000	0.0000	26.3282
RHG0013	0.0000	0.0000	27.8044	0.0000	0.0000	27.8044	15	0.0000	0.0000	30.5848
RHG0015	-336.9148	0.0000	47.7263	-336.9148	0.0000	47.7263	20	-370.6063	0.0000	52.4989
RHG0016	-314.6976	0.0000	47.8956	-314.6976	0.0000	47.8956	20	-346.1674	0.0000	52.6852
RHG0017	0.0000	0.0000	7.1765	0.0000	0.0000	7.1765	5	0.0000	0.0000	7.1765
RHG0018	-444.9094	0.0000	53.4546	-444.9094	0.0000	53.4546	20	-489.4003	0.0000	58.8001

Major Findings by Fuel Type

The tables below present certified program participation and energy savings by measure. Table 38 and Table 39 document kWh savings, Table 40 documents kW savings, and Table 41 and Table 42 document MCF savings.
Table 38. Certified HVAC and Water Heating Program Participation and First-Year kWh Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $\text { (D) }=(B \times C)$	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
RHC0100	2,303	2,303	322,270.3050	322,270.3050	1.0000	322,270.3050	0.9000	290,043.2745
RHE0001	6,315	6,315	4,609,950.0000	4,609,950.0000	1.0000	4,609,950.0000	0.9000	4,148,955.0000
RHE0004	1,107	1,107	166,792.3542	166,792.3542	1.0000	166,792.3542	0.9000	150,113.1188
RHE0006	599	599	288,920.4021	288,920.4021	1.0000	288,920.4021	0.9000	260,028.3619
RHE0007	1,305	1,305	456,612.7140	456,612.7140	1.0000	456,612.7140	0.9000	410,951.4426
RHE0008	4	4	5,673.6824	5,673.6824	1.0000	5,673.6824	0.9000	5,106.3142
RHE0009	72	72	159,765.9984	159,765.9984	1.0000	159,765.9984	0.9000	143,789.3986
RHE0011	16	16	14,468.4416	14,468.4416	1.0000	14,468.4416	0.9000	13,021.5974
RHE0012	45	45	63,963.6255	63,963.6255	1.0000	63,963.6255	0.9000	57,567.2630
RHE0016	674	674	62,007.0564	62,007.0564	1.0000	62,007.0564	0.9000	55,806.3508
RHG0004	31	31	4,673.0392	4,673.0392	1.0000	4,673.0392	0.9000	4,205.7353
RHG0015	5	5	-1,684.5740	-1,684.5740	1.0000	-1,684.5740	0.9000	-1,516.1166
RHG0016	57	57	-17,937.7632	-17,937.7632	1.0000	-17,937.7632	0.9000	-16,143.9869
RHG0018	51	51	-22,690.3794	-22,690.3794	1.0000	-22,690.3794	0.9000	-20,421.3415
Total	12,584	12,584	6,112,784.9022	6,112,784.9022		6,112,784.9022	0.9000	5,501,506.4120

Table 39. Certified HVAC and Water Heating Program Long-Life Equipment Savings Multiplier and Lifetime kWh Savings by Measure

Measure ID	2013 Certified Net kWh Savings (F) = (D x E)	Measure Life (G)	2013 Certified Net kWh LLESM Savings $(H)=(F \times 1.1)^{*}$	2013 Realization Rate $(I)=(F / A)$	Lifetime kWh Savings (J) $=(\mathrm{F} \times \mathrm{G})$
RHC0100	290,043.2745	9	290,043.2745	90.00\%	2,610,389.4705
RHEOOO1	4,148,955.0000	15	4,563,850.5000	90.00\%	62,234,325.0000
RHEOOO4	150,113.1188	9	150,113.1188	90.00\%	1,351,018.0690
RHE0006	260,028.3619	15	286,031.1981	90.00\%	3,900,425.4284
RHE0007	410,951.4426	15	452,046.5869	90.00\%	6,164,271.6390
RHE0008	5,106.3142	15	5,616.9456	90.00\%	76,594.7124
RHE0009	143,789.3986	15	158,168.3384	90.00\%	2,156,840.9784
RHE0011	13,021.5974	15	14,323.7572	90.00\%	195,323.9616
RHE0012	57,567.2630	15	63,323.9892	90.00\%	863,508.9443
RHEOO16	55,806.3508	5	55,806.3508	90.00\%	279,031.7538
RHG0004	4,205.7353	9	4,205.7353	90.00\%	37,851.6175
RHG0015	-1,516.1166	20	-1,667.7283	90.00\%	-30,322.3320
RHG0016	-16,143.9869	20	-17,758.3856	90.00\%	-322,879.7376
RHG0018	-20,421.3415	20	-22,463.4756	90.00\%	-408,426.8292
Total	5,501,506.4120		6,001,640.2052	90.00\%	79,107,952.6760

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater.
Table 40. Certified HVAC and Water Heating Program Participation and kW Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kW Savings (A)	2013 Adjusted Gross kW Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kW Savings $\begin{gathered} (D)= \\ (B \times C) \end{gathered}$	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kW Savings (F) $=$ (D x E)	Measure Life (G)	2013 Certified New kW LLESM Savings $\begin{gathered} (\mathrm{H})= \\ (\mathrm{F} \times 1.1)^{*} \end{gathered}$	2013 Realization Rate $(I)=(F / A)$
RHE0001	6,315	6,315	414.8955	414.8955	1.0000	414.8955	0.9000	373.4060	15	410.7465	90.00\%
RHE0006	599	599	186.2890	186.2890	1.0000	186.2890	0.9000	167.6601	15	184.4261	90.00\%
RHE0007	1,305	1,305	454.0095	454.0095	1.0000	454.0095	0.9000	408.6086	15	449.4694	90.00\%
RHE0008	4	4	1.0228	1.0228	1.0000	1.0228	0.9000	0.9205	15	1.0126	90.00\%
RHE0009	72	72	33.6024	33.6024	1.0000	33.6024	0.9000	30.2422	15	33.2664	90.00\%
RHE0011	16	16	9.5072	9.5072	1.0000	9.5072	0.9000	8.5565	15	9.4121	90.00\%
RHE0012	45	45	26.6175	26.6175	1.0000	26.6175	0.9000	23.9558	15	26.3513	90.00\%
RHE0016	674	674	91.7314	91.7314	1.0000	91.7314	0.9000	82.5583	5	82.5583	90.00\%
Total	9,030	9,030	1,217.6753	1,217.6753		1,217.6753	0.9000	1,095.9078		1,197.2427	90.00\%

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings (D) $=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings $(F)=(D \times E)$
RHC0100	2,303	2,303	17,362.0867	17,362.0867	1.0000	17,362.0867	0.9000	15,625.8780
RHG0002	136	136	885.6864	885.6864	1.0000	885.6864	0.9000	797.1178
RHG0004	6,477	6,477	44,944.5507	44,944.5507	1.0000	44,944.5507	0.9000	40,450.0956
RHG0006	11	11	112.4552	112.4552	1.0000	112.4552	0.9000	101.2097
RHG0007	2	2	34.3292	34.3292	1.0000	34.3292	0.9000	30.8963
RHG0008	124	124	433.9008	433.9008	1.0000	433.9008	0.9000	390.5107
RHG0010	6,173	6,173	124,182.8583	124,182.8583	1.0000	124,182.8583	0.9000	111,764.5725
RHG0011	8,407	8,407	191,952.8275	191,952.8275	1.0000	191,952.8275	0.9000	172,757.5448
RHG0012	1,728	1,729	41,359.1616	41,383.0963	1.0000	41,383.0963	0.9000	37,244.7867
RHG0013	140	139	3,892.6160	3,864.8116	1.0000	3,864.8116	0.9000	3,478.3304
RHG0015	10	10	477.2630	477.2630	1.0000	477.2630	0.9000	429.5367
RHG0016	107	107	5,124.8292	5,124.8292	1.0000	5,124.8292	0.9000	4,612.3463
RHG0017	2,734	2,734	19,620.5510	19,620.5510	1.0000	19,620.5510	0.9000	17,658.4959
RHG0018	116	116	6,200.7336	6,200.7336	1.0000	6,200.7336	0.9000	5,580.6602
Total	28,468	28,468	456,583.8492	456,579.9795		456,579.9795	0.9000	410,921.9816

Table 42. Certified HVAC and Water Heating Program Long-Life Equipment Savings Multiplier and Lifetime MCF Savings by Measure Lifetime MCF
Savings

$(J)=(F \times G)$ | $140,632.9023$ |
| ---: |
| $11,956.7664$ |
| $364,050.8607$ |
| $2,024.1936$ |
| 463.4442 |
| $5,857.6608$ |
| $1,676,468.5871$ |
| $2,591,363.1713$ |
| $558,671.8001$ |
| $52,174.9566$ |
| $8,590.7340$ | $8,590.7340$

$92,246.9256$
 111,613.2048 5,704,407.6868 *Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater

Appendix D: Income Qualified Program

Table 43 presents reported gross and certified net energy savings for the Income Qualified Program by fuel type. The realization rates reflect the adjustments Cadmus made based on our certification tasks and applying installation rate and NTG adjustments. The following sections discuss changes we made to reported gross energy savings.

Table 43. Income Qualified Program Participation and Savings without
Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	$2,861,057.8$	$2,412,736.1538$	242.5718	$97,071.8179$
Certified Net	$2,861,058.8$	$2,032,722.3424$	213.4483	$84,675.7302$
Difference	1	$-380,013.8114$	-29.1235	$-12,396.0877$
Realization Rate	100.00%	84.25%	87.99%	87.23%

Table 44 presents reported and certified net energy savings with the long-life equipment savings multiplier for the Income Qualified Program by fuel type.

Table 44. Income Qualified Program Participation and Savings with
Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	$2,861,057.8$	$2,200,638.6403$	217.9672	$89,006.7860$
Certified Net	$2,861,058.8$	$2,075,471.6734$	218.0604	$89,201.0039$
Difference	1	$-125,166.9669$	0.0932	194.2179
Certified/Reported	100.00%	94.31%	100.04%	100.22%

Task 2: Database Review

The Consumers Energy and implementer databases matched according to the number of participants and quantities of installed measures. Cadmus found, however, that the appropriate application of savings according to customer type was not correctly labeled for several accounts.

A minor discrepancy occurred between the Consumers Energy and implementer tracking databases. To correct this, we reviewed the relevant program documentation available electronically through the Consumers Energy Etracker system and applied the following corrections:

- There were 632 accounts in the Consumers Energy database labeled as electric only while showing gas savings. Cadmus certified each of these accounts and determined that the issue was in multifamily complexes: tenants had their own electric accounts, while gas accounts were associated with a property rather than individual houses. The implementer's database had two columns for gas and electric accounts that helped Cadmus verify that no account was given incorrect savings.

Cadmus also verified that measures were installed during the 2013 program year. Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

Cadmus reviewed program documents from a sample of 69 randomly selected account numbers. Table 45 documents reported and certified measure counts as well as reported and certified energy savings by fuel type.

Table 45. Income Qualified Program Sample Participation and Savings by End Use

Measure Code	Reported				Certified			
	n	kWh	kW	MCF	n	kWh	kW	MCF
RIE0001	16	593.6000	0.0704	-	16	593.6000	0.0704	-
RIE0002	3	3,654.0000	-	-	3	3,654.0000	-	-
RIE0012	1	166.0000	0.0189	-	1	166.0000	0.0189	-
RIE0013	1	255.0000	0.0290	-	1	255.0000	0.0290	-
RIE0016	291	10,796.1000	1.2804	-	291	10,796.1000	1.2804	-
RIE0035	1	690.0000	0.0778	-	1	690.0000	0.0778	-
RIE0036	1	690.0000	0.0778	-	1	690.0000	0.0778	-
RIE0049	2	414.0824	0.0468	-	2	414.0824	0.0468	-
RIG0008	1	-	-	2.6244	1	-	-	2.6244
RIG0009	14	-	-	11.5668	14	-	-	9.9144
RIG0010	8	-	-	10.1088	8	-	-	10.1088
RIG0011	7	-	-	92.8235	7	-	-	92.8235
RIG0016	6	-	-	25.9746	6	-	-	25.9746
RIG0017	4,570	-	-	24.2210	4,570	-	-	24.2210
RIG0018	840	-	-	3.5280	840	-	-	3.5280
RIG0020	174	-	-	0.3480	174	-	-	0.3480
RIG0029	1	-	-	16.9775	1	-	-	16.9775
RIG0035	5,820	-	-	32.0100	5,820	-	-	32.0100
RIG0036	1,056	-	-	10.0320	1,056	-	-	10.0320
RIG0038	1	-	-	6.8115	1	-	-	6.8115
RIG0047	15	-	-	73.8720	15	-	-	73.8720
RIG0049	31	-	-	108.4752	31	-	-	108.4752
RIG0050	19	-	-	66.4848	19	-	-	66.4848
RIG0052	11	-	-	169.5276	11	-	-	169.5276
RIG0053	39	-	-	32.2218	39	-	-	33.8742
RIG0086	1,868	-	-	3.3624	1,868	-	-	3.3624
RIG0088	2,568	-	-	8.4744	2,568	-	-	8.4744
RIG0093	34	-	-	35.9278	35	-	-	36.9845
RIG0095	1	-	-	0.2444	1	-	-	0.2444

Measure Code	Reported				Certified			
	n	kWh	kW	MCF	n	kWh	kW	MCF
RIG0096	10,255	-	-	55.3770	10,255	-	-	55.3770
RIG0097	194	-	-	49.0238	194	-	-	49.0238
Total	27,849	17,258.7824	1.6011	840.0173	27,850	17,258.7824	1.6011	841.0740

The reported measure quantity for one database record did not match its associated documentation. In total, the database sample understated the installation of measure RIG0035 by one. A statistical t-test indicated that this error was unique to sampled records, and therefore not applicable to the program population. However, Cadmus did account for this discrepancy in the final net savings calculations. Table 46 provides the sample realization rates by fuel type and the t-test statistics Cadmus used to analyze errors in the sample.

Table 46. Income Qualified Program Sample Realization Rates and t-Statistic

	kWh	kW	MCF
Sample Realization Rate	100.00%	100.00%	100.04%
Standard Error	N/A	N/A	0.0004
t-Statistic	N/A	N/A	1.0000
p-Value	N/A	N/A	0.3213
Apply to Program Population?	N/A	N/A	No

Task 4: Measure-Level Savings Analysis

Cadmus found discrepancies between the reported per-unit measure savings and the values either maintained in the MEMD or calculated by Navigant for the program measures shown in Table 47.

Table 47. Per-Unit Measure Discrepancies for the Income Qualified Program

Measure Code and End Use	Reported Savings	Certified Savings
RIE0002 - Refrigerator Replacement	$1,218 \mathrm{kWh}$	811 kWh
RIG0086 - Infiltration Reduction 10\% (Non-CAA)*	0.0018 MCF	0.0019 MCF
RIG0087 - Infiltration Reduction 15\% (Non-CAA)	0.0023 MCF	0.0028 MCF
RIG0088 - Infiltration Reduction 20\% (Non-CAA)	0.0033 MCF	0.0039 MCF
RIG0089 - Infiltration Reduction 30\% (Non-CAA)	0.0053 MCF	0.0058 MCF
RIG0090 - Infiltration Reduction 50\% (Non-CAA)	0.0094 MCF	0.0096 MCF
*CAA $=$ Community Action Agency		

Cadmus also calculated weighted average measure lives for custom measures installed for the Income Qualified Program. We divided the custom gas measure RIG0002 into two separate end uses for this report:

- RCG0002 - Residential Income Qualified Custom - Gas (Measure life < 10 yrs)
- RCG0002 - Residential Income Qualified Custom - Gas (Measure life ≥ 10 yrs)

Table 48 presents the reported and certified per-unit savings for all measures delivered through the 2013 Income Qualified Program.

Table 48. Income Qualified Program Reported and Certified Per-Unit Measure Savings

Measure Code	Reported			Certified			Certified LLESM			
	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RCE0002	Custom	Custom	Custom	Custom	Custom	Custom	13.7562	Custom	Custom	Custom
RCG0002	Custom	Custom	Custom	Custom	Custom	Custom	5	Custom	Custom	Custom
RCG0002	Custom	Custom	Custom	Custom	Custom	Custom	15	Custom	Custom	Custom
RIE0001	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RIE0002	1,218.0000	0.0000	0.0000	811.0000	0.0000	0.0000	8.3896	811.0000	0.0000	0.0000
RIE0012	166.0000	0.0189	0.0000	166.0000	0.0189	0.0000	10	182.6000	0.0208	0.0000
RIE0013	255.0000	0.0290	0.0000	255.0000	0.0290	0.0000	6	255.0000	0.0290	0.0000
RIE0016	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RIE0018	730.0000	0.0657	0.0000	730.0000	0.0657	0.0000	15	803.0000	0.0723	0.0000
RIE0030	518.0000	0.0584	0.0000	518.0000	0.0584	0.0000	10	569.8000	0.0642	0.0000
RIE0032	166.0000	0.0189	0.0000	166.0000	0.0189	0.0000	10	182.6000	0.0208	0.0000
RIE0035	690.0000	0.0778	0.0000	690.0000	0.0780	0.0000	10	759.0000	0.0858	0.0000
RIE0036	690.0000	0.0778	0.0000	690.0000	0.0780	0.0000	10	759.0000	0.0858	0.0000
RIE0037	730.0000	0.0657	0.0000	730.0000	0.0657	0.0000	15	803.0000	0.0723	0.0000
RIE0038	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RIE0039	166.0000	0.0189	0.0000	166.0000	0.0189	0.0000	10	182.6000	0.0208	0.0000
RIE0048	207.0412	0.0234	0.0000	207.0412	0.0234	0.0000	10	227.7453	0.0257	0.0000
RIE0049	207.0412	0.0234	0.0000	207.0412	0.0234	0.0000	10	227.7453	0.0257	0.0000
RIE0050	51.0000	0.0058	0.0000	51.0000	0.0058	0.0000	6	51.0000	0.0058	0.0000
RIG0004	0.0000	0.0000	11.2392	0.0000	0.0000	11.2392	9	0.0000	0.0000	11.2392
RIG0006	0.0000	0.0000	14.1761	0.0000	0.0000	14.1761	15	0.0000	0.0000	15.5937
RIG0008	0.0000	0.0000	2.6244	0.0000	0.0000	2.6244	10	0.0000	0.0000	2.8868
RIG0009	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	10	0.0000	0.0000	0.9088
RIG0010	0.0000	0.0000	1.2636	0.0000	0.0000	1.2636	6	0.0000	0.0000	1.2636
RIG0011	0.0000	0.0000	13.2605	0.0000	0.0000	13.2605	9	0.0000	0.0000	13.2605
RIG0016	0.0000	0.0000	4.3291	0.0000	0.0000	4.3291	9	0.0000	0.0000	4.3291
RIG0017	0.0000	0.0000	0.0053	0.0000	0.0000	0.0053	20	0.0000	0.0000	0.0058
RIG0018	0.0000	0.0000	0.0042	0.0000	0.0000	0.0042	20	0.0000	0.0000	0.0046
RIG0019	0.0000	0.0000	0.0052	0.0000	0.0000	0.0052	20	0.0000	0.0000	0.0057
RIG0020	0.0000	0.0000	0.0020	0.0000	0.0000	0.0020	20	0.0000	0.0000	0.0022
RIG0021	0.0000	0.0000	0.0016	0.0000	0.0000	0.0016	13	0.0000	0.0000	0.0018
RIG0023	0.0000	0.0000	5.9233	0.0000	0.0000	5.9233	3	0.0000	0.0000	5.9233
RIG0027	0.0000	0.0000	2.6244	0.0000	0.0000	2.6244	10	0.0000	0.0000	2.8868
RIG0029	0.0000	0.0000	16.9775	0.0000	0.0000	16.9775	15	0.0000	0.0000	18.6753
RIG0030	0.0000	0.0000	18.7672	0.0000	0.0000	18.7672	15	0.0000	0.0000	20.6439
RIG0033	0.0000	0.0000	0.0025	0.0000	0.0000	0.0025	13	0.0000	0.0000	0.0028

Measure Code	Reported			Certified			Certified LLESM			
	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RIG0034	0.0000	0.0000	0.0035	0.0000	0.0000	0.0035	13	0.0000	0.0000	0.0039
RIG0035	0.0000	0.0000	0.0055	0.0000	0.0000	0.0055	13	0.0000	0.0000	0.0061
RIG0036	0.0000	0.0000	0.0095	0.0000	0.0000	0.0095	13	0.0000	0.0000	0.0105
RIG0038	0.0000	0.0000	6.8115	0.0000	0.0000	6.8115	3	0.0000	0.0000	6.8115
RIG0039	0.0000	0.0000	2.6240	0.0000	0.0000	2.6244	10	0.0000	0.0000	2.8868
RIG0041	0.0000	0.0000	2.6240	0.0000	0.0000	2.6244	10	0.0000	0.0000	2.8868
RIG0042	0.0000	0.0000	2.6240	0.0000	0.0000	2.6244	10	0.0000	0.0000	2.8868
RIG0043	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	10	0.0000	0.0000	0.9088
RIG0044	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	10	0.0000	0.0000	0.9088
RIG0046	0.0000	0.0000	1.2636	0.0000	0.0000	1.2636	6	0.0000	0.0000	1.2636
RIG0047	0.0000	0.0000	4.9248	0.0000	0.0000	4.9248	3	0.0000	0.0000	4.9248
RIG0048	0.0000	0.0000	8.9158	0.0000	0.0000	8.9158	9	0.0000	0.0000	8.9158
RIG0049	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	10	0.0000	0.0000	3.8491
RIG0050	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	10	0.0000	0.0000	3.8491
RIG0051	0.0000	0.0000	20.1796	0.0000	0.0000	20.1796	15	0.0000	0.0000	22.1976
RIG0052	0.0000	0.0000	15.4116	0.0000	0.0000	15.4116	3	0.0000	0.0000	15.4116
RIG0053	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	10	0.0000	0.0000	0.9088
RIG0060	0.0000	0.0000	0.0019	0.0000	0.0000	0.0019	13	0.0000	0.0000	0.0021
RIG0061	0.0000	0.0000	0.0029	0.0000	0.0000	0.0029	13	0.0000	0.0000	0.0032
RIG0062	0.0000	0.0000	0.0039	0.0000	0.0000	0.0039	13	0.0000	0.0000	0.0043
RIG0063	0.0000	0.0000	0.0058	0.0000	0.0000	0.0058	13	0.0000	0.0000	0.0064
RIG0064	0.0000	0.0000	0.0099	0.0000	0.0000	0.0099	13	0.0000	0.0000	0.0109
RIG0066	0.0000	0.0000	0.0055	0.0000	0.0000	0.0055	20	0.0000	0.0000	0.0061
RIG0067	0.0000	0.0000	0.0054	0.0000	0.0000	0.0054	20	0.0000	0.0000	0.0059
RIG0068	0.0000	0.0000	0.0021	0.0000	0.0000	0.0021	20	0.0000	0.0000	0.0023
RIG0070	0.0000	0.0000	15.4116	0.0000	0.0000	15.4116	15	0.0000	0.0000	16.9528
RIG0071	0.0000	0.0000	20.0883	0.0000	0.0000	20.0883	15	0.0000	0.0000	22.0971
RIG0073	-306.9151	0.0000	48.1190	-306.9151	0.0000	48.1190	15	-337.6066	0.0000	52.9309
RIG0086	0.0000	0.0000	0.0018	0.0000	0.0000	0.0019	13	0.0000	0.0000	0.0021
RIG0087	0.0000	0.0000	0.0023	0.0000	0.0000	0.0028	15	0.0000	0.0000	0.0031
RIG0088	0.0000	0.0000	0.0033	0.0000	0.0000	0.0039	15	0.0000	0.0000	0.0043
RIG0089	0.0000	0.0000	0.0053	0.0000	0.0000	0.0058	15	0.0000	0.0000	0.0064
RIG0090	0.0000	0.0000	0.0094	0.0000	0.0000	0.0096	15	0.0000	0.0000	0.0105
RIG0092	0.0000	0.0000	0.0021	0.0000	0.0000	0.0021	20	0.0000	0.0000	0.0023
RIG0093	0.0000	0.0000	1.0567	0.0000	0.0000	1.0567	10	0.0000	0.0000	1.1624
RIG0095	0.0000	0.0000	0.2444	0.0000	0.0000	0.2444	5	0.0000	0.0000	0.2444
RIG0096	0.0000	0.0000	0.0054	0.0000	0.0000	0.0055	20	0.0000	0.0000	0.0061
RIG0097	0.0000	0.0000	0.2527	0.0000	0.0000	0.2527	6	0.0000	0.0000	0.2527
RIG0100	0.0000	0.0000	7.8460	0.0000	0.0000	7.8460	5	0.0000	0.0000	7.8460

Major Findings by Fuel Type

The tables below present certified program participation and energy savings by measure. Table 49 and Table 50 document kWh savings, Table 51
document kW savings, and Table 52 and Table 53 document MCF savings.
Table 49. Certified Income Qualified Program Participation and First-Year kWh Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $\text { (D) }=(\mathrm{B} \times \mathrm{C})$	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
RCE0002	83	83	17,626.0000	17,626.0000	1.0000	17,626.0000	0.9000	15,863.4000
RIE0001	2,882	2,882	106,922.2000	106,922.2000	0.9800	104,783.7560	0.9000	94,305.3804
RIE0002	263	263	320,334.0000	213,293.0000	1.0000	213,293.0000	0.9000	191,963.7000
RIE0012	79	79	13,114.0000	13,114.0000	0.9600	12,589.4400	0.9000	11,330.4960
RIE0013	95	95	24,225.0000	24,225.0000	0.9500	23,013.7500	0.9000	20,712.3750
RIE0016	38,459	38,459	1,426,828.9000	1,426,828.9000	0.9800	1,398,292.3220	0.9000	1,258,463.0898
RIE0018	28	28	20,440.0000	20,440.0000	1.0000	20,440.0000	0.9000	18,396.0000
RIE0030	3	3	1,554.0000	1,554.0000	0.9300	1,445.2200	0.9000	1,300.6980
RIE0032	5	5	830.0000	830.0000	0.9600	796.8000	0.9000	717.1200
RIE0035	206	206	142,140.0000	142,140.0000	0.9300	132,190.2000	0.9000	118,971.1800
RIE0036	256	256	176,640.0000	176,640.0000	1.0000	176,640.0000	0.9000	158,976.0000
RIE0037	6	6	4,380.0000	4,380.0000	1.0000	4,380.0000	0.9000	3,942.0000
RIE0038	67	67	2,485.7000	2,485.7000	0.9800	2,435.9860	0.9000	2,192.3874
RIE0039	288	288	47,808.0000	47,808.0000	0.9600	45,895.6800	0.9000	41,306.1120
RIE0048	262	262	54,244.7944	54,244.7944	0.9600	52,075.0026	0.9000	46,867.5024
RIE0049	58	58	12,008.3896	12,008.3896	0.9600	11,528.0540	0.9000	10,375.2486
RIE0050	819	819	41,769.0000	41,769.0000	1.0000	41,769.0000	0.9000	37,592.1000
RIG0073	2	2	-613.8302	-613.8302	1.0000	-613.8302	0.9000	-552.4472
Total	43,861	43,861	2,412,736.1538	2,305,695.1538		2,258,580.3804	0.9000	2,032,722.3424

Table 50. Certified Income Qualified Program Long-Life Equipment Savings Multiplier and Lifetime kWh Savings by Measure

Table 51. Certified Income Qualified Program Participation and kW Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kW Savings (A)	2013 Adjusted Gross kW Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kW Savings $\begin{gathered} (D)= \\ (B \times C) \end{gathered}$	Deemed Net-to- Gross Adjustment Factor (E)		Measure Life (G)	2013 Certified New kW LLESM Savings $\begin{gathered} (\mathrm{H})= \\ (\mathrm{F} \times 1.1)^{*} \end{gathered}$	2013 Realization Rate $(I)=(F / A)$
RIE0001	2,882	2,882	12.6808	12.6808	0.9800	12.4272	0.9000	11.1845	9	11.1845	88.20\%
RIE0012	79	79	1.4931	1.4931	0.9600	1.4334	0.9000	1.2900	10	1.4190	86.40\%
RIE0013	95	95	2.7550	2.7550	0.9500	2.6173	0.9000	2.3555	6	2.3555	85.50\%
RIE0016	38,459	38,459	169.2196	169.2196	0.9800	165.8352	0.9000	149.2517	9	149.2517	88.20\%
RIE0018	28	28	1.8396	1.8396	1.0000	1.8396	0.9000	1.6556	15	1.8212	90.00\%
RIEOO30	3	3	0.1752	0.1752	0.9300	0.1629	0.9000	0.1466	10	0.1613	83.70\%
RIE0032	5	5	0.0945	0.0945	0.9600	0.0907	0.9000	0.0816	10	0.0898	86.40\%
RIE0035	206	206	16.0268	16.0680	0.9300	14.9432	0.9000	13.4489	10	14.7938	83.92\%
RIE0036	256	256	19.9168	19.9680	1.0000	19.9680	0.9000	17.9712	10	19.7683	90.23\%
RIE0037	6	6	0.3942	0.3942	1.0000	0.3942	0.9000	0.3548	15	0.3903	90.00\%
RIE0038	67	67	0.2948	0.2948	0.9800	0.2889	0.9000	0.2600	9	0.2600	88.20\%
RIE0039	288	288	5.4432	5.4432	0.9600	5.2255	0.9000	4.7029	10	5.1732	86.40\%
RIE0048	262	262	6.1308	6.1308	0.9600	5.8856	0.9000	5.2970	10	5.8267	86.40\%
RIE0049	58	58	1.3572	1.3572	0.9600	1.3029	0.9000	1.1726	10	1.2899	86.40\%
RIE0050	819	819	4.7502	4.7502	1.0000	4.7502	0.9000	4.2752	6	4.2752	90.00\%
Total	43,513	43,513	242.5718	242.6642		237.1648	0.9000	213.4483		218.0604	87.99\%

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings $(D)=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings $(F)=(D \times E)$
RCG0002	6	6	2,640.9217	2,640.9217	1.0000	2,640.9217	0.9000	2,376.8295
RCG0002	44	44	245.5200	245.5200	1.0000	245.5200	0.9000	220.9680
RIG0004	16	16	179.8272	179.8272	0.8700	156.4497	0.9000	140.8047
RIG0006	34	34	481.9874	481.9874	1.0000	481.9874	0.9000	433.7887
RIG0008	435	435	1,141.6140	1,141.6140	0.9300	1,061.7010	0.9000	955.5309
RIG0009	3,097	3,095	2,558.7414	2,557.0890	0.9600	2,454.8054	0.9000	2,209.3249
RIG0010	1,458	1,458	1,842.3288	1,842.3288	0.9500	1,750.2124	0.9000	1,575.1911
RIG0011	562	562	7,452.4010	7,452.4010	0.8700	6,483.5889	0.9000	5,835.2300
RIG0016	915	915	3,961.1265	3,961.1265	0.8700	3,446.1801	0.9000	3,101.5620
RIG0017	283,082	283,082	1,500.3346	1,500.3346	0.9360	1,404.3132	0.9000	1,263.8819
RIG0018	10,965	10,965	46.0530	46.0530	0.9090	41.8622	0.9000	37.6760
RIG0019	154,537	154,537	803.5924	803.5924	1.0000	803.5924	0.9000	723.2332
RIG0020	18,840	18,840	37.6800	37.6800	1.0000	37.6800	0.9000	33.9120
RIG0021	22,248	22,248	35.5968	35.5968	1.0000	35.5968	0.9000	32.0371
RIG0023	48	48	284.3184	284.3184	1.0000	284.3184	0.9000	255.8866
RIG0027	127	127	333.2988	333.2988	1.0000	333.2988	0.9000	299.9689
RIG0029	63	63	1,069.5825	1,069.5825	1.0000	1,069.5825	0.9000	962.6243
RIG0030	99	99	1,857.9528	1,857.9528	1.0000	1,857.9528	0.9000	1,672.1575
RIG0033	38,140	38,140	95.3500	95.3500	1.0000	95.3500	0.9000	85.8150
RIG0034	146,842	146,842	513.9470	513.9470	1.0000	513.9470	0.9000	462.5523
RIG0035	261,943	261,943	1,440.6865	1,440.6865	1.0000	1,440.6865	0.9000	1,296.6179
RIG0036	70,649	70,649	671.1655	671.1655	1.0000	671.1655	0.9000	604.0490
RIG0038	80	80	544.9200	544.9200	1.0000	544.9200	0.9000	490.4280
RIG0039	1	1	2.6240	2.6244	1.0000	2.6244	0.9000	2.3620

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)
RIG0041	2	2	5.2480	5.2488
RIG0042	103	103	270.2720	270.3132
RIG0043	8	8	6.6096	6.6096
RIG0044	203	203	167.7186	167.7186
RIG0046	101	101	127.6236	127.6236
RIG0047	1,984	1,984	9,770.8032	9,770.8032
RIG0048	57	57	508.2006	508.2006
RIG0049	3,508	3,508	12,275.1936	12,275.1936
RIG0050	2,059	2,059	7,204.8528	7,204.8528
RIG0051	9	9	181.6164	181.6164
RIG0052	884	884	13,623.8544	13,623.8544
RIG0053	4,930	4,932	4,073.1660	4,074.8184
RIG0060	13,471	13,471	25.5949	25.5949
RIG0061	4,393	4,393	12.7397	12.7397
RIG0062	8,751	8,751	34.1289	34.1289
RIG0063	30,870	30,870	179.0460	179.0460
RIG0064	16,553	16,553	163.8747	163.8747
RIG0066	39,013	39,013	214.5715	214.5715
RIG0067	24,362.8	24,362.8	131.5591	131.5591
RIG0068	3,745	3,745	7.8645	7.8645
RIG0070	4	4	61.6464	61.6464
RIG0071	64	64	1,285.6512	1,285.6512
RIG0073	2	2	96.2380	96.2380
RIG0086	202,277	202,277	364.0986	378.2175
RIG0087	43,245	43,245	99.4635	120.5584

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings $(D)=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings $(F)=(D \times E)$
RIG0088	39,029	39,029	128.7957	151.2764	1.0000	151.2764	0.9000	136.1488
RIG0089	8,312	8,312	44.0536	48.2744	1.0000	48.2744	0.9000	43.4470
RIG0090	1,976	1,976	18.5744	18.9076	1.0000	18.9076	0.9000	17.0168
RIG0092	3,697	3,697	7.7637	7.7637	1.0000	7.7637	0.9000	6.9873
RIG0093	4,286	4,287	4,529.0162	4,530.0729	0.9600	4,348.8700	0.9000	3,913.9830
RIG0095	176	176	43.0144	43.0144	1.0000	43.0144	0.9000	38.7130
RIG0096	1,328,094	1,328,094	7,171.7076	7,304.5170	1.0000	7,304.5170	0.9000	6,574.0653
RIG0097	16,766	16,766	4,236.7682	4,236.7682	1.0000	4,236.7682	0.9000	3,813.0914
RIG0100	33	33	258.9180	258.9180	1.0000	258.9180	0.9000	233.0262
Total	2,817,198.8	2,817,199.8	97,071.8179	97,267.9750		94,084.1447	0.9000	84,675.7302

$$
\begin{aligned}
& \underset{\sim}{2} \\
& 0 \\
& 0 \\
& \infty \\
& 0 \\
&
\end{aligned}
$$

$$
\begin{aligned}
& 96 \tau 9 \cdot \varepsilon \tau \\
& 0 เ 8 \tau^{\prime} \tau \angle t^{\prime} \tau
\end{aligned}
$$

$$
\begin{aligned}
& 0 \vdash 8 z^{\prime} \tau \angle \Delta^{\prime} \tau \\
& t 9 \varepsilon 9^{\prime} z 58^{\prime} \angle
\end{aligned}
$$

$$
\begin{array}{|c|}
\hline 2013 \text { Realization } \\
\text { Rate } \\
(I)=(F / A)
\end{array}
$$

$$
\begin{array}{|c|}
\hline 90.00 \% \\
\hline 90.00 \% \\
\hline 78.30 \% \\
\hline 90.00 \% \\
\hline 83.70 \% \\
\hline 86.34 \% \\
\hline 85.50 \% \\
\hline 78.30 \% \\
\hline 78.30 \% \\
\hline 84.24 \% \\
\hline
\end{array}
$$

$$
\begin{aligned}
& 84.24 \% \\
& 81.81 \%
\end{aligned}
$$

$$
90.00 \%
$$

$$
90.00 \%
$$

$$
90.00 \%
$$

$$
90.00 \%
$$

$$
90.00 \%
$$

$$
90.00 \%
$$

$$
90.00 \%
$$

$$
90.00 \%
$$

$$
\begin{aligned}
& 90.00 \% \\
& 90.00 \%
\end{aligned}
$$

$$
\begin{aligned}
& 90.00 \% \\
& 90.00 \%
\end{aligned}
$$

$$
90.00 \%
$$

$$
\begin{array}{r}
11,884.1477 \\
\hline 3,314.5200 \\
1,267.2423 \\
\hline 6,506.8299 \\
9,555.3092 \\
22,093.2490
\end{array}
$$

$$
\begin{array}{r}
9,451.1467 \\
\hline 52,517.0698
\end{array}
$$

$$
\begin{aligned}
& 52,517.0698 \\
& 27,914.0584
\end{aligned}
$$

$$
25,277.6373
$$

$$
753.5192
$$

$$
14,464.6632
$$

$$
\begin{aligned}
& 678.2400 \\
& \hline 416.4826
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline 416.4826 \\
\hline 767.6597 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
767.6597 \\
\hline 2,999.6892
\end{array}
$$

$$
\begin{array}{r}
2,999.6892 \\
14,439.3638
\end{array}
$$

$$
\begin{array}{r}
25,082.3628 \\
1,115.5950
\end{array}
$$

$$
\begin{aligned}
& 1,115.5950 \\
& \hline 6,013.1799
\end{aligned}
$$

$$
\begin{array}{l|l}
\hline 83.71 \% & 43.9325 \\
\hline
\end{array}
$$

Measure ID	2013 Certified Net MCF Savings $(F)=(D \times E)$	Measure Life (G)	2013 Certified Net MCF LLESM Savings $(H)=(F \times 1.1)^{*}$	2013 Realization Rate $(I)=(F / A)$	Lifetime MCF Savings $(J)=(F \times G)$
RIG0042	226.2521	10	248.8774	83.71\%	2,262.5215
RIG0043	5.7107	10	6.2818	86.40\%	57.1069
RIG0044	144.9089	10	159.3998	86.40\%	1,449.0887
RIG0046	109.1182	6	109.1182	85.50\%	654.7091
RIG0047	8,793.7229	3	8,793.7229	90.00\%	26,381.1686
RIG0048	397.9211	9	397.9211	78.30\%	3,581.2896
RIG0049	10,274.3370	10	11,301.7707	83.70\%	102,743.3704
RIG0050	6,484.3675	10	7,132.8043	90.00\%	64,843.6752
RIG0051	163.4548	15	179.8002	90.00\%	2,451.8214
RIG0052	12,261.4690	3	12,261.4690	90.00\%	36,784.4069
RIG0053	3,520.6431	10	3,872.7074	86.44\%	35,206.4310
RIG0060	23.0354	13	25.3390	90.00\%	299.4603
RIG0061	11.4657	13	12.6123	90.00\%	149.0545
RIG0062	30.7160	13	33.7876	90.00\%	399.3081
RIG0063	161.1414	13	177.2555	90.00\%	2,094.8382
RIG0064	147.4872	13	162.2360	90.00\%	1,917.3340
RIG0066	193.1144	20	212.4258	90.00\%	3,862.2870
RIG0067	118.4032	20	130.2435	90.00\%	2,368.0642
RIG0068	7.0781	20	7.7859	90.00\%	141.5610
RIG0070	55.4818	15	61.0299	90.00\%	832.2264
RIG0071	1,157.0861	15	1,272.7947	90.00\%	17,356.2912
RIG0073	86.6142	15	95.2756	90.00\%	1,299.2130
RIG0086	340.3958	13	374.4354	93.49\%	4,425.1452
RIG0087	108.5026	15	119.3528	109.09\%	1,627.5385
RIG0088	136.1488	15	149.7636	105.71\%	2,042.2315
RIG0089	43.4470	15	47.7917	98.62\%	651.7049

Appendix E: Appliance Recycling Program

Table 54 presents reported gross and certified net energy savings for the Appliance Recycling Program by fuel type. The realization rates reflect the adjustments Cadmus made based on our certification tasks and on applying installation rate and NTG adjustments. The following sections discuss the changes we made to reported gross energy savings.

Table 54. Appliance Recycling Program Participation and Savings without Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	29,087	$34,841,485.0000$	$4,118.5210$	0.0000
Certified Net	29,087	$31,357,336.5000$	$3,706.6689$	0.0000
Difference	0	$-3,484,148.5000$	-411.8521	0.0000
Realization Rate	100.00%	90.00%	90.00%	N/A

Table 55 presents reported and certified net energy savings with the long-life equipment savings multiplier for the Appliance Recycling Program by fuel type.

Table 55. Appliance Recycling Program Participation and Savings with
Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	29,087	$31,357,326.3300$	$3,706.6593$	0.0000
Certified Net	29,087	$31,357,336.5000$	$3,706.6689$	0.0000
Difference	0	10.1700	0.0096	0.0000
Certified/Reported	100.00%	100.00%	100.00%	N/A

Task 2: Database Review

The Consumers Energy and implementer databases matched across all areas of inquiry: (a) number of participants; (b) quantities of installed measures; and (c) appropriate application of savings according to customer type. Cadmus also verified that the measures were installed during the 2013 program year.

Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

The Appliance Recycling Program did not have customer-level documents available for review; therefore, Cadmus did not conduct a documentation review of this program.

Task 4: Measure-Level Savings Analysis

Cadmus did not find discrepancies between the per-unit measure savings reported by Consumers Energy and values either maintained in the MEMD or calculated by Navigant.

Table 56 presents the reported and certified per-unit savings for all measures delivered through the 2013 Appliance Recycling Program.

Table 56. Appliance Recycling Program Reported and Certified Per-Unit Measure Savings

Measure Code	Reported			Certified			Certified LLESM			
	$1,261.0000$	0.1460	0.0000	$1,261.0000$	0.1460	0.0000	8	$1,261.0000$	0.1460	0.0000
RTEOOO9	$1,261.0000$	0.1460	0.0000	$1,261.0000$	0.1460	0.0000	8	$1,261.0000$	0.1460	0.0000
RTE0002	$1,111.0000$	0.1360	0.0000	$1,111.0000$	0.1360	0.0000	8	$1,111.0000$	0.1360	0.0000
RTEOO10	$1,111.0000$	0.1360	0.0000	$1,111.0000$	0.1360	0.0000	8	$1,111.0000$	0.1360	0.0000
RTEOOO7	139.0000	0.0350	0.0000	139.0000	0.0350	0.0000	8	139.0000	0.0350	0.0000
RTEOOO8	113.0000	0.1070	0.0000	113.0000	0.1070	0.0000	8	113.0000	0.1070	0.0000

Major Findings by Fuel Type

The tables below present the certified program participation and energy savings by measure. Table 57 and Table 58 document kWh savings and Table 59 documents kW savings. No MCF savings are reported for this program.

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $(\mathrm{D})=(\mathrm{B} \times \mathrm{C})$	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
RTE0001	20,895	20,895	26,348,595.0000	26,348,595.0000	1.0000	26,348,595.0000	0.9000	23,713,735.5000
RTE0009	1,885	1,885	2,376,985.0000	2,376,985.0000	1.0000	2,376,985.0000	0.9000	2,139,286.5000
RTE0002	5,286	5,286	5,872,746.0000	5,872,746.0000	1.0000	5,872,746.0000	0.9000	5,285,471.4000
RTE0010	114	114	126,654.0000	126,654.0000	1.0000	126,654.0000	0.9000	113,988.6000
RTE0007	539	539	74,921.0000	74,921.0000	1.0000	74,921.0000	0.9000	67,428.9000
RTE0008	368	368	41,584.0000	41,584.0000	1.0000	41,584.0000	0.9000	37,425.6000
Total	29,087	29,087	34,841,485.0000	34,841,485.0000		34,841,485.0000	0.9000	31,357,336.5000

Table 59. Certified Appliance Recycling Program Participation and kW Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kW Savings (A)	2013 Adjusted Gross kW Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kW Savings (D) = (B x C)	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kW Savings $\begin{gathered} (F)= \\ (D \times E) \end{gathered}$	Measure Life (G)	2013 Certified Net kW LLESM Savings $\begin{gathered} (H)= \\ (F \times 1.1)^{*} \end{gathered}$	2013 Realization Rate $(I)=(F / A)$
RTE0001	20,895	20,895	3,050.6700	3,050.6700	1.0000	3,050.6700	0.9000	2,745.6030	8	2,745.6030	90.00\%
RTE0009	1,885	1,885	275.2100	275.2100	1.0000	275.2100	0.9000	247.6890	8	247.6890	90.00\%
RTE0002	5,286	5,286	718.8960	718.8960	1.0000	718.8960	0.9000	647.0064	8	647.0064	90.00\%
RTE0010	114	114	15.5040	15.5040	1.0000	15.5040	0.9000	13.9536	8	13.9536	90.00\%
RTE0007	539	539	18.8650	18.8650	1.0000	18.8650	0.9000	16.9785	8	16.9785	90.00\%
RTE0008	368	368	39.3760	39.3760	1.0000	39.3760	0.9000	35.4384	8	35.4384	90.00\%
Total	29,087	29,087	4,118.5210	4,118.5210		4,118.5210	0.9000	3,706.6689		3,706.6689	90.00\%

[^19]
Appendix F: Multifamily Program

Table 60 presents reported gross and certified net energy savings for the Multifamily Program by fuel type. The realization rates reflect the adjustments Cadmus made based on our certification tasks and applying installation rate and NTG adjustments. The following sections discuss changes we made to reported gross energy savings.

Table 60. Multifamily Program Participation and Savings without Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	$596,153.3$	$8,583,011.3200$	$1,119.5425$	$205,293.1563$
Certified Net	$596,153.3$	$7,626,133.7319$	916.3936	$184,682.1291$
Difference	0	$-956,877.5881$	-203.1489	$-20,611.0272$
Realization Rate	100.00%	88.85%	81.85%	89.96%

Table 61 presents reported and certified net energy savings with the long-life equipment savings multiplier for the Multifamily Program by fuel type.

Table 61. Multifamily Program Participation and Savings with Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	$596,153.3$	$7,945,386.7820$	$1,034.2332$	$196,369.5416$
Certified Net	$596,153.3$	$7,955,182.2794$	955.4525	$199,005.6580$
Difference	0	$9,795.4974$	-78.7807	$2,636.1164$
Certified/Reported	100.00%	100.12%	92.38%	101.34%

Task 2: Database Review

The Consumers Energy and implementer databases matched across all areas of inquiry: (a) number of participants; (b) quantities of installed measures; and (c) appropriate application of savings according to customer type. Cadmus also verified that the measures were installed during the 2013 program year.

Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

Cadmus reviewed program documents from a sample of 59 randomly selected account numbers.
Table 62 documents reported and certified measure counts as well as reported and certified energy savings by fuel type.

Table 62. Multifamily Program Sample Participation and Savings by End Use

Measure Code	Reported				Certified			
	n	kWh	kW	MCF	n	kWh	kW	MCF
RCG0001	4	-	-	2,156.4306	4	-	-	2,156.4306
RME0004	183	30,378.0000	3.4587	-	183	30,378.0000	3.4587	-
RME0019	135	28,620.0000	3.2400	-	135	28,620.0000	3.2400	-
RME0023	4,861	180,343.1000	21.3884	-	4,861	180,343.1000	21.3884	-
RME0046	39	1,719.9000	0.2067	-	39	1,719.9000	0.2067	-
RME0050	148	102,120.0000	11.5440	-	148	102,120.0000	11.5440	-
RME0051	4	2,760.0000	0.3120	-	4	2,760.0000	0.3120	-
RME0123	9	1,674.0000	-	-	9	1,674.0000	-	-
RME0178	8	1,656.3296	0.1512	-	8	1,656.3296	0.1512	-
RME0181	496	21,873.6000	16.8640	-	496	21,873.6000	16.8640	-
RME0194	2,427	97,080.0000	11.6496	-	2,427	97,080.0000	11.6496	-
RMG0004	112	-	-	92.5344	112	-	-	92.5344
RMG0007	3,948	-	-	882.7728	3,948	-	-	882.7728
RMG0009	1,200	-	-	68.6400	1,200	-	-	68.6400
RMG0014	1,292	-	-	1,397.6856	1,292	-	-	1,397.6856
RMG0016	248	-	-	96.4224	248	-	-	96.4224
RMG0030	9	-	-	13.9707	9	-	-	13.9707
RMG0031	31	-	-	7.5361	31	-	-	7.5361
RMG0034	12	-	-	7.9260	12	-	-	7.9260
RMG0035	21,030	-	-	866.4319	21,030	-	-	866.4319
RMG0050	1,157	-	-	4,048.5744	1,157	-	-	4,048.5744
RMG0051	545	-	-	1,907.0640	545	-	-	1,907.0640
RMG0108	216	-	-	279.8712	216	-	-	279.8712
RMG0115	177	-	-	499.7064	177	-	-	499.7064
RMG0116	2	-	-	9.3504	2	-	-	9.3504
RMG0119	162	-	-	175.2516	162	-	-	175.2516
RMG0120	197	-	-	162.7614	197	-	-	162.7614
RMG0123	9,608	-	-	2,345.3128	9,608	-	-	2,345.3128
RMG0132	403	-	-	1,365.4849	403	-	-	1,365.4849
RMG0133	2	-	-	7.8972	2	-	-	7.8972
RMG0137	25	-	-	285.1825	25	-	-	285.1825
RMG0143	800	-	-	332.0800	800	-	-	332.0800
RMG0144	798	-	-	365.5974	798	-	-	365.5974
RMG0145	1,598	-	-	385.5974	1,598	-	-	385.5974
RMG0146	198	-	-	20.4732	198	-	-	20.4732
RMG0149	197	-	-	689.3424	197	-	-	689.3424
RMG0152	101	-	-	246.3794	101	-	-	246.3794

Measure Code	Reported				Certified			
	n	kWh	kW	MCF	n	kWh	kW	MCF
RMG0154	1,655	-	-	1,748.8385	1,655	-	-	1,748.8385
RMG0163	4,949	-	-	531.5226	4,949	-	-	531.5226
Total	58,986	468,224.9296	68.8146	20,996.5248	58,986	468,224.9296	68.8146	20,996.5248

The reported measure quantities for all database records matched the associated documentation.
Table 63 provides the sample realization rates by fuel type and the t-test statistics Cadmus used to analyze errors in the sample.

Table 63. Multifamily Program Sample Realization Rates and t-Statistic

	kWh	kW	MCF
Sample Realization Rate	100.00%	100.00%	100.00\%
Standard Error	N / A	N / A	N / A
t-Statistic	N / A	N / A	N / A
p-Value	N / A	N / A	N / A
Apply to Program Population?	N / A	N / A	N

Task 4: Measure-Level Savings Analysis

Cadmus found discrepancies between the reported per-unit measure savings and values either maintained in the MEMD or calculated by Navigant for the program measures shown in Table 64.

Table 64. Per-Unit Measure Discrepancies for the Multifamily Program

Measure Code and End Use	Reported Savings	Certified Savings
RME0150 - CFL Candelabra Lamps (Common Area)	149 kWh	156 kWh
	0.0340 kW	0.0382 kW
RME0178 - Low-Flow Bath Aerator 1.0 GPM	0.0189 kW	0.0234 kW
RME0180 - LED Candelabra	0.0234 kW	0.0010 kW
RME0183 - CFL Candelabra Lamps (In-Unit)	0.0340 kW	0.0052 kW
RMG0118 - Pipe Wrap (Common Area)	0.1657 MCF	0.2431 MCF
RMG0123 - Pipe Wrap (Common Area)	0.2441 MCF	0.2431 MCF

Cadmus also certified RME0180 with a nine-year measure life, while Etracker reported it to have a twoyear measure life. RMG0113 and RMG0123 were reported with a six-year measure life; Cadmus verified a measure life of 20 years based on the MEMD.

Table 65 presents the reported and certified per-unit savings for all measures delivered through the 2013 Multifamily Program.

Table 65. Multifamily Program Reported and Certified Per-Unit Measure Savings

Measure Code	Reported			Certified			Certified LLESM			
	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RCE0001	Custom	Custom	Custom	Custom	Custom	Custom	8.7667	Custom	Custom	Custom
RCE0001	Custom	Custom	Custom	Custom	Custom	Custom	12.1374	Custom	Custom	Custom
RCG0001	Custom	Custom	Custom	Custom	Custom	Custom	5.1729	Custom	Custom	Custom
RCG0001	Custom	Custom	Custom	Custom	Custom	Custom	17.1398	Custom	Custom	Custom
RME0004	166.0000	0.0189	0.0000	166.0000	0.0189	0.0000	12	182.6000	0.0208	0.0000
RME0019	212.0000	0.0240	0.0000	212.0000	0.0240	0.0000	12	233.2000	0.0264	0.0000
RME0023	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RME0027	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RME0029	78.0000	0.0093	0.0000	78.0000	0.0093	0.0000	12	85.8000	0.0102	0.0000
RME0031	397.0000	0.0990	0.0000	397.0000	0.0990	0.0000	10	436.7000	0.1089	0.0000
RME0035	268.0000	0.0000	0.0000	268.0000	0.0000	0.0000	11	294.8000	0.0000	0.0000
RME0036	409.0000	0.0000	0.0000	409.0000	0.0000	0.0000	11	449.9000	0.0000	0.0000
RME0038	706.0000	0.0000	0.0000	706.0000	0.0000	0.0000	11	776.6000	0.0000	0.0000
RME0039	611.0000	0.0665	0.0000	611.0000	0.0665	0.0000	8	611.0000	0.0665	0.0000
RME0046	44.1000	0.0053	0.0000	44.1000	0.0053	0.0000	9	44.1000	0.0053	0.0000
RME0050	690.0000	0.0780	0.0000	690.0000	0.0780	0.0000	12	759.0000	0.0858	0.0000
RME0051	690.0000	0.0780	0.0000	690.0000	0.0780	0.0000	12	759.0000	0.0858	0.0000
RME0104	166.0000	0.0189	0.0000	166.0000	0.0189	0.0000	12	182.6000	0.0208	0.0000
RME0105	518.0000	0.0580	0.0000	518.0000	0.0580	0.0000	12	569.8000	0.0638	0.0000
RME0119	212.0000	0.0240	0.0000	212.0000	0.0240	0.0000	12	233.2000	0.0264	0.0000
RME0121	690.0000	0.0780	0.0000	690.0000	0.0780	0.0000	12	759.0000	0.0858	0.0000
RME0123	186.0000	0.0000	0.0000	186.0000	0.0000	0.0000	2	186.0000	0.0000	0.0000
RME0133	180.0000	0.0189	0.0000	180.0000	0.0189	0.0000	8	180.0000	0.0189	0.0000
RME0142	72.7933	0.0637	0.0000	72.7933	0.0637	0.0000	15	80.0726	0.0701	0.0000
RME0147	44.1000	0.0053	0.0000	44.1000	0.0053	0.0000	9	44.1000	0.0053	0.0000
RME0150	149.0000	0.0340	0.0000	156.0000	0.0382	0.0000	2	156.0000	0.0382	0.0000
RME0159	29.0000	0.0072	0.0000	29.0000	0.0072	0.0000	8	29.0000	0.0072	0.0000
RME0167	196.0000	0.0479	0.0000	196.0000	0.0479	0.0000	10	215.6000	0.0527	0.0000
RME0175	80.0000	0.1380	0.0000	80.0000	0.1380	0.0000	12	88.0000	0.1518	0.0000
RME0178	207.0412	0.0189	0.0000	207.0412	0.0234	0.0000	12	227.7453	0.0257	0.0000
RME0180	25.0000	0.0283	0.0000	25.0000	0.0010	0.0000	12	27.5000	0.0011	0.0000
RME0181	44.1000	0.0340	0.0000	44.1000	0.0053	0.0000	9	44.1000	0.0053	0.0000
RME0184	201.0000	0.0230	0.0000	201.0000	0.0230	0.0000	15	221.1000	0.0253	0.0000
RME0194	40.0000	0.0048	0.0000	40.0000	0.0048	0.0000	10	44.0000	0.0053	0.0000
RMG0004	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	12	0.0000	0.0000	0.9088
RMG0007	0.0000	0.0000	0.2236	0.0000	0.0000	0.2236	6	0.0000	0.0000	0.2236
RMG0009	0.0000	0.0000	0.0572	0.0000	0.0000	0.0572	15	0.0000	0.0000	0.0629
RMG0011	0.0000	0.0000	0.1085	0.0000	0.0000	0.1085	5	0.0000	0.0000	0.1085

Measure Code	Reported			Certified			Certified LLESM			
	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RMG0012	0.0000	0.0000	0.3699	0.0000	0.0000	0.3699	15	0.0000	0.0000	0.4069
RMG0014	0.0000	0.0000	1.0818	0.0000	0.0000	1.0818	12	0.0000	0.0000	1.1900
RMG0016	0.0000	0.0000	0.3888	0.0000	0.0000	0.3888	20	0.0000	0.0000	0.4277
RMG0018	0.0000	0.0000	18.2736	0.0000	0.0000	18.2736	15	0.0000	0.0000	20.1010
RMG0020	0.0000	0.0000	2.8163	0.0000	0.0000	2.8163	5	0.0000	0.0000	2.8163
RMG0030	0.0000	0.0000	1.5523	0.0000	0.0000	1.5523	20	0.0000	0.0000	1.7075
RMG0031	0.0000	0.0000	0.2431	0.0000	0.0000	0.2431	5	0.0000	0.0000	0.2431
RMG0034	0.0000	0.0000	0.6605	0.0000	0.0000	0.6605	15	0.0000	0.0000	0.7266
RMG0035	0.0000	0.0000	0.0412	0.0000	0.0000	0.0412	20	0.0000	0.0000	0.0453
RMG0050	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	12	0.0000	0.0000	3.8491
RMG0051	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	12	0.0000	0.0000	3.8491
RMG0108	0.0000	0.0000	1.2957	0.0000	0.0000	1.2957	9	0.0000	0.0000	1.2957
RMG0115	0.0000	0.0000	2.8232	0.0000	0.0000	2.8232	5	0.0000	0.0000	2.8232
RMG0116	0.0000	0.0000	4.6752	0.0000	0.0000	4.6752	5	0.0000	0.0000	4.6752
RMG0118	0.0000	0.0000	0.1657	0.0000	0.0000	0.2431	20	0.0000	0.0000	0.2674
RMG0119	0.0000	0.0000	1.0818	0.0000	0.0000	1.0818	12	0.0000	0.0000	1.1900
RMG0120	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	12	0.0000	0.0000	0.9088
RMG0121	0.0000	0.0000	12.4564	0.0000	0.0000	12.4564	15	0.0000	0.0000	13.7020
RMG0122	0.0000	0.0000	0.3888	0.0000	0.0000	0.3888	6	0.0000	0.0000	0.3888
RMG0123	0.0000	0.0000	0.2441	0.0000	0.0000	0.2431	20	0.0000	0.0000	0.2674
RMG0131	0.0000	0.0000	0.0557	0.0000	0.0000	0.0557	5	0.0000	0.0000	0.0557
RMG0132	0.0000	0.0000	3.3883	0.0000	0.0000	3.3883	5	0.0000	0.0000	3.3883
RMG0133	0.0000	0.0000	3.9486	0.0000	0.0000	3.9486	5	0.0000	0.0000	3.9486
RMG0136	0.0000	0.0000	20.7924	0.0000	0.0000	20.7924	15	0.0000	0.0000	22.8716
RMG0137	0.0000	0.0000	11.4073	0.0000	0.0000	11.4073	15	0.0000	0.0000	12.5480
RMG0143	-6.4659	0.0000	0.4151	-6.4659	0.0000	0.4151	15	-7.1125	0.0000	0.4566
RMG0144	-6.3605	0.0000	0.4580	-6.3605	0.0000	0.4580	15	-6.9966	0.0000	0.5038
RMG0145	0.0000	0.0000	0.2413	0.0000	0.0000	0.2413	15	0.0000	0.0000	0.2654
RMG0146	0.0000	0.0000	0.1034	0.0000	0.0000	0.1034	15	0.0000	0.0000	0.1137
RMG0149	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	12	0.0000	0.0000	3.8491
RMG0152	0.0000	0.0000	2.4394	0.0000	0.0000	2.4394	20	0.0000	0.0000	2.6833
RMG0154	0.0000	0.0000	1.0567	0.0000	0.0000	1.0567	12	0.0000	0.0000	1.1624
RMG0157	0.0000	0.0000	4.0727	0.0000	0.0000	4.0727	3	0.0000	0.0000	4.0727
RMG0163	0.0000	0.0000	0.1074	0.0000	0.0000	0.1074	5	0.0000	0.0000	0.1074

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $\text { (D) }=(\mathrm{B} \times \mathrm{C})$	Deemed Net-toGross Adjustment Factor (E)	2013 Certified Net kWh Savings (F) = (D x E)
RCE0001	1	1	9,634.0000	9,634.0000	1.0000	9,634.0000	0.9000	8,670.6000
RCE0001	8	8	455,268.0460	455,268.0460	1.0000	455,268.0460	0.9000	409,741.2414
RME0004	861	861	142,926.0000	142,926.0000	1.0040	143,497.7040	0.9000	129,147.9336
RME0019	1,394	1,394	295,528.0000	295,528.0000	1.0040	296,710.1120	0.9000	267,039.1008
RME0023	99,905	99,905	3,706,475.5000	3,706,475.5000	0.9690	3,591,574.7595	0.9000	3,232,417.2836
RME0027	72	72	2,671.2000	2,671.2000	0.9690	2,588.3928	0.9000	2,329.5535
RME0029	174	174	13,572.0000	13,572.0000	1.0000	13,572.0000	0.9000	12,214.8000
RME0031	14	14	5,558.0000	5,558.0000	1.0000	5,558.0000	0.9000	5,002.2000
RME0035	51	51	13,668.0000	13,668.0000	1.0000	13,668.0000	0.9000	12,301.2000
RME0036	37	37	15,133.0000	15,133.0000	1.0000	15,133.0000	0.9000	13,619.7000
RME0038	4	4	2,824.0000	2,824.0000	1.0000	2,824.0000	0.9000	2,541.6000
RME0039	37	37	22,607.0000	22,607.0000	1.0000	22,607.0000	0.9000	20,346.3000
RME0046	22,982	22,982	1,013,506.2000	1,013,506.2000	1.0000	1,013,506.2000	0.9000	912,155.5800
RME0050	1,635	1,635	1,128,150.0000	1,128,150.0000	1.0000	1,128,150.0000	0.9000	1,015,335.0000
RME0051	88	88	60,720.0000	60,720.0000	1.0000	60,720.0000	0.9000	54,648.0000
RME0104	104	104	17,264.0000	17,264.0000	1.0040	17,333.0560	0.9000	15,599.7504
RME0105	4	4	2,072.0000	2,072.0000	0.9650	1,999.4800	0.9000	1,799.5320
RME0119	100	100	21,200.0000	21,200.0000	1.0040	21,284.8000	0.9000	19,156.3200
RME0121	100	100	69,000.0000	69,000.0000	1.0000	69,000.0000	0.9000	62,100.0000
RME0123	9	9	1,674.0000	1,674.0000	1.0000	1,674.0000	0.9000	1,506.6000

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $\text { (D) }=(\mathrm{B} \times \mathrm{C})$	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
RME0133	71	71	12,780.0000	12,780.0000	1.0000	12,780.0000	0.9000	11,502.0000
RME0142	39.4	39.4	2,868.0560	2,868.0560	1.0000	2,868.0560	0.9000	2,581.2504
RME0147	3	3	132.3000	132.3000	1.0000	132.3000	0.9000	119.0700
RME0150	517	517	77,033.0000	80,652.0000	1.0000	80,652.0000	0.9000	72,586.8000
RME0159	94	94	2,726.0000	2,726.0000	1.0000	2,726.0000	0.9000	2,453.4000
RME0167	582	582	114,072.0000	114,072.0000	1.0000	114,072.0000	0.9000	102,664.8000
RME0175	11	11	880.0000	880.0000	1.0000	880.0000	0.9000	792.0000
RME0178	990	990	204,970.7880	204,970.7880	1.0000	204,970.7880	0.9000	184,473.7092
RME0180	1,567	1,567	39,175.0000	39,175.0000	1.0000	39,175.0000	0.9000	35,257.5000
RME0181	1,803	1,803	79,512.3000	79,512.3000	1.0000	79,512.3000	0.9000	71,561.0700
RME0184	1	1	201.0000	201.0000	1.0000	201.0000	0.9000	180.9000
RME0194	27,112	27,112	1,084,480.0000	1,084,480.0000	1.0000	1,084,480.0000	0.9000	976,032.0000
RMG0143	4,295	4,295	-27,771.0405	-27,771.0405	1.0000	-27,771.0405	0.9000	-24,993.9365
RMG0144	1,179	1,179	-7,499.0295	-7,499.0295	1.0000	-7,499.0295	0.9000	-6,749.1266
Total	165,844.4	165,844.4	8,583,011.3200	8,586,630.3200		8,473,481.9243	0.9000	7,626,133.7319

Table 67. Certified Multifamily Program Long-Life Equipment Savings Multiplier and Lifetime kWh Savings by Measure

Measure ID	2013 Certified Net kWh Savings $(F)=(D \times E)$	Measure Life (G)	2013 Certified Net kWh LLESM Savings $(H)=(F \times 1.1)^{*}$	2013 Realization Rate $(I)=(F / A)$	Lifetime kWh Savings $(J)=(F \times G)$
RCE0001	8,670.6000	8.7667	8,670.6000	90.00\%	76,012.2600
RCE0001	409,741.2414	12.1374	450,715.3655	90.00\%	4,973,197.9435
RME0004	129,147.9336	12	142,062.7270	90.36\%	1,549,775.2032
RME0019	267,039.1008	12	293,743.0109	90.36\%	3,204,469.2096
RME0023	3,232,417.2836	9	3,232,417.2836	87.21\%	29,091,755.5520
RME0027	2,329.5535	9	2,329.5535	87.21\%	20,965.9817
RME0029	12,214.8000	12	13,436.2800	90.00\%	146,577.6000
RME0031	5,002.2000	10	5,502.4200	90.00\%	50,022.0000
RME0035	12,301.2000	11	13,531.3200	90.00\%	135,313.2000
RME0036	13,619.7000	11	14,981.6700	90.00\%	149,816.7000
RME0038	2,541.6000	11	2,795.7600	90.00\%	27,957.6000
RME0039	20,346.3000	8	20,346.3000	90.00\%	162,770.4000
RME0046	912,155.5800	9	912,155.5800	90.00\%	8,209,400.2200
RME0050	1,015,335.0000	12	1,116,868.5000	90.00\%	12,184,020.0000
RME0051	54,648.0000	12	60,112.8000	90.00\%	655,776.0000
RME0104	15,599.7504	12	17,159.7254	90.36\%	187,197.0048
RME0105	1,799.5320	12	1,979.4852	86.85\%	21,594.3840
RME0119	19,156.3200	12	21,071.9520	90.36\%	229,875.8400
RME0121	62,100.0000	12	68,310.0000	90.00\%	745,200.0000
RME0123	1,506.6000	2	1,506.6000	90.00\%	3,013.2000
RME0133	11,502.0000	8	11,502.0000	90.00\%	92,016.0000
RME0142	2,581.2504	15	2,839.3755	90.00\%	38,718.7563
RME0147	119.0700	9	119.0700	90.00\%	1,071.6300
RME0150	72,586.8000	2	72,586.8000	94.23\%	145,173.6000
RME0159	2,453.4000	8	2,453.4000	90.00\%	19,627.2000
RME0167	102,664.8000	10	112,931.2800	90.00\%	1,026,648.0000

Measure ID	2013 Certified Net kWh Savings $(F)=(D \times E)$	Measure Life (G)	2013 Certified Net kWh LLESM Savings $(H)=(F \times 1.1)^{*}$	2013 Realization Rate $(I)=(F / A)$	Lifetime kWh Savings $(J)=(F \times G)$
RME0175	792.0000	12	871.2000	90.00\%	9,504.0000
RME0178	184,473.7092	12	202,921.0801	90.00\%	2,213,684.5104
RME0180	35,257.5000	12	38,783.2500	90.00\%	423,090.0000
RME0181	71,561.0700	9	71,561.0700	90.00\%	644,049.6300
RME0184	180.9000	15	198.9900	90.00\%	2,713.5000
RME0194	976,032.0000	10	1,073,635.2000	90.00\%	9,760,320.0000
RMG0143	-24,993.9365	15	-27,493.3301	90.00\%	-374,909.0468
RMG0144	-6,749.1266	15	-7,424.0392	90.00\%	-101,236.8983
Total	7,626,133.7319		7,955,182.2794	88.85\%	75,725,181.1804

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater.

Measure Life (G)	2013 Certified Net kW LLESM Savings (H) = (F x 1.1)*	2013 Realization Rate $(I)=(F / A)$
12	1.5028	90.00\%
12	22.9343	111.43\%
12	1.5513	3.18\%
9	8.6003	14.03\%
15	0.0228	90.00\%
10	128.8362	90.00\%
	955.4525	81.85

$\stackrel{\circ}{\circ}$
i.
i.
*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater. Witness: MSKhawaja
Table 69. Certified Multifamily Program Participation and First-Year MCF Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings $(D)=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings (F) = (D x E)
RCG0001	26	26	3,480.6892	3,480.6892	1.0000	3,480.6892	0.9000	3,132.6203
RCG0001	24	24	19,278.1599	19,278.1599	1.0000	19,278.1599	0.9000	17,350.3439
RMG0004	3,285	3,285	2,714.0670	2,714.0670	1.0040	2,724.9233	0.9000	2,452.4309
RMG0007	39,866	39,866	8,914.0376	8,914.0376	1.0000	8,914.0376	0.9000	8,022.6338
RMG0009	3,684	3,684	210.7248	210.7248	1.0000	210.7248	0.9000	189.6523
RMG0011	14,065	14,065	1,526.0525	1,526.0525	1.0000	1,526.0525	0.9000	1,373.4473
RMG0012	495	495	183.1005	183.1005	1.0000	183.1005	0.9000	164.7905
RMG0014	11,339	11,339	12,266.5302	12,266.5302	1.0040	12,315.5963	0.9000	11,084.0367
RMG0016	15,668	15,668	6,091.7184	6,091.7184	1.0000	6,091.7184	0.9000	5,482.5466
RMG0018	4	4	73.0944	73.0944	1.0000	73.0944	0.9000	65.7850
RMG0020	168	168	473.1384	473.1384	1.0000	473.1384	0.9000	425.8246
RMG0030	37	37	57.4351	57.4351	1.0000	57.4351	0.9000	51.6916
RMG0031	31	31	7.5361	7.5361	1.0000	7.5361	0.9000	6.7825
RMG0034	17	17	11.2285	11.2285	1.0000	11.2285	0.9000	10.1057
RMG0035	50,107.4	50,107.4	2,064.4249	2,064.4249	1.0000	2,064.4249	0.9000	1,857.9824
RMG0050	10,659	10,659	37,297.9728	37,297.9728	1.0000	37,297.9728	0.9000	33,568.1755
RMG0051	2,344	2,344	8,202.1248	8,202.1248	1.0000	8,202.1248	0.9000	7,381.9123
RMG0108	577	577	747.6189	747.6189	1.0000	747.6189	0.9000	672.8570
RMG0115	5,988	5,988	16,905.3216	16,905.3216	1.0000	16,905.3216	0.9000	15,214.7894
RMG0116	195	195	911.6640	911.6640	1.0000	911.6640	0.9000	820.4976
RMG0118	140	140	23.1980	34.0340	1.0000	34.0340	0.9000	30.6306
RMG0119	803	803	868.6854	868.6854	1.0000	868.6854	0.9000	781.8169
RMG0120	1,006	1,006	831.1572	831.1572	1.0000	831.1572	0.9000	748.0415

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings (D) $=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings $(F)=(D \times E)$
RMG0121	36	36	448.4304	448.4304	1.0000	448.4304	0.9000	403.5874
RMG0122	2,673	2,673	1,039.2624	1,039.2624	1.0000	1,039.2624	0.9000	935.3362
RMG0123	161,549	161,549	39,434.1109	39,272.5619	1.0000	39,272.5619	0.9000	35,345.3057
RMG0131	7,180	7,180	399.9260	399.9260	1.0000	399.9260	0.9000	359.9334
RMG0132	1,189	1,189	4,028.6887	4,028.6887	1.0000	4,028.6887	0.9000	3,625.8198
RMG0133	172	172	679.1592	679.1592	1.0000	679.1592	0.9000	611.2433
RMG0136	6	6	124.7544	124.7544	1.0000	124.7544	0.9000	112.2790
RMG0137	216	216	2,463.9768	2,463.9768	1.0000	2,463.9768	0.9000	2,217.5791
RMG0143	9,995	9,995	4,148.9245	4,148.9245	1.0000	4,148.9245	0.9000	3,734.0321
RMG0144	10,347	10,347	4,738.9260	4,738.9260	1.0000	4,738.9260	0.9000	4,265.0334
RMG0145	9,018	9,018	2,176.0434	2,176.0434	1.0000	2,176.0434	0.9000	1,958.4391
RMG0146	1,188	1,188	122.8392	122.8392	1.0000	122.8392	0.9000	110.5553
RMG0149	913	913	3,194.7696	3,194.7696	1.0000	3,194.7696	0.9000	2,875.2926
RMG0152	370.5	370.5	903.7977	903.7977	1.0000	903.7977	0.9000	813.4179
RMG0154	10,704	10,704	11,310.9168	11,310.9168	1.0000	11,310.9168	0.9000	10,179.8251
RMG0157	133	133	541.6691	541.6691	1.0000	541.6691	0.9000	487.5022
RMG0163	59,565	59,565	6,397.2810	6,397.2810	1.0000	6,397.2810	0.9000	5,757.5529
Total	435,782.9	435,782.9	205,293.1563	205,142.4433		205,202.3657	0.9000	184,682.1291

Measure ID	2013 Certified Net MCF Savings $(F)=(D \times E)$	Measure Life (G)	2013 Certified Net MCF LLESM Savings $(H)=(F \times 1.1)^{*}$	2013 Realization Rate $(I)=(F / A)$	Lifetime MCF Savings $(J)=(F \times G)$
RCG0001	3,132.6203	5.1729	3,132.6203	90.00\%	16,204.7776
RCG0001	17,350.3439	17.1398	19,085.3783	90.00\%	297,382.1203
RMG0004	2,452.4309	12	2,697.6740	90.36\%	29,429.1713
RMG0007	8,022.6338	6	8,022.6338	90.00\%	48,135.8030
RMG0009	189.6523	15	208.6176	90.00\%	2,844.7848
RMG0011	1,373.4473	5	1,373.4473	90.00\%	6,867.2363
RMG0012	164.7905	15	181.2695	90.00\%	2,471.8568
RMG0014	11,084.0367	12	12,192.4404	90.36\%	133,008.4403
RMG0016	5,482.5466	20	6,030.8012	90.00\%	109,650.9312
RMG0018	65.7850	15	72.3635	90.00\%	986.7744
RMG0020	425.8246	5	425.8246	90.00\%	2,129.1228
RMG0030	51.6916	20	56.8607	90.00\%	1,033.8318
RMG0031	6.7825	5	6.7825	90.00\%	33.9125
RMG0034	10.1057	15	11.1162	90.00\%	151.5848
RMG0035	1,857.9824	20	2,043.7806	90.00\%	37,159.6478
RMG0050	33,568.1755	12	36,924.9931	90.00\%	402,818.1062
RMG0051	7,381.9123	12	8,120.1036	90.00\%	88,582.9478
RMG0108	672.8570	9	672.8570	90.00\%	6,055.7131
RMG0115	15,214.7894	5	15,214.7894	90.00\%	76,073.9472
RMG0116	820.4976	5	820.4976	90.00\%	4,102.4880
RMG0118	30.6306	20	33.6937	132.04\%	612.6120
RMG0119	781.8169	12	859.9985	90.00\%	9,381.8023
RMG0120	748.0415	12	822.8456	90.00\%	8,976.4978
RMG0121	403.5874	15	443.9461	90.00\%	6,053.8104
RMG0122	935.3362	6	935.3362	90.00\%	5,612.0170
RMG0123	35,345.3057	20	38,879.8363	89.63\%	706,906.1142

Measure ID	2013 Certified Net MCF Savings $(F)=(D \times E)$	Measure Life (G)	2013 Certified Net MCF LLESM Savings $(H)=(F \times 1.1)^{*}$	2013 Realization Rate $(1)=(F / A)$	Lifetime MCF Savings $(\mathrm{J})=(\mathrm{F} \times \mathrm{G})$
RMG0131	359.9334	5	359.9334	90.00\%	1,799.6670
RMG0132	3,625.8198	5	3,625.8198	90.00\%	18,129.0992
RMG0133	611.2433	5	611.2433	90.00\%	3,056.2164
RMG0136	112.2790	15	123.5069	90.00\%	1,684.1844
RMG0137	2,217.5791	15	2,439.3370	90.00\%	33,263.6868
RMG0143	3,734.0321	15	4,107.4353	90.00\%	56,010.4808
RMG0144	4,265.0334	15	4,691.5367	90.00\%	63,975.5010
RMG0145	1,958.4391	15	2,154.2830	90.00\%	29,376.5859
RMG0146	110.5553	15	121.6108	90.00\%	1,658.3292
RMG0149	2,875.2926	12	3,162.8219	90.00\%	34,503.5117
RMG0152	813.4179	20	894.7597	90.00\%	16,268.3586
RMG0154	10,179.8251	12	11,197.8076	90.00\%	122,157.9014
RMG0157	487.5022	3	487.5022	90.00\%	1,462.5066
RMG0163	5,757.5529	5	5,757.5529	90.00\%	28,787.7645
Total	184,682.1291		199,005.6580	89.96\%	2,414,799.8449

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater.

Appendix G: THINK! Energy Program

Table 71 presents reported gross and certified net energy savings for the THINK! Energy Program by fuel type. The realization rates reflect the adjustments Cadmus made based on our certification tasks and applying installation rate and NTG adjustments. The following sections discuss changes we made to reported gross energy savings.

Table 71. THINK! Energy Program Participation and Savings without Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	167,344	$3,102,157.6000$	307.1904	$127,512.4032$
Certified Net	167,344	$2,640,580.0538$	260.1595	$64,948.3223$
Difference	0	$-461,577.5462$	-47.0309	$-62,564.0809$
Realization Rate	100.00%	85.12%	84.69%	50.93%

Table 72 presents reported and certified net energy savings with the long-life equipment savings multiplier for the THINK! Energy Program by fuel type.

Table 72. THINK! Energy Program Participation and Savings with Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	167,344	$2,685,276.2581$	260.1600	$71,443.1539$
Certified Net	167,344	$2,685,276.2570$	260.1595	$71,443.1545$
Difference	0	-0.0011	-0.0005	0.0006
Certified/Reported	100.00%	100.00%	100.00%	100.00%

Task 2: Database Review

The Consumers Energy and implementer databases matched across all areas of inquiry: (a) number of participants; (b) quantities of installed measures; and (c) appropriate application of savings according to customer type. Cadmus also verified that the measures were installed during the 2013 program year.

Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

The THINK! Energy Program does not have customer-level program documents available for review; therefore, Cadmus did not conduct a documentation review of this program.

Task 4: Measure-Level Savings Analysis

Cadmus found no discrepancies between per-unit measure savings reported by Consumers Energy and values either maintained in the MEMD or calculated by Navigant. However, Etracker provided an
incorrect installation rate for all gas measures (REG0003, REG0004, and REGO005), producing a realization rate of 50.9% for MCF in the THINK! Energy Program. Table 73 presents the reported and certified per-unit savings for all measures delivered through the 2013 THINK! Energy Program.

Table 73. THINK! Energy Program Reported and Certified Per-Unit Measure Savings

Measure Code	Reported			kWh	kW	MCF	kWh	kW				MCF	Measure Life	kWh	kW	MCF
	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000						
REE0005	22.0000	0.0000	0.0000	22.0000	0.0000	0.0000	12	24.2000	0.0000	0.0000						
REG0003	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	12	0.0000	0.0000	3.8491						
REG0004	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	12	0.0000	0.0000	0.9088						
REG0005	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	12	0.0000	0.0000	0.9088						

Major Findings by Fuel Type

The tables below present certified program participation and energy savings by measure. Table 74 and Table 75 document kWh savings, Table 76
documents kW savings, and Table 77 and Table 78 document MCF savings.
Table 74. Certified THINK! Energy Program Participation and First-Year kWh Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $(\mathrm{D})=(\mathrm{B} \times \mathrm{C})$	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
REE0001	69,816	69,816	2,590,173.6000	2,590,173.6000	0.9410	2,437,353.3576	0.9000	2,193,618.0218
REE0005	23,272	23,272	511,984.0000	511,984.0000	0.9700	496,624.4800	0.9000	446,962.0320
Total	93,088	93,088	3,102,157.6000	3,102,157.6000		2,933,977.8376	0.9000	2,640,580.0538

Table 75. Certified THINK! Energy Program Long-Life Equipment Savings Multiplier and Lifetime kWh Savings by Measure

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater.

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kW Savings (A)		Certified Gross Adjustment Factor (C)	2013 Certified Gross kW Savings (D) = (B x C)	Deemed Net-to- Gross Adjustment Factor (E)	Certified Net kW Savings (F) = (D x E)	Measure Life (G)	2013 Certified Net kW LLESM Savings (H) = (F x 1.1)*	2013 Realization Rate $(I)=(F / A)$
REE0001	69,816	69,816	307.1904	307.1904	0.9410	289.0662	0.9000	260.1595	9	260.1595	84.69\%
Total	69,816	69,816	307.1904	307.1904		289.0662	0.9000	260.1595		260.1595	84.69\%

Table 78. Certified THINK! Energy Program Long-Life Equipment Savings Multiplier and Lifetime MCF Savings by Measure
*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater.

Appendix H: Home Performance with ENERGY STAR Program

Table 79 presents reported gross and certified net energy savings for the Home Performance with ENERGY STAR Program by fuel type. The realization rates reflect the adjustments Cadmus made based on our certification tasks and applying installation rate and NTG adjustments. The following sections discuss changes we made to reported gross energy savings.

Table 79. Home Performance with ENERGY STAR Program Participation and Savings without Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	35,101	$816,124.4444$	250.8681	$53,690.4591$
Certified Net	35,101	$706,388.6650$	223.9941	$46,787.9061$
Difference	0	$-109,735.7794$	-26.8740	$-6,902.5530$
Realization Rate	100.00%	86.55%	89.29%	87.14%

Table 80 presents reported and certified net energy savings with the long-life equipment savings multiplier for the Home Performance with ENERGY STAR Program by fuel type.

Table 80. Home Performance with ENERGY STAR Program Participation and Savings with Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	35,101	$758,870.4490$	241.6818	$50,999.3304$
Certified Net	35,101	$758,870.4500$	242.9232	$50,999.3418$
Difference	0	0.0010	1.2414	0.0114
Certified/Reported	100.00%	100.00%	100.51%	100.00%

Task 2: Database Review

The Consumers Energy and implementer databases matched across all areas of inquiry: (a) number of participants; (b) quantities of installed measures; and (c) appropriate application of savings according to customer type. Cadmus also verified that the measures were installed during the 2013 program year.

Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

Cadmus reviewed program documents from a sample of 68 randomly selected account numbers. Table 81 documents reported and certified measure counts as well as reported and certified energy savings by fuel type.

Table 81. Home Performance with ENERGY STAR Program Sample Participation and Savings by End Use

Measure Code	Reported				Certified			
	n	kWh	kW	MCF	n	kWh	kW	MCF
RZC0007	1	27.4260	-0.0330	6.3647	1	27.4260	-0.0330	6.3647
RZC0009	1	15.5860	0.0211	3.3791	1	15.5860	0.0211	3.3791
RZC0010	4	134.7760	0.0732	5.8100	4	134.7760	0.0732	5.8100
RZC0018	7	883.4602	0.3941	61.5874	7	883.4602	0.3941	61.5874
RZC0019	1	185.7724	0.0867	13.1479	1	185.7724	0.0867	13.1479
RZC0020	1	307.5421	0.1710	21.3241	1	307.5421	0.1710	21.3241
RZC0022	9	1,070.5878	0.5040	68.4018	9	1,070.5878	0.5040	68.4018
RZC0023	3	268.7397	0.0810	17.5962	3	268.7397	0.0810	17.5962
RZC0055	11	845.1993	0.2442	59.1701	11	845.1993	0.2422	59.1701
RZC0060	16	23.0896	0.0176	0.8416	16	23.0896	0.0176	0.8416
RZE0007	1	45.2876	-0.0255	-	1	45.2876	-0.0255	-
RZE0018	2	268.3988	0.0826	-	2	268.3988	0.0826	-
RZE0021	1	100.4081	0.1459	-	1	100.4081	0.1459	-
RZE0022	1	121.7476	0.0429	-	1	121.7476	0.0429	-
RZE0050	54	2,003.4000	0.2376	-	54	2,003.4000	0.2376	-
RZE0055	4	336.3156	0.0996	-	4	336.3156	0.0996	-
RZE0058	1	612.8715	0.4475	-	1	612.8715	0.4475	-
RZE0060	2	806.3930	0.9070	-	2	806.3930	0.9070	-
RZE0063	194	274.5100	0.1552	-	194	274.5100	0.1552	-
RZE0064	4	2,920.0000	0.2628	-	4	2,920.0000	0.2628	-
RZE0109	37	1,372.7000	0.1628	-	37	1,372.7000	0.1628	-
RZG0008	3	-	-	18.8925	3	-	-	18.8925
RZG0009	1	-	-	2.8436	1	-	-	2.8436
RZG0011	1	-	-	3.7315	1	-	-	3.7315
RZG0012	1	-	-	5.0327	1	-	-	5.0327
RZG0014	2	-	-	50.9604	2	-	-	50.9604
RZG0015	2	-	-	53.6798	2	-	-	53.6798
RZG0018	8	-	-	55.5568	8	-	-	55.5568
RZG0019	11	-	-	108.5799	11	-	-	108.5799
RZG0021	10	-	-	74.8400	10	-	-	74.8400
RZG0022	14	-	-	82.3550	14	-	-	82.3550
RZG0023	5	-	-	24.6800	5	-	-	24.6800
RZG0051	42	-	-	34.7004	42	-	-	34.7004
RZG0052	14	-	-	48.9888	14	-	-	48.9888
RZG0055	15	-	-	64.2690	15	-	-	64.2690
RZG0056	2	-	-	6.9984	2	-	-	6.9984
RZG0060	14	-	-	0.6958	14	-	-	0.6958
RZG0062	42	-	-	31.8444	42	-	-	31.8444

Measure	Reported				Certified			
Code	n	kWh	kW	MCF	n	kWh	kW	MCF
RZG0109	33	-	-	27.2646	33	-	-	27.2646
RZG0110	12	-	-	41.9904	12	-	-	41.9904
RZG0111	12	-	-	9.0984	12	-	-	9.0984
Total	599	12,624.2113	4.0783	1,004.6253	599	12,624.2113	4.0783	1,004.6253

The reported measure quantities for all database records matched the associated documentation. Table 82 provides the sample realization rates by fuel type and the t-test statistics Cadmus used to analyze errors in the sample.

Table 82. Home Performance with ENERGY STAR Program Sample Realization Rates and t-Statistic

	kWh	kW	MCF
Sample Realization Rate	100.00%	100.00%	100.00\%
Standard Error	N / A	N / A	N / A
t-Statistic	N / A	N / A	N / A
p-Value	N / A	N / A	N
Apply to Program Population?	N / A	N / A	N

Task 3: Measure-Level Savings Analysis

Cadmus found discrepancies between the reported per-unit measure savings and values either maintained in the MEMD or calculated by Navigant for the program measures shown in Table 83.

Table 83. Per-Unit Measure Discrepancies for the Home Performance with ENERGY STAR Program

Measure Code and End Use	Reported Savings	Certified Savings
RZE0052 - Low-Flow Showerheads - Electric	0.0584 kW	0.0779 kW

There were also gas-only customers for which negative kWh saving were tracked for measure RZG0053 - Natural Gas Boiler (92\% AFUE); Cadmus removed the negative kWh savings for these customers.

Table 84 presents the reported and certified per-unit savings for all measures delivered through the 2013 Home Performance with ENERGY STAR Program.

Table 84. Home Performance with ENERGY STAR Program Reported and Certified Per-Unit Measure Savings

Measure Code	Reported			Certified				Certified LLESM		
	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RZC0007	27.4260	-0.0330	6.3647	27.4260	-0.0330	6.3647	20	30.1686	-0.0363	7.0012
RZC0008	-8.2137	-0.0330	4.3812	-8.2137	-0.0330	4.3812	20	-9.0351	-0.0363	4.8193
RZC0009	15.5860	0.0211	3.3791	15.5860	0.0211	3.3791	20	17.1446	0.0232	3.7170
RZC0010	33.6940	0.0183	1.4525	33.6940	0.0183	1.4525	18	37.0634	0.0201	1.5978

	Reported			Certified				Certified LLESM		
Code	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RZC0011	101.9466	0.0726	4.0245	101.9466	0.0726	4.0245	18	112.1413	0.0799	4.4270
RZC0018	126.2086	0.0563	8.7982	126.2086	0.0563	8.7982	13	138.8295	0.0619	9.6780
RZC0019	185.7724	0.0867	13.1479	185.7724	0.0867	13.1479	13	204.3496	0.0954	14.4627
RZC0020	307.5421	0.1710	21.3241	307.5421	0.1710	21.3241	13	338.2963	0.1881	23.4565
RZC0022	118.9542	0.0560	7.6002	118.9542	0.0560	7.6002	20	130.8496	0.0616	8.3602
RZC0023	89.5799	0.0270	5.8654	89.5799	0.0270	5.8654	20	98.5379	0.0297	6.4519
RZC0024	-28.0378	-0.0357	10.6170	-28.0378	-0.0357	10.6170	20	-30.8416	-0.0393	11.6787
RZC0055	76.8363	0.0222	5.3791	76.8363	0.0222	5.3791	20	84.5199	0.0244	5.9170
RZC0060	1.4431	0.0011	0.0526	1.4431	0.0011	0.0526	20	1.5874	0.0012	0.0579
RZC0061	-351.5019	0.0000	41.5020	-351.5019	0.0000	41.5020	20	-386.6521	0.0000	45.6522
RZC0062	-362.6426	0.0000	50.9810	-362.6426	0.0000	50.9810	20	-398.9069	0.0000	56.0791
RZC0063	-423.7494	0.0000	63.3656	-423.7494	0.0000	63.3656	20	-466.1243	0.0000	69.7022
RZE0007	45.2876	-0.0255	0.0000	45.2876	-0.0255	0.0000	20	49.8164	-0.0281	0.0000
RZE0008	2.7215	-0.0230	0.0000	2.7215	-0.0230	0.0000	20	2.9937	-0.0253	0.0000
RZE0009	30.5309	0.0180	0.0000	30.5309	0.0180	0.0000	20	33.5840	0.0198	0.0000
RZE0010	36.4504	0.0204	0.0000	36.4504	0.0204	0.0000	18	40.0954	0.0224	0.0000
RZE0011	115.4988	0.0655	0.0000	115.4988	0.0655	0.0000	18	127.0487	0.0721	0.0000
RZE0012	21.6534	-0.0254	0.0000	21.6534	-0.0254	0.0000	20	23.8187	-0.0279	0.0000
RZE0018	134.1994	0.0413	0.0000	134.1994	0.0413	0.0000	13	147.6193	0.0454	0.0000
RZE0019	205.7145	0.0648	0.0000	205.7145	0.0648	0.0000	13	226.2860	0.0713	0.0000
RZE0020	354.2225	0.1238	0.0000	354.2225	0.1238	0.0000	13	389.6448	0.1362	0.0000
RZE0021	100.4081	0.1459	0.0000	100.4081	0.1459	0.0000	5	100.4081	0.1459	0.0000
RZE0022	121.7476	0.0429	0.0000	121.7476	0.0429	0.0000	20	133.9224	0.0472	0.0000
RZE0023	115.1516	0.0334	0.0000	115.1516	0.0334	0.0000	20	126.6668	0.0367	0.0000
RZE0050	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RZE0051	166.0000	0.0189	0.0000	166.0000	0.0189	0.0000	12	182.6000	0.0208	0.0000
RZE0052	690.0000	0.0584	0.0000	690.0000	0.0779	0.0000	12	759.0000	0.0857	0.0000
RZE0055	84.0789	0.0249	0.0000	84.0789	0.0249	0.0000	20	92.4868	0.0274	0.0000
RZE0056	968.5875	0.7463	0.0000	968.5875	0.7463	0.0000	15	1,065.4463	0.8209	0.0000
RZE0058	612.8715	0.4475	0.0000	612.8715	0.4475	0.0000	15	674.1587	0.4923	0.0000
RZE0059	1,457.2622	0.7043	0.0000	1,457.2622	0.7043	0.0000	15	1,602.9884	0.7747	0.0000
RZE0060	403.1965	0.4535	0.0000	403.1965	0.4535	0.0000	15	443.5162	0.4989	0.0000
RZE0062	153.0000	0.0174	0.0000	153.0000	0.0174	0.0000	6	153.0000	0.0174	0.0000
RZE0063	1.4150	0.0008	0.0000	1.4150	0.0008	0.0000	20	1.5565	0.0009	0.0000
RZE0064	730.0000	0.0657	0.0000	730.0000	0.0657	0.0000	15	803.0000	0.0723	0.0000
RZE0109	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RZE0110	166.0000	0.0189	0.0000	166.0000	0.0189	0.0000	12	182.6000	0.0208	0.0000
RZE0111	690.0000	0.0584	0.0000	690.0000	0.0779	0.0000	12	759.0000	0.0857	0.0000
RZE0112	153.0000	0.0174	0.0000	153.0000	0.0174	0.0000	6	153.0000	0.0174	0.0000

Measure Code	Reported			Certified				Certified LLESM		
	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RZG0007	0.0000	0.0000	5.7053	0.0000	0.0000	5.7053	20	0.0000	0.0000	6.2758
RZG0008	0.0000	0.0000	6.2975	0.0000	0.0000	6.2975	20	0.0000	0.0000	6.9273
RZG0009	0.0000	0.0000	2.8436	0.0000	0.0000	2.8436	20	0.0000	0.0000	3.1280
RZG0010	0.0000	0.0000	1.5341	0.0000	0.0000	1.5341	18	0.0000	0.0000	1.6875
RZG0011	0.0000	0.0000	3.7315	0.0000	0.0000	3.7315	18	0.0000	0.0000	4.1047
RZG0012	0.0000	0.0000	5.0327	0.0000	0.0000	5.0327	20	0.0000	0.0000	5.5360
RZG0013	0.0000	0.0000	30.8233	0.0000	0.0000	30.8233	15	0.0000	0.0000	33.9056
RZG0014	0.0000	0.0000	25.4802	0.0000	0.0000	25.4802	15	0.0000	0.0000	28.0282
RZG0015	0.0000	0.0000	26.8399	0.0000	0.0000	26.8399	15	0.0000	0.0000	29.5239
RZG0016	0.0000	0.0000	31.1926	0.0000	0.0000	31.1926	15	0.0000	0.0000	34.3119
RZG0017	0.0000	0.0000	27.8667	0.0000	0.0000	27.8667	15	0.0000	0.0000	30.6534
RZG0018	0.0000	0.0000	6.9446	0.0000	0.0000	6.9446	13	0.0000	0.0000	7.6391
RZG0019	0.0000	0.0000	9.8709	0.0000	0.0000	9.8709	13	0.0000	0.0000	10.8580
RZG0020	0.0000	0.0000	17.4857	0.0000	0.0000	17.4857	13	0.0000	0.0000	19.2343
RZG0021	0.0000	0.0000	7.4840	0.0000	0.0000	7.4840	5	0.0000	0.0000	7.4840
RZG0022	0.0000	0.0000	5.8825	0.0000	0.0000	5.8825	20	0.0000	0.0000	6.4708
RZG0023	0.0000	0.0000	4.9360	0.0000	0.0000	4.9360	20	0.0000	0.0000	5.4296
RZG0051	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	12	0.0000	0.0000	0.9088
RZG0052	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	12	0.0000	0.0000	3.8491
RZG0053	-360.2840	0.0000	51.1722	0.0000	0.0000	51.1722	20	0.0000	0.0000	56.2894
RZG0054	0.0000	0.0000	56.8611	0.0000	0.0000	56.8611	20	0.0000	0.0000	62.5472
RZG0055	0.0000	0.0000	4.2846	0.0000	0.0000	4.2846	20	0.0000	0.0000	4.7131
RZG0056	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	15	0.0000	0.0000	3.8491
RZG0057	0.0000	0.0000	6.5124	0.0000	0.0000	6.5124	15	0.0000	0.0000	7.1636
RZG0060	0.0000	0.0000	0.0497	0.0000	0.0000	0.0497	20	0.0000	0.0000	0.0547
RZG0061	0.0000	0.0000	43.8940	0.0000	0.0000	43.8940	20	0.0000	0.0000	48.2834
RZG0062	0.0000	0.0000	0.7582	0.0000	0.0000	0.7582	6	0.0000	0.0000	0.7582
RZG0109	0.0000	0.0000	0.8262	0.0000	0.0000	0.8262	12	0.0000	0.0000	0.9088
RZG0110	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	12	0.0000	0.0000	3.8491
RZG0111	0.0000	0.0000	0.7582	0.0000	0.0000	0.7582	6	0.0000	0.0000	0.7582

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings (D) $=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
RZC0007	38	38	1,042.1880	1,042.1880	1.0000	1,042.1880	0.9000	937.9692
RZC0008	65	65	-533.8905	-533.8905	1.0000	-533.8905	0.9000	-480.5015
RZC0009	21	21	327.3060	327.3060	1.0000	327.3060	0.9000	294.5754
RZC0010	89	89	2,998.7660	2,998.7660	1.0000	2,998.7660	0.9000	2,698.8894
RZC0011	40	40	4,077.8640	4,077.8640	1.0000	4,077.8640	0.9000	3,670.0776
RZC0018	219	219	27,639.6834	27,639.6834	1.0000	27,639.6834	0.9000	24,875.7151
RZC0019	149	149	27,680.0876	27,680.0876	1.0000	27,680.0876	0.9000	24,912.0788
RZC0020	77	77	23,680.7417	23,680.7417	1.0000	23,680.7417	0.9000	21,312.6675
RZC0022	427	427	50,793.4434	50,793.4434	1.0000	50,793.4434	0.9000	45,714.0991
RZC0023	80	80	7,166.3920	7,166.3920	1.0000	7,166.3920	0.9000	6,449.7528
RZC0024	23	23	-644.8694	-644.8694	1.0000	-644.8694	0.9000	-580.3825
RZC0055	522	522	40,108.5486	40,108.5486	1.0000	40,108.5486	0.9000	36,097.6937
RZC0060	6,695	6,695	9,661.5545	9,661.5545	1.0000	9,661.5545	0.9000	8,695.3991
RZC0061	6	6	-2,109.0114	-2,109.0114	1.0000	-2,109.0114	0.9000	-1,898.1103
RZC0062	7	7	-2,538.4982	-2,538.4982	1.0000	-2,538.4982	0.9000	-2,284.6484
RZC0063	13	13	-5,508.7422	-5,508.7422	1.0000	-5,508.7422	0.9000	-4,957.8680
RZE0007	6	6	271.7256	271.7256	1.0000	271.7256	0.9000	244.5530
RZE0008	11	11	29.9365	29.9365	1.0000	29.9365	0.9000	26.9429
RZE0009	4	4	122.1236	122.1236	1.0000	122.1236	0.9000	109.9112
RZE0010	31	31	1,129.9624	1,129.9624	1.0000	1,129.9624	0.9000	1,016.9662

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $(D)=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
RZE0011	18	18	2,078.9784	2,078.9784	1.0000	2,078.9784	0.9000	1,871.0806
RZE0012	1	1	21.6534	21.6534	1.0000	21.6534	0.9000	19.4881
RZE0018	108	108	14,493.5352	14,493.5352	1.0000	14,493.5352	0.9000	13,044.1817
RZE0019	93	93	19,131.4485	19,131.4485	1.0000	19,131.4485	0.9000	17,218.3037
RZE0020	21	21	7,438.6725	7,438.6725	1.0000	7,438.6725	0.9000	6,694.8053
RZE0021	110	110	11,044.8910	11,044.8910	1.0000	11,044.8910	0.9000	9,940.4019
RZE0022	182	182	22,158.0632	22,158.0632	1.0000	22,158.0632	0.9000	19,942.2569
RZE0023	34	34	3,915.1544	3,915.1544	1.0000	3,915.1544	0.9000	3,523.6390
RZE0050	3,136	3,136	116,345.6000	116,345.6000	0.9520	110,761.0112	0.9000	99,684.9101
RZE0051	148	148	24,568.0000	24,568.0000	0.8080	19,850.9440	0.9000	17,865.8496
RZE0052	53	53	36,570.0000	36,570.0000	0.7590	27,756.6300	0.9000	24,980.9670
RZE0055	229	229	19,254.0681	19,254.0681	1.0000	19,254.0681	0.9000	17,328.6613
RZE0056	5	5	4,842.9375	4,842.9375	1.0000	4,842.9375	0.9000	4,358.6438
RZE0058	56	56	34,320.8040	34,320.8040	1.0000	34,320.8040	0.9000	30,888.7236
RZE0059	3	3	4,371.7866	4,371.7866	1.0000	4,371.7866	0.9000	3,934.6079
RZE0060	90	90	36,287.6850	36,287.6850	1.0000	36,287.6850	0.9000	32,658.9165
RZE0062	119	119	18,207.0000	18,207.0000	0.9180	16,714.0260	0.9000	15,042.6234
RZE0063	4,277	4,277	6,051.9550	6,051.9550	1.0000	6,051.9550	0.9000	5,446.7595
RZE0064	206	206	150,380.0000	150,380.0000	1.0000	150,380.0000	0.9000	135,342.0000
RZE0109	1,639	1,639	60,806.9000	60,806.9000	0.9520	57,888.1688	0.9000	52,099.3519
RZE0110	76	76	12,616.0000	12,616.0000	0.8080	10,193.7280	0.9000	9,174.3552
RZE0111	29	29	20,010.0000	20,010.0000	0.7590	15,187.5900	0.9000	13,668.8310
RZE0112	38	38	5,814.0000	5,814.0000	0.9180	5,337.2520	0.9000	4,803.5268
Total	19,194	19,194	816,124.4444	816,124.4444		784,876.2944	0.9000	706,388.6650

Measure ID	2013 Certified Net kWh Savings $(F)=(D \times E)$	Measure Life (G)	2013 Certified Net kWh LLESM Savings $(H)=(F \times 1.1)^{*}$	2013 Realization Rate $(I)=(F / A)$	Lifetime kWh Savings $(J)=(F \times \operatorname{G})$
RZC0007	937.9692	20	1,031.7661	90.00\%	18,759.3840
RZC0008	-480.5015	20	-528.5516	90.00\%	-9,610.0290
RZC0009	294.5754	20	324.0329	90.00\%	5,891.5080
RZC0010	2,698.8894	18	2,968.7783	90.00\%	48,580.0092
RZC0011	3,670.0776	18	4,037.0854	90.00\%	66,061.3968
RZC0018	24,875.7151	13	27,363.2866	90.00\%	323,384.2958
RZC0019	24,912.0788	13	27,403.2867	90.00\%	323,857.0249
RZC0020	21,312.6675	13	23,443.9343	90.00\%	277,064.6779
RZC0022	45,714.0991	20	50,285.5090	90.00\%	914,281.9812
RZC0023	6,449.7528	20	7,094.7281	90.00\%	128,995.0560
RZC0024	-580.3825	20	-638.4207	90.00\%	-11,607.6492
RZC0055	36,097.6937	20	39,707.4631	90.00\%	721,953.8748
RZC0060	8,695.3991	20	9,564.9390	90.00\%	173,907.9810
RZC0061	-1,898.1103	20	-2,087.9213	90.00\%	-37,962.2052
RZC0062	-2,284.6484	20	-2,513.1132	90.00\%	-45,692.9676
RZC0063	-4,957.8680	20	-5,453.6548	90.00\%	-99,157.3596
RZE0007	244.5530	20	269.0083	90.00\%	4,891.0608
RZE0008	26.9429	20	29.6371	90.00\%	538.8570
RZE0009	109.9112	20	120.9024	90.00\%	2,198.2248
RZE0010	1,016.9662	18	1,118.6628	90.00\%	18,305.3909
RZE0011	1,871.0806	18	2,058.1886	90.00\%	33,679.4501
RZE0012	19.4881	20	21.4369	90.00\%	389.7612
RZE0018	13,044.1817	13	14,348.5998	90.00\%	169,574.3618
RZE0019	17,218.3037	13	18,940.1340	90.00\%	223,837.9475
RZE0020	6,694.8053	13	7,364.2858	90.00\%	87,032.4683

Measure ID	2013 Certified Net kWh Savings $(F)=(D \times E)$	Measure Life (G)	2013 Certified Net kWh LLESM Savings $(H)=(F \times 1.1)^{*}$	2013 Realization Rate $(I)=(F / A)$	Lifetime kWh Savings $(\mathrm{J})=(\mathrm{F} \times \mathrm{G})$
RZE0021	9,940.4019	5	9,940.4019	90.00\%	49,702.0095
RZE0022	19,942.2569	20	21,936.4826	90.00\%	398,845.1376
RZE0023	3,523.6390	20	3,876.0029	90.00\%	70,472.7792
RZE0050	99,684.9101	9	99,684.9101	85.68\%	897,164.1907
RZE0051	17,865.8496	12	19,652.4346	72.72\%	214,390.1952
RZE0052	24,980.9670	12	27,479.0637	68.31\%	299,771.6040
RZE0055	17,328.6613	20	19,061.5274	90.00\%	346,573.2258
RZE0056	4,358.6438	15	4,794.5081	90.00\%	65,379.6563
RZE0058	30,888.7236	15	33,977.5960	90.00\%	463,330.8540
RZE0059	3,934.6079	15	4,328.0687	90.00\%	59,019.1191
RZE0060	32,658.9165	15	35,924.8082	90.00\%	489,883.7475
RZE0062	15,042.6234	6	15,042.6234	82.62\%	90,255.7404
RZE0063	5,446.7595	20	5,991.4355	90.00\%	108,935.1900
RZE0064	135,342.0000	15	148,876.2000	90.00\%	2,030,130.0000
RZE0109	52,099.3519	9	52,099.3519	85.68\%	468,894.1673
RZE0110	9,174.3552	12	10,091.7907	72.72\%	110,092.2624
RZE0111	13,668.8310	12	15,035.7141	68.31\%	164,025.9720
RZE0112	4,803.5268	6	4,803.5268	82.62\%	28,821.1608
Total	706,388.6650		758,870.4500	86.55\%	9,694,841.5130

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater.

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kW Savings (A)		Certified Gross Adjustment Factor (C)	Certified Gross kW Savings (D) = (B x C)	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kW Savings $\begin{gathered} (F)= \\ (D \times E) \end{gathered}$	Measure Life (G)	2013 Certified Net kW LLESM Savings (H) = (F x 1.1)*	2013 Realization Rate $(I)=(F / A)$
RZC0007	38	38	-1.2540	-1.2540	1.0000	-1.2540	0.9000	-1.1286	20	-1.2415	90.00\%
RZC0008	65	65	-2.1450	-2.1450	1.0000	-2.1450	0.9000	-1.9305	20	-2.1236	90.00\%
RZC0009	21	21	0.4431	0.4431	1.0000	0.4431	0.9000	0.3988	20	0.4387	90.00\%
RZC0010	89	89	1.6287	1.6287	1.0000	1.6287	0.9000	1.4658	18	1.6124	90.00\%
RZC0011	40	40	2.9040	2.9040	1.0000	2.9040	0.9000	2.6136	18	2.8750	90.00\%
RZC0018	219	219	12.3297	12.3297	1.0000	12.3297	0.9000	11.0967	13	12.2064	90.00\%
RZC0019	149	149	12.9183	12.9183	1.0000	12.9183	0.9000	11.6265	13	12.7891	90.00\%
RZC0020	77	77	13.1670	13.1670	1.0000	13.1670	0.9000	11.8503	13	13.0353	90.00\%
RZC0022	427	427	23.9120	23.9120	1.0000	23.9120	0.9000	21.5208	20	23.6729	90.00\%
RZC0023	80	80	2.1600	2.1600	1.0000	2.1600	0.9000	1.9440	20	2.1384	90.00\%
RZC0024	23	23	-0.8211	-0.8211	1.0000	-0.8211	0.9000	-0.7390	20	-0.8129	90.00\%
RZC0055	522	522	11.5884	11.5884	1.0000	11.5884	0.9000	10.4296	20	11.4725	90.00\%
RZC0060	6,695	6,695	7.3645	7.3645	1.0000	7.3645	0.9000	6.6281	20	7.2909	90.00\%
RZE0007	6	6	-0.1530	-0.1530	1.0000	-0.1530	0.9000	-0.1377	20	-0.1515	90.00\%
RZE0008	11	11	-0.2530	-0.2530	1.0000	-0.2530	0.9000	-0.2277	20	-0.2505	90.00\%
RZE0009	4	4	0.0720	0.0720	1.0000	0.0720	0.9000	0.0648	20	0.0713	90.00\%
RZE0010	31	31	0.6324	0.6324	1.0000	0.6324	0.9000	0.5692	18	0.6261	90.00\%
RZE0011	18	18	1.1790	1.1790	1.0000	1.1790	0.9000	1.0611	18	1.1672	90.00\%
RZE0012	1	1	-0.0254	-0.0254	1.0000	-0.0254	0.9000	-0.0229	20	-0.0251	90.00\%
RZE0018	108	108	4.4604	4.4604	1.0000	4.4604	0.9000	4.0144	13	4.4158	90.00\%
RZE0019	93	93	6.0264	6.0264	1.0000	6.0264	0.9000	5.4238	13	5.9661	90.0馬\%/
RZE0020	21	21	2.5998	2.5998	1.0000	2.5998	0.9000	2.3398	13	2.5738	$90.0 \mathrm{Ch}^{\circ} / \mathrm{s}$

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kW Savings (A)		Certified Gross Adjustment Factor (C)	2013 Certified Gross kW Savings (D) = ($\mathrm{B} \times \mathrm{C}$)	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kW Savings (F) = (D x E)
RZE0021	110	110	16.0490	16.0490	1.0000	16.0490	0.9000	14.4441
RZE0022	182	182	7.8078	7.8078	1.0000	7.8078	0.9000	7.0270
RZE0023	34	34	1.1356	1.1356	1.0000	1.1356	0.9000	1.0220
RZE0050	3,136	3,136	13.7984	13.7984	0.9520	13.1361	0.9000	11.8225
RZE0051	148	148	2.7972	2.7972	0.8080	2.2601	0.9000	2.0341
RZE0052	53	53	3.0952	4.1287	0.7590	3.1337	0.9000	2.8203
RZE0055	229	229	5.7021	5.7021	1.0000	5.7021	0.9000	5.1319
RZE0056	5	5	3.7315	3.7315	1.0000	3.7315	0.9000	3.3584
RZE0058	56	56	25.0600	25.0600	1.0000	25.0600	0.9000	22.5540
RZE0059	3	3	2.1129	2.1129	1.0000	2.1129	0.9000	1.9016
RZE0060	90	90	40.8150	40.8150	1.0000	40.8150	0.9000	36.7335
RZE0062	119	119	2.0706	2.0706	0.9180	1.9008	0.9000	1.7107
RZE0063	4,277	4,277	3.4216	3.4216	1.0000	3.4216	0.9000	3.0794
RZE0064	206	206	13.5342	13.5342	1.0000	13.5342	0.9000	12.1808
RZE0109	1,639	1,639	7.2116	7.2116	0.9520	6.8654	0.9000	6.1789
RZE0110	76	76	1.4364	1.4364	0.8080	1.1606	0.9000	1.0446
RZE0111	29	29	1.6936	2.2591	0.7590	1.7147	0.9000	1.5432
RZE0112	38	38	0.6612	0.6612	0.9180	0.6070	0.9000	0.5463
Total	19,168	19,168	250.8681	252.4671		248.8823	0.9000	223.9941

Table 88. Certified Home Performance with ENERGY STAR Program Participation and First-Year MCF Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings $(D)=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings $(F)=(D \times E)$
RZC0007	38	38	241.8586	241.8586	1.0000	241.8586	0.9000	217.6727
RZC0008	65	65	284.7780	284.7780	1.0000	284.7780	0.9000	256.3002
RZC0009	21	21	70.9611	70.9611	1.0000	70.9611	0.9000	63.8650
RZC0010	89	89	129.2725	129.2725	1.0000	129.2725	0.9000	116.3453
RZC0011	40	40	160.9800	160.9800	1.0000	160.9800	0.9000	144.8820
RZC0018	219	219	1,926.8058	1,926.8058	1.0000	1,926.8058	0.9000	1,734.1252
RZC0019	149	149	1,959.0371	1,959.0371	1.0000	1,959.0371	0.9000	1,763.1334
RZC0020	77	77	1,641.9557	1,641.9557	1.0000	1,641.9557	0.9000	1,477.7601
RZCOO22	427	427	3,245.2854	3,245.2854	1.0000	3,245.2854	0.9000	2,920.7569
RZC0023	80	80	469.2320	469.2320	1.0000	469.2320	0.9000	422.3088
RZC0024	23	23	244.1910	244.1910	1.0000	244.1910	0.9000	219.7719
RZC0055	522	522	2,807.8902	2,807.8902	1.0000	2,807.8902	0.9000	2,527.1012
RZC0060	6,695	6,695	352.1570	352.1570	1.0000	352.1570	0.9000	316.9413
RZC0061	6	6	249.0120	249.0120	1.0000	249.0120	0.9000	224.1108
RZCO062	7	7	356.8670	356.8670	1.0000	356.8670	0.9000	321.1803
RZC0063	13	13	823.7528	823.7528	1.0000	823.7528	0.9000	741.3775
RZG0007	27	27	154.0431	154.0431	1.0000	154.0431	0.9000	138.6388
RZG0008	87	87	547.8825	547.8825	1.0000	547.8825	0.9000	493.0943
RZG0009	73	73	207.5828	207.5828	1.0000	207.5828	0.9000	186.8245
RZG0010	47	47	72.1027	72.1027	1.0000	72.1027	0.9000	64.8924
RZG0011	34	34	126.8710	126.8710	1.0000	126.8710	0.9000	114.1839
RZG0012	16	16	80.5232	80.5232	1.0000	80.5232	0.9000	72.4709
RZG0013	1	1	30.8233	30.8233	1.0000	30.8233	0.9000	27.7410
RZG0014	41	41	1,044.6882	1,044.6882	1.0000	1,044.6882	0.9000	940.2194

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings $(D)=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings $(F)=(D \times E)$
RZG0015	150	150	4,025.9850	4,025.9850	1.0000	4,025.9850	0.9000	3,623.3865
RZG0016	74	74	2,308.2524	2,308.2524	1.0000	2,308.2524	0.9000	2,077.4272
RZG0017	6	6	167.2002	167.2002	1.0000	167.2002	0.9000	150.4802
RZG0018	362	362	2,513.9452	2,513.9452	1.0000	2,513.9452	0.9000	2,262.5507
RZG0019	320	320	3,158.6880	3,158.6880	1.0000	3,158.6880	0.9000	2,842.8192
RZG0020	115	115	2,010.8555	2,010.8555	1.0000	2,010.8555	0.9000	1,809.7700
RZG0021	478	478	3,577.3520	3,577.3520	1.0000	3,577.3520	0.9000	3,219.6168
RZG0022	741	741	4,358.9325	4,358.9325	1.0000	4,358.9325	0.9000	3,923.0393
RZG0023	178	178	878.6080	878.6080	1.0000	878.6080	0.9000	790.7472
RZG0051	2,194	2,194	1,812.6828	1,812.6828	0.8080	1,464.6477	0.9000	1,318.1829
RZG0052	719	719	2,515.9248	2,515.9248	0.7590	1,909.5869	0.9000	1,718.6282
RZG0053	2	2	102.3444	102.3444	1.0000	102.3444	0.9000	92.1100
RZG0054	7	7	398.0277	398.0277	1.0000	398.0277	0.9000	358.2249
RZG0055	832	832	3,564.7872	3,564.7872	1.0000	3,564.7872	0.9000	3,208.3085
RZG0056	43	43	150.4656	150.4656	1.0000	150.4656	0.9000	135.4190
RZG0057	7	7	45.5868	45.5868	1.0000	45.5868	0.9000	41.0281
RZG0060	5,320	5,320	264.4040	264.4040	1.0000	264.4040	0.9000	237.9636
RZG0061	3	3	131.6820	131.6820	1.0000	131.6820	0.9000	118.5138
RZG0062	1,865	1,865	1,414.0430	1,414.0430	0.9180	1,298.0915	0.9000	1,168.2823
RZG0109	1,221	1,221	1,008.7902	1,008.7902	0.8080	815.1025	0.9000	733.5922
RZG0110	488	488	1,707.6096	1,707.6096	0.7590	1,296.0757	0.9000	1,166.4681
RZG0111	456	456	345.7392	345.7392	0.9180	317.3886	0.9000	285.6497
Total	24,378	24,378	53,690.4591	53,690.4591		51,986.5624	0.9000	46,787.9061

Table 89. Certified Home Performance with ENERGY STAR Program Long-Life Equipment Savings Multiplier and Lifetime MCF Savings by Measure

90.00%	$4,353.4548$
90.00%	$5,126.0040$
90.00%	$1,277.2998$
90.00%	$2,094.2145$
90.00%	$2,607.8760$
90.00%	$22,543.6279$
90.00%	$22,920.7341$
90.00%	$19,210.8817$
90.00%	$58,415.1372$
90.00%	$8,446.1760$
90.00%	$4,395.4380$
90.00%	$50,542.0236$
90.00%	$6,338.8260$
90.00%	$4,482.2160$
90.00%	$6,423.6060$
90.00%	$14,827.5504$
90.00%	$2,772.7758$
90.00%	$9,861.8850$
90.00%	$3,736.4904$
90.00%	$1,168.0637$
90.00%	$2,055.3102$
90.00%	$1,449.4176$
90.00%	416.1146
90.00%	$14,103.2907$
90.00%	$54,350.7975$

Measure ID	2013 Certified Net MCF Savings (F) = (D x E)	Measure Life (G)	2013 Certified Net MCF LLESM Savings (H) = (F x 1.1)*	2013 Realization Rate (I) $=(F / A)$	Lifetime MCF Savings $(J)=(F \times G)$
RZG0016	2,077.4272	15	2,285.1699	90.00\%	31,161.4074
RZG0017	150.4802	15	165.5282	90.00\%	2,257.2027
RZG0018	2,262.5507	13	2,488.8057	90.00\%	29,413.1588
RZG0019	2,842.8192	13	3,127.1011	90.00\%	36,956.6496
RZG0020	1,809.7700	13	1,990.7469	90.00\%	23,527.0094
RZG0021	3,219.6168	5	3,219.6168	90.00\%	16,098.0840
RZG0022	3,923.0393	20	4,315.3432	90.00\%	78,460.7850
RZG0023	790.7472	20	869.8219	90.00\%	15,814.9440
RZG0051	1,318.1829	12	1,450.0012	72.72\%	15,818.1952
RZG0052	1,718.6282	12	1,890.4911	68.31\%	20,623.5388
RZG0053	92.1100	20	101.3210	90.00\%	1,842.1992
RZG0054	358.2249	20	394.0474	90.00\%	7,164.4986
RZG0055	3,208.3085	20	3,529.1393	90.00\%	64,166.1696
RZG0056	135.4190	15	148.9609	90.00\%	2,031.2856
RZG0057	41.0281	15	45.1309	90.00\%	615.4218
RZG0060	237.9636	20	261.7600	90.00\%	4,759.2720
RZG0061	118.5138	20	130.3652	90.00\%	2,370.2760
RZG0062	1,168.2823	6	1,168.2823	82.62\%	7,009.6940
RZG0109	733.5922	12	806.9515	72.72\%	8,803.1068
RZG0110	1,166.4681	12	1,283.1149	68.31\%	13,997.6174
RZG0111	285.6497	6	285.6497	82.62\%	1,713.8984
Total	46,787.9061		50,999.3418	87.14\%	708,523.6256

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater.

Appendix I: Home Energy Analysis Program

Table 90 presents reported gross and certified net energy savings for the Home Energy Analysis Program by fuel type. The realization rates reflect the adjustments Cadmus made based on our certification tasks and applying installation rate and NTG adjustments. The following sections discuss changes we made to reported gross energy savings.

Table 90. Home Energy Analysis Program Participation and Savings without Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	299,311	$3,858,172.1166$	495.3412	$127,919.0755$
Certified Net	299,311	$3,354,479.3142$	367.3659	$116,929.1788$
Difference	0	$-503,692.8024$	-127.9753	$-10,989.8967$
Realization Rate	100.00%	86.94%	74.16%	91.41%

Table 91 presents reported and certified net energy savings with the long-life equipment savings multiplier for the Home Energy Analysis Program by fuel type.

Table 91. Home Energy Analysis Program Participation and Savings with Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	299,311	$3,414,979.0324$	439.7723	$117,972.9904$
Certified Net	299,311	$3,434,594.2780$	374.5671	$123,693.1102$
Difference	0	$19,615.2456$	-65.2052	$5,720.1198$
Certified/Reported	100.00%	100.57%	85.17%	104.85%

Task 2: Database Review

The Consumers Energy and implementer databases matched across all areas of inquiry: (a) number of participants; (b) quantities of installed measures; and (c) appropriate application of savings according to customer type. Cadmus also verified that the measures were installed during the 2013 program year.

Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

Cadmus reviewed program documents from a sample of 69 randomly selected account numbers.
Table 92 documents reported and certified measure counts as well as reported and certified energy savings by fuel type.

Table 92. Home Energy Analysis Program Sample Participation and Savings by End Use

Measure Code	Reported				Certified			
	n	kWh	kW	MCF	n	kWh	kW	MCF
RXE0002	197	7,308.7000	0.8668	-	197	7,308.7000	0.8668	-
RXE0004	45	990.0000	-	-	45	990.0000	-	-
RXE0005	18	918.0000	0.1044	-	18	918.0000	0.1044	-
RXE0006	2	1,380.0000	0.1168	-	2	1,380.0000	0.1168	-
RXE0007	1	166.0000	0.0189	-	1	166.0000	0.0189	-
RXE0010	21	779.1000	0.0924	-	21	779.1000	0.0924	-
RXE0011	19	704.9000	0.0836	-	19	704.9000	0.0836	-
RXE0012	11	561.0000	0.0638	-	11	561.0000	0.0638	-
RXE0013	1	690.0000	0.0584	-	1	690.0000	0.0584	-
RXE0014	2	332.0000	0.0378	-	2	332.0000	0.0378	-
RXE0015	1	166.0000	0.1890	-	1	166.0000	0.1890	-
RXE0102	47	1,743.7000	0.2068	-	47	1,743.7000	0.2068	-
RXE0104	1	22.0000	-	-	1	22.0000	-	-
RXE0110	14	519.4000	0.0616	-	14	519.4000	0.0616	-
RXE0111	2	74.2000	0.0088	-	2	74.2000	0.0088	-
RXG0005	626	-	-	158.1902	626	-	-	158.1902
RXG0006	37	-	-	129.4704	37	-	-	129.4704
RXG0007	27	-	-	14.4450	27	-	-	14.4450
RXG0009	9	-	-	61.1154	9	-	-	61.1154
RXG0012	131	-	-	33.1430	131	-	-	33.1430
RXG0013	44	-	-	153.9648	44	-	-	153.9648
RXG0014	28	-	-	14.9800	28	-	-	14.9800
RXG0015	62	-	-	56.9160	62	-	-	56.9160
RXG0115	2	-	-	8.3592	2	-	-	8.3592
Total	1,348	16,355.0000	1.9091	630.5840	1,348	16,355.0000	1.9091	630.5840

The reported measure quantities for all database records matched their associated documentation. Table 93 provides the sample realization rates by fuel type and the t-test statistics Cadmus used to analyze errors in the sample.

Table 93. Home Energy Analysis Program Sample Realization Rates and t-Statistic

	kWh	kW	MCF
Sample Realization Rate	100.00%	100.00%	N/A
Standard Error	N/A	N/A	N/A
t-Statistic	N/A	N/A	N/A
p-Value	N/A	N/A	N/A
Apply to Program Population?	N/A	N/A	N/A

CADMUS

 Date: May 2014 Page 102 of 136
Task 4: Measure-Level Savings Analysis

Cadmus found discrepancies between the reported per-unit measure savings and values either maintained in the MEMD or calculated by Navigant for the program measures shown in Table 94.

Table 94. Per-Unit Measure Discrepancies for the Home Energy Analysis Program

Measure Code and End Use	Reported Savings	Verified Savings
RXE0007 - Low-Flow Showerhead (1.5 GPM)	0.0584 kW	0.0779 kW
RXE0015 - Low-Flow Bath Aerator (1 GPM)	0.189 kW	0.0234 kW
	166 kWh	207 kWh
RXG0007 - Low-Flow Bath Aerator (GPM not specified)	0.5350 MCF	0.6164 MCF
RXG0014 - Low-Flow Kitchen Aerator (GPM not-specified)	0.5350 MCF	1.0818 MCF
RXG0015 - Low-Flow Bath Aerator (1 GPM)	0.9180 MCF	1.0567 MCF

Table 95 presents the reported and certified per-unit savings for all measures delivered through the 2013 Home Energy Analysis Program.

Table 95. Home Energy Analysis Program Reported and Certified Per-Unit Measure Savings

Measure Code	Reported			Certified			Certified LLESM			
	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RXC0001	128.2370	0.0000	6.9583	128.2370	0.0000	6.9583	9	128.2370	0.0000	6.9583
RXC0101	140.6174	0.0000	7.2509	140.6174	0.0000	7.2509	9	140.6174	0.0000	7.2509
RXE0002	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RXE0003	44.1000	0.0053	0.0000	44.1000	0.0053	0.0000	9	44.1000	0.0053	0.0000
RXE0004	22.0000	0.0000	0.0000	22.0000	0.0000	0.0000	12	24.2000	0.0000	0.0000
RXE0005	51.0000	0.0058	0.0000	51.0000	0.0058	0.0000	6	51.0000	0.0058	0.0000
RXE0006	690.0000	0.0584	0.0000	690.0000	0.0779	0.0000	12	759.0000	0.0857	0.0000
RXE0007	166.0000	0.0189	0.0000	166.0000	0.0189	0.0000	12	182.6000	0.0208	0.0000
RXE0010	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RXE0011	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RXE0012	51.0000	0.0058	0.0000	51.0000	0.0058	0.0000	6	51.0000	0.0058	0.0000
RXE0013	690.0000	0.0584	0.0000	690.0000	0.0779	0.0000	12	759.0000	0.0857	0.0000
RXE0014	166.0000	0.0189	0.0000	166.0000	0.0189	0.0000	12	182.6000	0.0208	0.0000
RXE0015	166.0000	0.1890	0.0000	207.0412	0.0234	0.0000	12	227.7453	0.0257	0.0000
RXE0102	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RXE0103	44.1000	0.0053	0.0000	44.1000	0.0053	0.0000	9	44.1000	0.0053	0.0000
RXE0104	22.0000	0.0000	0.0000	22.0000	0.0000	0.0000	12	24.2000	0.0000	0.0000
RXE0110	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RXE0111	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RXE0115	820.0000	0.0925	0.0000	820.0000	0.0925	0.0000	3	820.0000	0.0925	0.0000
RXG0005	0.0000	0.0000	0.2527	0.0000	0.0000	0.2527	6	0.0000	0.0000	0.2527
RXG0006	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	12	0.0000	0.0000	3.8491

Measure Code	Reported			Certified			Certified LLESM			
	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RXG0007	0.0000	0.0000	0.5350	0.0000	0.0000	0.6164	12	0.0000	0.0000	0.6780
RXG0009	0.0000	0.0000	6.7906	0.0000	0.0000	6.7906	9	0.0000	0.0000	6.7906
RXG0012	0.0000	0.0000	0.2530	0.0000	0.0000	0.2530	6	0.0000	0.0000	0.2530
RXG0013	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	12	0.0000	0.0000	3.8491
RXG0014	0.0000	0.0000	0.5350	0.0000	0.0000	1.0818	12	0.0000	0.0000	1.1900
RXG0015	0.0000	0.0000	0.9180	0.0000	0.0000	1.0567	12	0.0000	0.0000	1.1624
RXG0109	0.0000	0.0000	6.7712	0.0000	0.0000	6.7712	9	0.0000	0.0000	6.7712
RXG0115	0.0000	0.0000	4.1796	0.0000	0.0000	4.1796	3	0.0000	0.0000	4.1796

\qquad $1,269,942.9725$
$1,603.6348$
$161,602.9272$
$211,231.8000$
 $46,227.9456$
$170,595.5870$ $170,595.5870$

$155,209.5418$ 75,780.9000 | O |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | 55,059.1290

[^20]Table 96. Certified Home Energy Analysis Program Part

0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	
0.9000	

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $\text { (D) }=(\mathrm{B} \times \mathrm{C})$	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
RXE0111	1,702	1,702	63,144.2000	63,144.2000	0.9620	60,744.7204	0.9000	54,670.2484
RXE0115	26	26	21,320.0000	21,320.0000	1.0000	21,320.0000	0.9000	19,188.0000
Total	86,058	86,058	3,858,172.1166	3,879,431.4582		3,727,199.2380	0.9000	3,354,479.3142

Table 98. Certified Home Energy Analysis Program Participation and kW Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kW Savings (A)	2013 Adjusted Gross kW Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kW Savings $\begin{gathered} (D)= \\ (B \times C) \end{gathered}$	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kW Savings $\begin{gathered} (F)= \\ (D \times E) \end{gathered}$	Measure Life (G)	2013 Certified Net kW LLESM Savings (H) = (F x 1.1)*	2013 Realization Rate $(I)=(F / A)$
RXE0002	39,536	39,536	173.9584	173.9584	0.9620	167.3480	0.9000	150.6132	9	150.6132	86.58\%
RXE0003	42	42	0.2226	0.2226	0.9620	0.2141	0.9000	0.1927	9	0.1927	86.58\%
RXE0005	4,602	4,602	26.6916	26.6916	1.0000	26.6916	0.9000	24.0224	6	24.0224	90.00\%
RXE0006	420	420	24.5280	32.7180	0.9110	29.8061	0.9000	26.8255	12	29.5080	109.37\%
RXE0007	332	332	6.2748	6.2748	0.9320	5.8481	0.9000	5.2633	12	5.7896	83.88\%
RXE0010	5,311	5,311	23.3684	23.3684	0.9620	22.4804	0.9000	20.2324	9	20.2324	86.58\%
RXE0011	4,832	4,832	21.2608	21.2608	0.9620	20.4529	0.9000	18.4076	9	18.4076	86.58\%
RXE0012	1,651	1,651	9.5758	9.5758	1.0000	9.5758	0.9000	8.6182	6	8.6182	90.00\%
RXE0013	335	335	19.5640	26.0965	1.0000	26.0965	0.9000	23.4869	12	25.8355	120.05\%
RXE0014	395	395	7.4655	7.4655	0.9330	6.9653	0.9000	6.2688	12	6.8957	83.97\%
RXE0015	518	518	97.9020	12.1212	0.9320	11.2970	0.9000	10.1673	12	11.1840	10.39\%
RXE0102	15,241	15,241	67.0604	67.0604	0.9620	64.5121	0.9000	58.0609	9	58.0609	86.58\%
RXE0103	3	3	0.0159	0.0159	0.9620	0.0153	0.9000	0.0138	9	0.0138	86.58\%
RXE0110	1,718	1,718	7.5592	7.5592	0.9620	7.2720	0.9000	6.5448	9	6.5448	86.58\%
RXE0111	1,702	1,702	7.4888	7.4888	0.9620	7.2042	0.9000	6.4838	9	6.4838	86.58\%
RXE0115	26	26	2.4050	2.4050	1.0000	2.4050	0.9000	2.1645	3	2.1645	90.00\%
Total	76,664	76,664	495.3412	424.2829		408.1844	0.9000	367.3659		374.5671	74.16\%

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings $\text { (D) }=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings $(F)=(D \times E)$
RXC0001	431	431	2,999.0273	2,999.0273	1.0000	2,999.0273	0.9000	2,699.1246
RXC0101	4	4	29.0036	29.0036	1.0000	29.0036	0.9000	26.1032
RXG0005	142,188	142,188	35,930.9076	35,930.9076	1.0000	35,930.9076	0.9000	32,337.8168
RXG0006	7,863	7,863	27,514.2096	27,514.2096	0.9110	25,065.4449	0.9000	22,558.9005
RXG0007	9,589	9,589	5,130.1150	5,910.6596	0.9320	5,508.7347	0.9000	4,957.8613
RXG0009	1,140	1,140	7,741.2840	7,741.2840	1.0000	7,741.2840	0.9000	6,967.1556
RXG0012	26,047	26,047	6,589.8910	6,589.8910	1.0000	6,589.8910	0.9000	5,930.9019
RXG0013	7,450	7,450	26,069.0400	26,069.0400	1.0000	26,069.0400	0.9000	23,462.1360
RXG0014	6,939	6,939	3,712.3650	7,506.6102	0.9330	7,003.6673	0.9000	6,303.3006
RXG0015	11,685	11,685	10,726.8300	12,347.5395	0.9320	11,507.9068	0.9000	10,357.1161
RXG0109	2	2	13.5424	13.5424	1.0000	13.5424	0.9000	12.1882
RXG0115	350	350	1,462.8600	1,462.8600	1.0000	1,462.8600	0.9000	1,316.5740
Total	213,688	213,688	127,919.0755	134,114.5748		129,921.3097	0.9000	116,929.1788

Table 100. Certified Home Energy Analysis Program Long-Life Equipment Savings Multiplier and Lifetime MCF Savings by Measure

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater.

Appendix J: Insulation and Windows Program

Table 101 presents reported gross and certified net energy savings for the Insulation and Windows Program by fuel type. The realization rates reflect the adjustments Cadmus made based on our certification tasks and applying installation rate and NTG adjustments. The changes we made to reported gross energy savings are discussed in the following sections.

Table 101. Insulation and Windows Program Participation and Savings without Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	$921,241.41$	$732,970.6083$	401.5178	$72,690.0034$
Certified Net	$921,241.41$	$659,673.5475$	361.3660	$65,421.0030$
Difference	0	$-73,297.0608$	-40.1518	$-7,269.0003$
Realization Rate	100.00%	90.00%	90.00%	90.00%

Table 102 presents reported and certified net energy savings with the long-life equipment savings multiplier for the Insulation and Windows Program by fuel type.

Table 102. Insulation and Windows Program Participation and Savings with
Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	$921,241.41$	$725,640.8689$	397.5910	$71,963.1110$
Certified Net	$921,241.41$	$725,640.9022$	397.5026	$71,963.1033$
Difference	0	0.0333	-0.0884	-0.0077
Certified/Reported	100.00%	100.00%	99.98%	100.00%

Task 2: Database Review

The Consumers Energy and implementer databases matched across all areas of inquiry: (a) number of participants; (b) quantities of installed measures; and (c) appropriate application of savings according to customer type. Cadmus also verified that the measures were installed during the 2013 program year.

Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

Cadmus reviewed program documents from a sample of 69 randomly selected account numbers. Table 103 documents reported and certified measure counts as well as reported and certified energy savings by fuel type.

Table 103. Insulation and Windows Program Sample Participation and Savings by End Use

Measure Code	Reported				Certified			
	n	kWh	kW	MCF	n	kWh	kW	MCF
RWC0001	7	699.7011	0.3108	45.7121	7	699.7011	0.3108	45.7121
RWC0002	7	631.6002	0.1967	42.3633	7	631.6002	0.1967	42.3633
RWC0004	1	-1.2202	-0.0350	4.4434	1	-1.2202	-0.0350	4.4434
RWC0005	1,228	1,672.0448	1.2280	63.3648	1,228	1,672.0448	1.2280	63.3648
RWC0006	4	259.3028	0.0768	18.7228	4	259.3028	0.0768	18.7228
RWC0007	40	11.1520	0.0040	0.5840	40	11.1520	0.0040	0.5840
RWE0001	1	121.0530	0.0422	-	1	121.0530	0.0422	-
RWE0002	1	110.1718	0.0276	-	1	110.1718	0.0276	-
RWE0005	1,290	1,819.2870	1.0320	-	1,290	1,819.2870	1.0320	-
RWE0007	80	25.4160	0.0080	-	80	25.4160	0.0080	-
RWG0001	17	-	-	109.8166	17	-	-	109.8166
RWG0004	1	-	-	3.0573	1	-	-	3.0573
RWG0005	2,836	-	-	136.4116	2,836	-	-	136.4116
RWG0006	2	-	-	9.0012	2	-	-	9.0012
RWG0007	373	-	-	4.8117	373	-	-	4.8117
Total	5,888	5,348.5085	2.8911	438.2888	5,888	5,348.5085	2.8911	438.2888

The reported measure quantities for all database records matched their associated documentation. Table 104 provides the sample realization rates by fuel type and the t-test statistics Cadmus used to analyze errors in the sample.

Table 104. Insulation and Windows Program Sample Realization Rates and t-Statistic

	kWh	kW	MCF
Sample Realization Rate	100.00%	100.00%	N
Standard Error	N / A	N / A	N
t-Statistic	N / A	N / A	N / A
p-Value	N / A	N / A	N / A
Apply to Program Population?	N / A	N	N / A

Task 4: Measure-Level Savings Analysis

Cadmus found zero discrepancies between the per-unit measure savings reported by Consumers Energy and values either maintained in the MEMD or calculated by Navigant.

Table 105 presents the reported and certified per-unit savings for all measures delivered through the 2013 Insulation and Windows Program.

Table 105. Insulation and Windows Program Reported and Certified Per-Unit Measure Savings

	Reported			Certified			Certified LLESM			
Code	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RWC0001	99.9573	0.0444	6.5303	99.9573	0.0444	6.5303	20	109.9530	0.0488	7.1833
RWC0002	90.2286	0.0281	6.0519	90.2286	0.0281	6.0519	20	99.2515	0.0309	6.6571
RWC0003	25.2814	-0.0265	5.3404	25.2814	-0.0265	5.3404	20	27.8095	-0.0292	5.8744
RWC0004	-1.2202	-0.0350	4.4434	-1.2202	-0.0350	4.4434	20	-1.3422	-0.0385	4.8877
RWC0005	1.3616	0.0010	0.0516	1.3616	0.0010	0.0516	20	1.4978	0.0011	0.0568
RWC0006	64.8257	0.0192	4.6807	64.8257	0.0192	4.6807	20	71.3083	0.0211	5.1488
RWC0007	0.2788	0.0001	0.0146	0.2788	0.0001	0.0146	20	0.3067	0.0001	0.0161
RWE0001	121.0530	0.0422	0.0000	121.0530	0.0422	0.0000	20	133.1583	0.0464	0.0000
RWE0002	110.1718	0.0276	0.0000	110.1718	0.0276	0.0000	20	121.1890	0.0304	0.0000
RWE0003	39.2841	-0.0205	0.0000	39.2841	-0.0205	0.0000	20	43.2125	-0.0226	0.0000
RWE0004	7.7008	-0.0236	0.0000	7.7008	-0.0236	0.0000	20	8.4709	-0.0260	0.0000
RWE0005	1.4103	0.0008	0.0000	1.4103	0.0008	0.0000	20	1.5513	0.0009	0.0000
RWE0006	80.7219	0.0212	0.0000	80.7219	0.0212	0.0000	20	88.7941	0.0233	0.0000
RWE0007	0.3177	0.0001	0.0000	0.3177	0.0001	0.0000	20	0.3495	0.0001	0.0000
RWG0001	0.0000	0.0000	6.4598	0.0000	0.0000	6.4598	20	0.0000	0.0000	7.1058
RWG0002	0.0000	0.0000	5.4401	0.0000	0.0000	5.4401	20	0.0000	0.0000	5.9841
RWG0003	0.0000	0.0000	4.3189	0.0000	0.0000	4.3189	20	0.0000	0.0000	4.7508
RWG0004	0.0000	0.0000	3.0573	0.0000	0.0000	3.0573	20	0.0000	0.0000	3.3630
RWG0005	0.0000	0.0000	0.0481	0.0000	0.0000	0.0481	20	0.0000	0.0000	0.0529
RWG0006	0.0000	0.0000	4.5006	0.0000	0.0000	4.5006	20	0.0000	0.0000	4.9507
RWG0007	0.0000	0.0000	0.0129	0.0000	0.0000	0.0129	20	0.0000	0.0000	0.0142

Major Findings by Fuel Type

The tables below present certified program participation and energy savings by measure. Table 106 and Table 107 document kWh savings, Table 108 documents kW savings, and Table 109 and Table 110 document MCF savings.

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $(D)=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
RWC0001	1,276	1,276	127,545.5148	127,545.5148	1.0000	127,545.5148	0.9000	114,790.9633
RWC0002	424	424	38,256.9264	38,256.9264	1.0000	38,256.9264	0.9000	34,431.2338
RWC0003	70	70	1,769.6980	1,769.6980	1.0000	1,769.6980	0.9000	1,592.7282
RWC0004	122	122	-148.8644	-148.8644	1.0000	-148.8644	0.9000	-133.9780
RWC0005	206,628	206,628	281,344.6848	281,344.6848	1.0000	281,344.6848	0.9000	253,210.2163
RWC0006	378	378	24,504.1146	24,504.1146	1.0000	24,504.1146	0.9000	22,053.7031
RWC0007	17,608	17,608	4,909.1104	4,909.1104	1.0000	4,909.1104	0.9000	4,418.1994
RWE0001	333	333	40,310.6490	40,310.6490	1.0000	40,310.6490	0.9000	36,279.5841
RWE0002	177	177	19,500.4086	19,500.4086	1.0000	19,500.4086	0.9000	17,550.3677
RWE0003	41	41	1,610.6481	1,610.6481	1.0000	1,610.6481	0.9000	1,449.5833
RWE0004	36	36	277.2288	277.2288	1.0000	277.2288	0.9000	249.5059
RWE0005	128,672	128,672	181,466.1216	181,466.1216	1.0000	181,466.1216	0.9000	163,319.5094
RWE0006	99	99	7,991.4681	7,991.4681	1.0000	7,991.4681	0.9000	7,192.3213
RWE0007	11,435	11,435	3,632.8995	3,632.8995	1.0000	3,632.8995	0.9000	3,269.6096
Total	367,299	367,299	732,970.6083	732,970.6083		732,970.6083	0.9000	659,673.5475

$$
2,295,819.2664
$$

$$
\begin{array}{r}
688,624.6752 \\
\hline 31.854 .6752
\end{array}
$$

$$
\begin{array}{r}
\hline 31,854.6752 \\
\hline-2,679.5592 \\
\hline
\end{array}
$$

$$
5,064,204.3264
$$

441,074.0628

$$
\begin{array}{r}
88,363.9872 \\
\hline 725,591.6820 \\
\hline
\end{array}
$$

$$
\begin{gathered}
\infty \\
\underset{1}{n} \\
\\
\vdots \\
\vdots \\
\\
\end{gathered}
$$

$$
28,991.6658
$$

\[

\]

$$
3,266,390.1888
$$

$$
\begin{array}{l|l}
\hline 90.00 \% & 143,846.4258 \\
\hline
\end{array}
$$

$$
\begin{array}{l|r}
90.00 \% & 65,392.1210
\end{array}
$$

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater.

$$
13,193,470.9494
$$

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kW Savings (A)	2013 Adjusted Gross kW Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kW Savings (D) = (B x C)	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kW Savings $\begin{gathered} (F)= \\ (D \times E) \end{gathered}$	Measure Life (G)	2013 Certified Net kW LLESM Savings (H) = (F x 1.1)*	$\begin{gathered} 2013 \\ \text { Realization } \\ \text { Rate }(\mathrm{I})= \\ (\mathrm{F} / \mathrm{A}) \end{gathered}$
RWC0001	1,276	1,276	56.6544	56.6544	1.0000	56.6544	0.9000	50.9890	20	56.0879	90.00\%
RWC0002	424	424	11.9144	11.9144	1.0000	11.9144	0.9000	10.7230	20	11.7953	90.00\%
RWC0003	70	70	-1.8550	-1.8550	1.0000	-1.8550	0.9000	-1.6695	20	-1.8365	90.00\%
RWC0004	122	122	-4.2700	-4.2700	1.0000	-4.2700	0.9000	-3.8430	20	-4.2273	90.00\%
RWC0005	206,628	206,628	206.6280	206.6280	1.0000	206.6280	0.9000	185.9652	20	204.5617	90.00\%
RWC0006	378	378	7.2576	7.2576	1.0000	7.2576	0.9000	6.5318	20	7.1850	90.00\%
RWC0007	17,608	17,608	1.7608	1.7608	1.0000	1.7608	0.9000	1.5847	20	1.7432	90.00\%
RWE0001	333	333	14.0526	14.0526	1.0000	14.0526	0.9000	12.6473	20	13.9121	90.00\%
RWE0002	177	177	4.8852	4.8852	1.0000	4.8852	0.9000	4.3967	20	4.8363	90.00\%
RWE0003	41	41	-0.8405	-0.8405	1.0000	-0.8405	0.9000	-0.7565	20	-0.8321	90.00\%
RWE0004	36	36	-0.8496	-0.8496	1.0000	-0.8496	0.9000	-0.7646	20	-0.8411	90.00\%
RWE0005	128,672	128,672	102.9376	102.9376	1.0000	102.9376	0.9000	92.6438	20	101.9082	90.00\%
RWE0006	99	99	2.0988	2.0988	1.0000	2.0988	0.9000	1.8889	20	2.0778	90.00\%
RWE0007	11,435	11,435	1.1435	1.1435	1.0000	1.1435	0.9000	1.0292	20	1.1321	90.00\%
Total	367,299	367,299	401.5178	401.5178		401.5178	0.9000	361.3660		397.5026	90.00\%

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings (D) $=(\mathrm{B} \times \mathrm{C})$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings $(F)=(D \times E)$
RWC0001	1,276	1,276	8,332.6628	8,332.6628	1.0000	8,332.6628	0.9000	7,499.3965
RWC0002	424	424	2,566.0056	2,566.0056	1.0000	2,566.0056	0.9000	2,309.4050
RWC0003	70	70	373.8280	373.8280	1.0000	373.8280	0.9000	336.4452
RWC0004	122	122	542.0948	542.0948	1.0000	542.0948	0.9000	487.8853
RWC0005	206,628	206,628	10,662.0048	10,662.0048	1.0000	10,662.0048	0.9000	9,595.8043
RWC0006	378	378	1,769.3046	1,769.3046	1.0000	1,769.3046	0.9000	1,592.3741
RWC0007	17,608	17,608	257.0768	257.0768	1.0000	257.0768	0.9000	231.3691
RWG0001	2,781	2,781	17,964.7038	17,964.7038	1.0000	17,964.7038	0.9000	16,168.2334
RWG0002	591	591	3,215.0991	3,215.0991	1.0000	3,215.0991	0.9000	2,893.5892
RWG0003	96	96	414.6144	414.6144	1.0000	414.6144	0.9000	373.1530
RWG0004	102	102	311.8446	311.8446	1.0000	311.8446	0.9000	280.6601
RWG0005	484,865.15	484,865.15	23,322.0137	23,322.0137	1.0000	23,322.0137	0.9000	20,989.8123
RWG0006	471	471	2,119.7826	2,119.7826	1.0000	2,119.7826	0.9000	1,907.8043
RWG0007	65,036.26	65,036.26	838.9678	838.9678	1.0000	838.9678	0.9000	755.0710
Total	780,448.41	780,448.41	72,690.0034	72,690.0034		72,690.0034	0.9000	65,421.0030

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater

Appendix K: New Home Construction Program

Table 111 presents reported gross and certified net energy savings for the New Home Construction Program by fuel type. The realization rates reflect the adjustments Cadmus made based on our certification tasks and applying installation rate and NTG adjustments. The following sections discuss the changes we made to reported gross energy savings.

Table 111. New Home Construction Program Participation and Savings without Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	585	$168,680.1643$	0.1760	$14,428.6540$
Certified Net	585	$152,052.3393$	0.1584	$12,985.7886$
Difference	0	$-16,627.8250$	-0.0176	$-1,442.8654$
Realization Rate	100.00%	90.14%	90.00%	90.00%

Table 112 presents reported and certified net energy savings with the long-life equipment savings multiplier for the New Home Construction Program by fuel type.

Table 112. New Home Construction Program Participation and Savings with Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	585	$165,835.1763$	0.1584	$14,276.5949$
Certified Net	585	$166,987.2093$	0.1584	$14,276.5931$
Difference	0	$1,152.0330$	0.0000	-0.0018
Certified/Reported	100.00%	100.69%	100.00%	100.00%

Task 2: Database Review

The Consumers Energy and implementer databases matched across all areas of inquiry: (a) number of participants; (b) quantities of installed measures; and (c) appropriate application of savings according to customer type. Cadmus also verified that the measures were installed during the 2013 program year.

Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

Cadmus reviewed program documents from a sample of 55 randomly selected account numbers.
Table 113 documents reported and certified measure counts as well as reported and certified energy savings by fuel type.

Table 113. New Home Construction Program Sample Participation and Savings by End Use

Measure Code	Reported				Certified			
	n	kWh	kW	MCF	n	kWh	kW	MCF
RNC0001	28	18,181.0000	-	1,654.8000	28	18,181.0000	-	1,654.8000
RNE0001	11	3,096.0000	-	-	11	3,096.0000	-	-
RNG0001	15	-	-	352.8000	15	-	-	352.8000
RNG0008	1	-	-	4.5464	1	-	-	4.5464
RNG0010	2	-	-	1.9440	2	-	-	1.9440
RNG0012	2	-	-	27.9006	2	-	-	27.9006
Total	59	21,277.0000	-	2,041.9910	59	21,277.0000	-	2,041.9910

The reported measure quantities for all database records matched their associated documentation. Table 114 provides the sample realization rates by fuel type and the t-test statistics Cadmus used to analyze errors in the sample.

Table 114. New Home Construction Program Sample Realization Rates and t-Statistic

	kWh	kW	MCF
Sample Realization Rate	100.00%	100.00%	N/A
Standard Error	N / A	N / A	N
t-Statistic	N / A	N / A	N / A
p-Value	N / A	N / A	N / A
Apply to Program Population?	N / A	N	N / A

Task 4: Measure-Level Savings Analysis

Cadmus did not find any discrepancies between reported per-unit measure savings and values either maintained in the MEMD or calculated by Navigant. However, Cadmus found that a gas-only customer had received negative kWh savings from measure RNG0011-95\% AFUE Boiler, and we removed the negative kWh savings for that customer.

Table 115 presents the reported and certified per-unit savings for all measures delivered through the 2013 New Home Construction Program.

Table 115. New Home Construction Program Reported and Certified Per-Unit Measure Savings

Measure Code	Reported			Certified			Certified LLESM			
	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
RNC0001	Custom	Custom	Custom	Custom	Custom	Custom	20	Custom	Custom	Custom
RNE0001	Custom	Custom	Custom	Custom	Custom	Custom	20	Custom	Custom	Custom
RNE0012	37.1000	0.0044	0.0000	37.1000	0.0044	0.0000	9	37.1000	0.0044	0.0000
RNG0001	Custom	Custom	Custom	Custom	Custom	Custom	20	Custom	Custom	Custom
RNG0002	0.0000	0.0000	6.5124	0.0000	0.0000	6.5124	15	0.0000	0.0000	7.1636
RNG0003	0.0000	0.0000	3.4992	0.0000	0.0000	3.4992	15	0.0000	0.0000	3.8491
RNG0004	0.0000	0.0000	24.3312	0.0000	0.0000	24.3312	15	0.0000	0.0000	26.7643
RNG0008	80.0023	0.0000	4.5464	80.0023	0.0000	4.5464	9	80.0023	0.0000	4.5464
RNG0010	0.0000	0.0000	0.9720	0.0000	0.0000	0.9720	15	0.0000	0.0000	1.0692
RNG0011	-266.8794	0.0000	41.9773	-266.8794	0.0000	41.9773	15	-293.5673	0.0000	46.1750
RNG0012	0.0000	0.0000	13.9503	0.0000	0.0000	13.9503	15	0.0000	0.0000	15.3453

Performance Incentive Metric

In addition to verifying savings for the New Home Construction program, Cadmus verified the number of ENERGY STAR 3.0 homes built in 2013 compared to the number built in 2012 as a performance incentive metric. In 2013, 318 gas or combination new homes were constructed through the program compared to 194 in 2012, or a 63.92% increase. Of the 318 homes constructed in 2013, 202 were combination homes of which 185 were reported with the measure code RNCOOO1 - New Construction Combination Savings and 17 were reported using measure codes RNE0001 - New Construction Electric Savings and RNG0001 - New Construction Gas Savings. The remaining 116 of 318 homes were homes in which Consumers Energy provides only natural gas service. An additional 93 homes were constructed in areas where Consumers Energy provides only electric service resulting in a total of 411 ENERGY STAR 3.0 homes. Electric savings were reported for these homes, but they are not counted toward the performance incentive metric.

Major Findings by Fuel Type

The tables below present certified program participation and energy savings by measure. Table 116 and Table 117 document kWh savings,
Table 118 documents kW savings, and Table 119 and Table 120 document MCF savings. Table 116. Certified New Home Construction Program Participation and First-Year kWh Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $(D)=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
RNCOOO1	185	185	125,165.0000	125,165.0000	1.0000	125,165.0000	0.9000	112,648.5000
RNE0001	110	110	40,778.0000	40,778.0000	1.0000	40,778.0000	0.9000	36,700.2000
RNE0012	40	40	1,484.0000	1,484.0000	1.0000	1,484.0000	0.9000	1,335.6000
RNG0008	19	19	1,520.0437	1,520.0437	1.0000	1,520.0437	0.9000	1,368.0393
RNG0011	1	0	-266.8794	0.0000	1.0000	0.0000	0.9000	0.0000
Total	355	354	168,680.1643	168,947.0437		168,947.0437	0.9000	152,052.3393

Table 117. Certified New Home Construction Program Long-Life Equipment Savings Multiplier and Lifetime kWh Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kW Savings (A)	2013 Adjusted Gross kW Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kW Savings $\begin{gathered} (D)= \\ (B \times C) \end{gathered}$	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kW Savings $\begin{gathered} (F)= \\ (D \times E) \end{gathered}$	Measure Life (G)	2013 Certified Net kW LLESM Savings $\begin{gathered} (\mathrm{H})= \\ (\mathrm{F} \times 1.1)^{*} \end{gathered}$	2013 Realization Rate $(I)=(F / A)$
RNE0012	40	40	0.1760	0.1760	1.0000	0.1760	0.9000	0.1584	9	0.1584	90.00\%
Total	40	40	0.1760	0.1760		0.1760	0.9000	0.1584		0.1584	90.00\%

Table 119. Certified New Home Construction Program Participation and First-Year MCF Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings $(\mathrm{D})=(\mathrm{B} \times \mathrm{C})$	Deemed Net- to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings $(F)=(D \times E)$
RNC0001	185	185	8,765.9100	8,765.9100	1.0000	8,765.9100	0.9000	7,889.3190
RNG0001	133	133	4,726.3000	4,726.3000	1.0000	4,726.3000	0.9000	4,253.6700
RNG0002	1	1	6.5124	6.5124	1.0000	6.5124	0.9000	5.8612
RNG0003	5	5	17.4960	17.4960	1.0000	17.4960	0.9000	15.7464
RNG0004	7	7	170.3184	170.3184	1.0000	170.3184	0.9000	153.2866
RNG0008	19	19	86.3816	86.3816	1.0000	86.3816	0.9000	77.7434
RNG0010	43	43	41.7960	41.7960	1.0000	41.7960	0.9000	37.6164
RNG0011	1	1	41.9773	41.9773	1.0000	41.9773	0.9000	37.7796
RNG0012	41	41	571.9623	571.9623	1.0000	571.9623	0.9000	514.7661
Total	435	435	14,428.6540	14,428.6540		14,428.6540	0.9000	12,985.7886

Table 120. Certified New Home Construction Program Long-Life Equipment Savings Multiplier and Lifetime MCF Savings by Measure

*Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater.

Appendix L: Home Energy Reports Program

Table 121 presents reported gross and certified net energy savings for the Home Energy Reports Program by fuel type. The realization rates reflect the adjustments Cadmus made based on our certification tasks and applying installation rate and NTG adjustments. The following section discuss the changes we made to reported gross energy savings.

Table 121. Home Energy Reports Program Participation and Savings without Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Gross	273,858	$32,955,512.7929$	0.0000	$59,704.6063$
Certified Net	273,858	$28,409,888.6773$	0.0000	$51,858.2914$
Difference	0	$-4,545,624.1156$	0.0000	$-7,846.3149$
Realization Rate	100.00%	86.21%	$\mathrm{~N} / \mathrm{A}$	86.86%

Table 122 presents reported and certified net energy savings with the long-life equipment savings multiplier for the Home Energy Reports Program by fuel type.

Table 122. Home Energy Reports Program Participation and Savings with Long-Life Equipment Savings Multiplier

	Participation Total	Total kWh Savings	Total kW Savings	Total MCF Savings
Reported Net	272,858	$28,409,887.0904$	0.0000	$51,859.2817$
Certified Net	272,858	$28,409,888.6773$	0.0000	$51,858.2914$
Difference	0	1.5869	0.0000	-0.9903
Certified/Reported	100.00%	100.00%	$\mathrm{~N} / \mathrm{A}$	100.00%

Task 2: Database Review

The Consumers Energy and implementer databases matched across all areas of inquiry: (a) number of participants; (b) quantities of installed measures; and (c) appropriate application of savings according to customer type. Cadmus also verified that the measures were installed during the 2013 program year.

Gross reported savings are based on reported installation quantities; Cadmus used certified installation quantities when calculating net energy savings.

Task 3: Documentation Review

The Home Energy Reports Program does not have customer-level program documents available for review; therefore, Cadmus did not conduct a documentation review of this program.

Task 4: Measure-Level Savings Analysis

Cadmus found no discrepancies between per-unit measure savings reported by Consumers Energy and values either maintained in the MEMD or calculated by Navigant.

Table 123 presents the reported and certified per-unit savings for all measures delivered through the 2013 Home Energy Reports Program.

Table 123. Home Energy Reports Program Reported and Certified Per-Unit Measure Savings

	Reported			Certified			Certified LLESM			
Code	kWh	kW	MCF	kWh	kW	MCF	Measure Life	kWh	kW	MCF
ROC0002	169.9878	0.0000	0.5858	169.9878	0.0000	0.5858	1	169.9878	0.0000	0.5858
ROC0011	126.6491	0.0000	0.5777	126.6491	0.0000	0.5777	1	126.6491	0.0000	0.5777
ROC0012	90.5706	0.0000	0.5832	90.5706	0.0000	0.5832	1	90.5706	0.0000	0.5832
ROE0001	86.8679	0.0000	0.0000	86.8679	0.0000	0.0000	1	86.8679	0.0000	0.0000
ROE0002	111.0317	0.0000	0.0000	111.0317	0.0000	0.0000	1	111.0317	0.0000	0.0000

Major Findings by Fuel Type

The tables below present certified program participation and energy savings by measure. Table 124 and Table 125 document kWh savings and Table 126 and Table 127 document MCF savings. No kW savings were tracked for this program.

Table 124. Certified Home Energy Reports Program Participation and First-Year kWh Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross kWh Savings (A)	2013 Adjusted Gross kWh Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross kWh Savings $\text { (D) }=(\mathrm{B} \times \mathrm{C})$	Deemed Net-to- Gross Adjustment Factor (E)	2013 Certified Net kWh Savings $(F)=(D \times E)$
ROC0002	52,485	52,485	8,921,809.6830	8,921,809.6830	0.9690	8,645,233.5828	0.9000	7,780,710.2245
ROC0011	42,821	42,821	5,423,241.1111	5,423,241.1111	0.9640	5,228,004.4311	0.9000	4,705,203.9880
ROC0012	7,238	7,238	655,550.0028	655,550.0028	0.9430	618,183.6526	0.9000	556,365.2874
ROE0001	44,131	44,131	3,833,567.2949	3,833,567.2949	0.9510	3,645,722.4974	0.9000	3,281,150.2477
ROE0002	127,183	127,183	14,121,344.7011	14,121,344.7011	0.9510	13,429,398.8107	0.9000	12,086,458.9297
Total	273,858	273,858	32,955,512.7929	32,955,512.7929		31,566,542.9748	0.9000	28,409,888.6773

Table 125. Certified Home Energy Reports Program Long-Life Equipment Savings Multiplier and Lifetime kWh Savings by Measure

Measure ID	2013 Reported Gross Participation	2013 Adjusted Gross Participation	2013 Reported Gross MCF Savings (A)	2013 Adjusted Gross MCF Savings (B)	Certified Gross Adjustment Factor (C)	2013 Certified Gross MCF Savings $(D)=(B \times C)$	Deemed Net-to-Gross Adjustment Factor (E)	2013 Certified Net MCF Savings $(F)=(D \times E)$
ROCOOO2	52,485	52,485	30,745.7130	30,745.7130	0.9690	29,792.5959	0.9000	26,813.3363
ROC0011	42,821	42,821	24,737.6917	24,737.6917	0.9640	23,847.1348	0.9000	21,462.4213
ROC0012	7,238	7,238	4,221.2016	4,221.2016	0.9430	3,980.5931	0.9000	3,582.5338
Total	102,544	102,544	59,704.6063	59,704.6063		57,620.3238	0.9000	51,858.2914

Table 127. Certified Home Energy Reports Program Long-Life Equipment Savings Multiplier and Lifetime MCF Savings by Measure

Appendix M: Measure Descriptions by Program

Table 128 presents measure descriptions for all measure codes used in this report.

Table 128. Program Measure Descriptions

Measure Code	
Appendix A: ENERGY STAR Lighting Program	
RBE0002	CFL Bulbs Regular (buydown)
RBE0003	CFL Bulbs Specialty (buydown) - Weighted Average
RBE0005	LED Holiday Lights (buydown)
RLE0009	LED Bulb Replacing A-Line 60 Watt
RLE0010	LED Bulb Replacing A-Line 75 Watt
RLE0012	LED Flood PAR
Appendix B: ENERGY STAR Appliances Program	
RAC0100	Setback Thermostat - Moderate Setback - Combination Fuel Customers
RAE0002	ENERGY STAR Dehumidifier
RAE0003	ENERGY STAR Room Air Conditioner
RAE0005	Setback Thermostat - Moderate Setback - Electric Customers
RAE0006	Clothes Washer CEE Tier2, Electric DHW, Electric Dryer - Electric Customers
RAE0007	Clothes Washer CEE Tier2, Electric DHW, Gas Dryer - Electric Customers
RAE0008	Clothes Washer CEE Tier2, Gas DHW, Electric Dryer - Electric Customers
RAE0009	Clothes Washer CEE Tier2, Gas DHW, Gas Dryer - Electric Customers
RAE0010	Clothes Washer CEE Tier3, Electric DHW, Electric Dryer - Electric Customers
RAE0011	Clothes Washer CEE Tier3, Electric DHW, Gas Dryer - Electric Customers
RAE0012	Clothes Washer CEE Tier3, Gas DHW, Electric Dryer - Electric Customers
RAE0013	Clothes Washer CEE Tier3, Gas DHW, Gas Dryer - Electric Customers
RAE9001	CFL Bulbs Regular - Energy Efficiency Kit
RAE9006	Clothes Washer CEE Tier2, Electric DHW, Electric Dryer - Combination Customers
RAE9007	Clothes Washer CEE Tier2, Electric DHW, Gas Dryer - Combination Customers
RAE9010	Clothes Washer CEE Tier3, Electric DHW, Electric Dryer - Combination Customers
RAE9011	Clothes Washer CEE Tier3, Electric DHW, Gas Dryer - Combination Customers
RAE9018	LED Nightlight - Energy Efficiency Kit
RAG0004	Low-Flow Showerheads - 1.75 GPM - Gas Customers
RAG0005	Setback Thermostat - Moderate Setback - Gas Customers
RAG0007	Clothes Washer CEE Tier2, Electric DHW, Gas Dryer - Gas Customers
RAG0008	Clothes Washer CEE Tier2, Gas DHW, Electric Dryer - Gas Customers
RAG0009	Clothes Washer CEE Tier2, Gas DHW, Gas Dryer - Gas Customers
RAG0011	Clothes Washer CEE Tier3, Electric DHW, Gas Dryer - Gas Customers
RAG0012	Clothes Washer CEE Tier3, Gas DHW, Electric Dryer - Gas Customers
RAG0013	Clothes Washer CEE Tier3, Gas DHW, Gas Dryer - Gas Customers
RAG9002	Low-Flow Bath Faucet Aerators - Gas Energy Efficiency Kit
RAG9003	Low-Flow Kitchen Faucet Aerators- Gas EE Energy Efficiency Kit
RAG9008	Clothes Washer CEE Tier2, Gas DHW, Electric Dryer - Combination Customers

Measure Code	Measure Description
RAG9009	Clothes Washer CEE Tier2, Gas DHW, Gas Dryer - Combination Customers
RAG9012	Clothes Washer CEE Tier3, Gas DHW, Electric Dryer - Combination Customers
RAG9013	Clothes Washer CEE Tier3, Gas DHW, Gas Dryer - Combination Customers
RAG9020	Low-Flow Showerhead - 2.0 GPM - Energy Efficiency Kit - Gas Customers
Appendix C: HVAC and Water Heating Program	
RHC0100	Setback Thermostat - Moderate Setback - Combination Customers
RHE0001	ECM Blower - Intermittent - Electric Customer
RHE0004	Setback Thermostat - Moderate Setback -- Electric Customers
RHE0006	Split System Central Air Conditioner - SEER > 15
RHE0007	Split System Central Air Conditioner - SEER > 16
RHE0008	Tier 1 Ground-Source Heat Pump - EER > 17
RHE0009	Tier 2 Ground-Source Heat Pump - EER > 19
RHE0011	Tier 2 Air-Source Heat Pump - EER > 15
RHE0012	Tier 3 Air-Source Heat Pump - EER > 16
RHE0016	Operations and Maintenance HVAC Tune Up - Electric Customers
RHG0002	Tankless Gas Water Heater - EF > 0.82
RHG0004	Setback Thermostat - Moderate Setback -- Gas or Combination Customers
RHG0006	Natural Gas Boiler - AFUE > 87\%
RHG0007	Natural Gas Furnace - AFUE 94\%
RHG0008	Super High-Efficiency Gas Water Heater - EF ≥ 0.67
RHG0010	Natural Gas Furnace - AFUE 95\%
RHG0011	Natural Gas Furnace - AFUE 96\%
RHG0012	Natural Gas Furnace - AFUE 97\%
RHG0013	Natural Gas Furnace - AFUE > 98\%
RHG0015	Natural Gas Boiler - AFUE > 92\%
RHG0016	Natural Gas Boiler - AFUE > 95\%
RHG0017	Operations and Maintenance HVAC Tune Up - Gas Customers
RHG0018	Natural Gas Boiler - AFUE > 90\%
Appendix D: Income Qualified Program	
RCE0002	Residential Income Qualified Custom (non-CAA) - Electric Customers
RCG0002	Residential Income Qualified Custom (measure life < 10 years) - Gas Customers
RCG0002	Residential Income Qualified Custom - (measure life ≥ 10 years) - Gas Customers
RIE0001	CFL Bulbs - Regular (CAA)
RIE0002	Agency Refrigerator Replacement - ENERGY STAR (CAA)
RIE0012	Low-Flow Bath Faucet Aerators - 1.5 GPM (non-CAA) - Electric Customers
RIE0013	Pipe Wrap (non-CAA) - Electric Customers
RIE0016	CFL Bulbs - Direct Install (non-CAA)
RIE0018	ECM Blower - Intermittent (CAA) - Electric and Combination Customers
RIE0030	Low-Flow Showerheads - Energy-Efficiency Measures - 1.75 GPM (CAA) - Electric Customers
RIE0032	Low-Flow Bath Faucet Aerators - Energy-Efficiency Measures - 1.5 GPM (CAA) - Electric Customers
RIE0035	Low-Flow Showerhead - 1.5 GPM (non-CAA)

Measure Code
Measure Description

RIE0036	Low-Flow Showerhead - 1.5 GPM Handheld (non-CAA)
RIE0037	ECM Blower Community Homeworks (non-CAA)
RIE0038	CFL Bulbs - Energy-Efficiency Measures - (CAA)
RIE0039	Low-Flow Kitchen Faucet Aerator - 1.5 GPM (non-CAA) - Electric Customers
RIE0048	Low-Flow Bath Faucet Aerators - 1.0 GPM (non-CAA) - Electric Customers
RIE0049	Low-Flow Bath Faucet Aerators - 1.0 GPM (CAA) - Electric Customers
RIE0050	Pipe Wrap - (non-CAA) - Electric Customers
RIG0004	Setback Thermostat - $5 / 2$ (CAA)
RIG0006	High-Efficiency Gas Furnace - AFUE $\geq .92$ (CAA)
RIG0008	Low-Flow Showerheads - 1.75 GPM (non-CAA) - Gas Customers
RIG0009	Low-Flow Bath Faucet Aerators - 1.5 GPM (non-CAA) - Gas Customers
RIG0010	Pipe Wrap (non-CAA) - Gas Customers
RIG0011	Setback Thermostat - Full Setback (non-CAA) - Gas and Combination Customers
RIG0016	Setback Thermostat - $5 / 2$ (non-CAA) - Multifamily Customers
RIG0017	Ceiling Insulation - Minimum of 10\% Reduction (CAA)
RIG0018	Mobile Home Belly Insulation - Floor Insulation (CAA)
RIG0019	Wall Insulation - Four Walls - No Partial (CAA)
RIG0020	Band Joint Insulation - Rim Joist (CAA)
RIG0021	Air Sealing - Minimum 10\% Reduction (CAA)
RIG0023	Operations and Maintenance Tune-Up - Furnace Only (CAA)
RIG0027	Low-Flow Handheld Showerhead - 1.75 GPM (non-CAA) - Gas Customers
RIG0029	Natural Gas Furnace - AFUE 95\% (CAA)
RIG0030	Natural Gas Furnace - AFUE 96\% (CAA)
RIG0033	Air Infiltration Reduction 15\% (CAA) - Gas Customers
RIG0034	Air Infiltration Reduction 20\% (CAA) - Gas Customers
RIG0035	Air Infiltration Reduction 30\% (CAA) - Gas Customers
RIG0036	Air Infiltration Reduction 50\% (CAA) - Gas Customers
RIG0038	Operations and Maintenance Tune-Up - Furnace Only - Direct Install (non-CAA)
RIG0039	Low-Flow Handheld Showerhead - Pre-Weatherization 1.75 GPM (CAA) - Gas Customers
RIG0041	Low-Flow Showerheads - Pre-Weatherization -1.75 GPM (CAA) - Gas Customers
RIG0042	Low-Flow Showerheads - Energy-Efficiency Measures -1.75 GPM (CAA) - Gas Customers
RIG0043	Low-Flow Bath Faucet Aerators - Pre-Weatherization - 1.5 GPM (CAA) - Gas Customers
RIG0044	Low-Flow Bath Faucet Aerators - Energy-Efficiency Measures - 1.5 GPM (CAA) - Gas Customers
RIG0046	Pipe Wrap Energy-Efficiency Measures (CAA) - Gas Customers
RIG0047	Operations and Maintenance Tune-Up Furnace (non-CAA) - Multifamily Customers
RIG0048	Setback Thermostat - Energy-Efficiency Measures (CAA)
RIG0049	Low-Flow Showerhead - 1.5 GPM (non-CAA)
RIG0050	Low-Flow Showerhead - Handheld - 1.5 GPM (non-CAA)
RIG0051	Natural Gas Furnace - AFUE 95\% (community homeworks) (non-CAA)
RIG0052	Operations and Maintenance Tune-Up Furnace Only - Direct Install (non-CAA)
RIG0053	Low-Flow Kitchen Faucet Aerator - 1.5 GPM (non-CAA) - Gas Customers
RIG0060	Air Infiltration Reduction 10\% (MI Neighborhood Weatherization) - Gas Customers

Measure Code
Measure Description

RIG0061	Air Infiltration Reduction 15\% (MI Neighborhood Weatherization) - Gas Customers
RIG0062	Air Infiltration Reduction 20\% (MI Neighborhood Weatherization) - Gas Customers
RIG0063	Air Infiltration Reduction 30\% (MI Neighborhood Weatherization) - Gas Customers
RIG0064	Air Infiltration Reduction 50\% (MI Neighborhood Weatherization) - Gas Customers
RIG0066	Attic Insulation (MI Neighborhood Weatherization)
RIG0067	Wall Insulation - R-13 (MI Neighborhood Weatherization)
RIG0068	Band Joist - Insulate (MI Neighborhood Weatherization)
RIG0070	High-Efficiency Furnace Replacement - AFUE 92\% (MI Neighborhood Weatherization)
RIG0071	High-Efficiency Furnace Replacement - AFUE 95\% (MI Neighborhood Weatherization)
RIG0073	Boiler Replacement - AFUE 92\% (MI Neighborhood Weatherization)
RIG0086	Air Infiltration Reduction 10\% (non-CAA) - Gas Customers
RIG0087	Air Infiltration Reduction 15\% (non-CAA) - Gas Customers
RIG0088	Air Infiltration Reduction 20\% (non-CAA) - Gas Customers
RIG0089	Air Infiltration Reduction 30\% (non-CAA) - Gas Customers
RIG0090	Air Infiltration Reduction 50\% (non-CAA) - Gas Customers
RIG0092	Band Joist Insulation - Rim Joist (non-CAA)
RIG0093	Low-Flow Bath Faucet Aerators 1.0 GOM (non-CAA) - Gas Customers
RIG0095	Door Weatherstripping (non-CAA) - Single-Family Customers
RIG0096	Attic Insulation Measure (non-CAA)
RIG0097	Pipe Wrap (non-CAA) - Gas Customers
RIG0100	Operations and Maintenance Tune-Up Boiler Only (non-CAA) - Single-Family Customers
Appendix E: Appliance Recycling Program	
RTE0001	Refrigerator Recycling
RTE0009	Refrigerator Recycling - Retailer
RTE0002	Freezer Recycling
RTE0010	Freezer Recycling - Retailer
RTE0007	Dehumidifier Recycling
RTE0008	Room Unit Air Conditioner Recycling
Appendix F: Muta	

Appendix F: Multifamily Program

RCE0001	Residential Multifamily Custom - Measure Life <10 years - Electric Customers
RCE0001	Residential Multifamily Custom - Measure Life ≥ 10 years) - Electric Customers
RCG0001	Residential Multifamily Custom Measure Life <10 years - Gas Customers
RCG0001	Residential Multifamily Custom (Measure Life ≥ 10 years) - Gas Customers
RME0004	Low-Flow Bath Faucet Aerators - Direct Install - Electric Customers
RME0019	Low-Flow Kitchen Faucet Aerators- Direct Install - Electric Customers
RME0023	CFL Bulbs - 13 Watt
RME0027	CFL Screw-In Bulbs - Prescriptive
RME0029	CFL Fixtures - Prescriptive
RME0031	Occupancy Sensors - Under 500 Watts
RME0035	LED/Induction (Night Only) <175 Watts
RME0036	LED/Induction (Night Only) $-175-250$ Watts
RME0038	LED/Induction (Night Only) $-250-400$ Watts

Measure Code	
RME0039	LED/Induction (24x7) < 175 Watts
RME0046	CFL Specialty - In-Unit - Direct Install
RME0050	Low-Flow Showerhead - 1.5 GPM - Direct Install
RME0051	Low-Flow Showerhead - 1.5 GPM Handheld - Direct Install
RME0104	Low-Flow Bath Faucet Aerators - Prescriptive - Electric Customers
RME0105	Low-Flow Showerheads - 1.75 GPM - Electric Customers
RME0119	Low-Flow Kitchen Faucet Aerators - Prescriptive - Electric Customers
RME0121	Low-Flow Showerhead - 1.5 GPM - Electric Customers
RME0123	CFL - Common Area - Direct Install
RME0133	2L RW HPT8 Replacing T12 - Common - 24/7
RME0142	Air Conditioner - < 63.3 Tons - 10 SEER
RME0147	CFL Lamp - Specialty - In Unit
RME0150	CFL Candelabra Lamp - 5-13 Watts - Direct Install
RME0159	HPT8 Replacing T12 - Per Lamp - Common
RME0167	LED Lamp - 50-80 Watt Replacement - Common
RME0175	Room Air Conditioner (CEE Tier 2)
RME0178	Low-Flow Bath Faucet Aerators - 1.0 GPM - Direct Install - Electric Customers
RME0180	LED Candelabra Lamp - 3-5 Watts - In-Unit - Direct Install
RME0181	CFL Candelabra Lamp -5-13 Watts - In-Unit - Direct Install
RME0184	LED Exit Signs - Direct Install
RME0194	LED Lamp - 60 Watt Replacement - In Unit - Direct Install
RMG0004	Low-Flow Bath Faucet Aerators - Gas Customers
RMG0007	Pipe Wrap - DHW - In-Unit - Direct Install - Gas Customers
RMG0009	Boiler Controls
RMG0011	Boiler Tune-Up
RMG0012	High-Efficiency Boiler - AFUE > 90\%
RMG0014	Low-Flow Kitchen Faucet Aerators - Gas Customers
RMG0016	Pipe Wrap - Hydronic
RMG0018	Super High-Efficiency Gas Water Heater - AFUE $\geq 0.88 \%$
RMG0020	Furnace Tune-Up - 40,000 - 80,000 BTU
RMG0030	ENERGY STAR Doors
RMG0031	Door Weather Stripping
RMG0034	Airtight Can Light
RMG0035	ENERGY STAR Windows
RMG0050	Low-Flow Showerhead - 1.5 GPM
RMG0051	Low-Flow Showerhead - Handheld - 1.5 GPM
RMG0108	Setback Thermostat - Moderate Setback - Prescriptive - Gas and Combination Customers
RMG0115	Furnace Tune-Up - 40,000 - 80,000 BTU - Direct Install
RMG0116	Furnace Tune-Up 0 80,001 - 120,000 BTU - Direct Install
RMG0118	Pipe Wrap - DHW (common)
RMG0119	Low-Flow Kitchen Aerator - Gas Customers
RMG0120	Low-Flow Bath Aerator - Gas Customers

Measure Code	Measure Description
RMG0121	Furnace Replacement - AFUE 92\% - In Unit
RMG0122	Pipe Wrap - Space - Common - Direct Install - Gas Customers
RMG0123	Pipe Wrap - DHW - Common - Direct Install - Gas Customers
RMG0131	DHW Boiler Tune-Up
RMG0132	Furnace Tune-up -40-80 MBH (>2,000 units) - Direct Install
RMG0133	Furnace Tune-up - 80-120 MBH (>2,000 units) - Direct Install
RMG0136	Furnace Replacement - AFUE 95\% - Common
RMG0137	Furnace Replacement - AFUE 95\% - In Unit
RMG0143	High-Efficiency Boiler Replacement AFUE > 92\%
RMG0144	High-Efficiency Boiler Replacement AFUE > 95\%
RMG0145	Indirect Water Heater - AFUE 90\%
RMG0146	Indirect Water Heater - AFUE 84-90\%
RMG0149	Low-Flow Showerhead - 1.5 GPM - Prescriptive
RMG0152	Roof Insulation
RMG0154	Low-Flow Bath Faucet Aerators - 1.0 GPM - Direct Install - Gas Customers
RMG0157	Shower Start Showerhead - Direct Install - Gas Customers
RMG0163	Boiler Tune-Up
Appendix G: THINK! Energy Program	
REE0001	CFL Bulbs - Regular
REE0005	LED Night Light
REG0003	Low-Flow Showerheads - Gas Customers
REG0004	Low-Flow Bath Faucet Aerators - Gas Customers
REG0005	Low-Flow Kitchen Faucet Aerators - Gas Customers
Appendix H: Home Performance with ENERGY STAR Program	
RZC0007	Basement Wall Insulation - Combination Customers
RZC0008	Crawlspace Insulation - Combination Customers
RZC0009	Duct Insulation and/or Replacement - Combination Customers
RZC0010	Duct Sealing 15\% Reduction - Combination Customers
RZC0011	Duct Sealing 30\% Reduction - Combination Customers
RZC0018	Infiltration Reduction of 20\% - Combination Customers
RZC0019	Infiltration Reduction of 30\% - Combination Customers
RZC0020	Infiltration Reduction of 50\% - Combination Customers
RZC0022	Roof Insulation (attic) - Combination Customers
RZC0023	Wall Insulation - Combination Customers
RZC0024	Floor Insulation - Combination Customers
RZC0055	Rim Joist Insulation - Combination Customers
RZC0060	Window Replacement - Combination Customers
RZC0061	Natural Gas Boiler - AFUE 90\% - Combination Customers
RZC0062	Natural Gas Boiler - AFUE 92\% - Combination Customers
RZC0063	Natural Gas Boiler - AFUE 95\% - Combination Customers
RZE0007	Basement Wall Insulation - Electric Customers
RZE0008	Crawlspace Insulation - Electric Customers

Measure Code	Measure Description
RZE0009	Duct Insulation and/or Replacement - Electric Customers
RZE0010	Duct Sealing 15\% Reduction - Electric Customers
RZE0011	Duct Sealing 30\% Reduction - Electric Customers
RZE0012	Floor Insulation - Electric Customers
RZE0018	Infiltration Reduction of 20\% - Electric Customers
RZE0019	Infiltration Reduction of 30\% - Electric Customers
RZE0020	Infiltration Reduction of 50\% - Electric Customers
RZE0021	Operations and Maintenance HVAC Tune Up - Electric Customers
RZE0022	Roof Insulation (attic) - Electric Customers
RZE0023	Wall Insulation - Electric Customers
RZE0050	ENERGY STAR CFL Bulbs - Regular
RZE0051	Low-Flow Faucet Aerators - Electric Customers
RZE0052	Low-Flow Showerheads - Electric Customers
RZE0055	Rim Joist Insulation - Electric Customers
RZE0056	Tier 1 Air-Source Heat Pump - Electric and Combination Customers
RZE0058	Tier 1 Split System Central Air Conditioner - Electric and Combination Customers
RZE0059	Tier 2 Air-Source Heat Pump - Electric and Combination Customers
RZE0060	Tier 2 Split System Central Air Conditioner - Electric and Combination Customers
RZE0062	Pipe Wrap - Electric Customers
RZE0063	Window Replacement - Electric Customers
RZE0064	ECM Motor
RZE0109	ENERGY STAR CFL Bulbs - Regular - Left with Customer
RZE0110	Low Flow Faucet Aerators - Electric - Left with Customer
RZE0111	Low Flow Showerheads - Electric - Left with Customer
RZE0112	Pipe Wrap - Left with Customer - Electric Customers
RZG0007	Basement Wall Insulation - Gas Customers
RZG0008	Crawlspace Insulation - Gas Customers
RZG0009	Duct Insulation and/or Replacement - Gas Customers
RZG0010	Duct Sealing 15\% Reduction - Gas Customers
RZG0011	Duct Sealing 30\% Reduction - Gas Customers
RZG0012	Floor Insulation - Gas and Combination Customers
RZG0013	Gas Furnace - AFUE 94\%
RZG0014	Gas Furnace - AFUE 95\%
RZG0015	Gas Furnace - AFUE 96\%
RZG0016	Gas Furnace - AFUE 97\%
RZG0017	Gas Furnace - AFUE 98\%
RZG0018	Infiltration Reduction of 20\% - Gas Customers
RZG0019	Infiltration Reduction of 30\% - Gas Customers
RZG0020	Infiltration Reduction of 50\% - Gas Customers
RZG0021	Operations and Maintenance HVAC Tune-Up - Gas Customers
RZG0022	Roof Insulation (attic) - Gas Customers
RZG0023	Wall Insulation - Gas Customers

Measure Code	
RZG0051	Low-Flow Faucet Aerators - Gas and Combination Customers
RZG0052	Low-Flow Showerheads - Gas and Combination Customers
RZG0053	Natural Gas Boiler - AFUE 92\%- Gas Customers
RZG0054	Natural Gas Boiler - AFUE 95\% - Gas Customers
RZG0055	Rim Joist Insulation - Gas Customers
RZG0056	Super High-Efficiency Gas Water Heater - Gas and Combination Customers
RZG0057	Tankless Water Heater - Gas and Combination Customers
RZG0060	Window Replacement - Gas Customers
RZG0061	Natural Gas Boiler - AFUE 90\% - Gas Customers
RZG0062	Pipe Wrap - Gas Customers
RZG0109	Low-Flow Faucet Aerators - Left with Customer - Gas and Combination Customers
RZG0110	Low-Flow Showerheads - Left with Customer - Gas and Combination Customers
RZG0111	Pipe Wrap - Left with Customer - Gas Customers
Appendix I: Home Energy Analysis Program	
RXC0001	Setback Thermostat - Moderate Setback - Combination Customers
RXC0101	Setback Thermostat - Moderate Setback - Left with Customer - Combination Customers
RXE0002	CFL Bulbs Regular - 13 Watts
RXE0003	CFL Bulbs Specialty
RXE0004	LED Nightlight
RXE0005	Pipe Wrap 3/4-inch - Electric Water Heater
RXE0006	Low-Flow Showerheads - Electric Water Heater
RXE0007	Low-Flow Bath Aerators - Electric Water Heater
RXE0010	CFL Bulbs Regular - 18 Watts
RXE0011	CFL Bulbs Regular - 23 Watts
RXE0012	Pipe Wrap 1/2-inch - Electric Water Heater
RXE0013	Handheld Showerheads - Electric Water Heater
RXE0014	Low-Flow Kitchen Faucet Aerators - Electric Water Heater
RXE0015	Low-Flow Bath Faucet Aerators - 1 GPM - Electric Water Heater
RXE0102	CFL Bulbs Regular - 13 Watts - Left with Customer
RXE0103	CFL Bulbs Specialty - Left with Customer
RXE0104	LED Nightlight - Left with Customer
RXE0110	CFL bulbs regular - 18 Watts - Left with Customer
RXE0111	CFL bulbs regular - 23 Watts - Left with Customer
RXE0115	Low-Flow Showerheads and Shower Start - Electric Water Heater
RXG0005	Pipe Wrap 3/4-inch - Gas Water Heater
RXG0006	Low-Flow Showerheads - Gas Water Heater
RXG0007	Low-Flow Bath Aerators - Gas Water Heater
RXG0009	Setback Thermostat - Moderate Setback - Gas Customers
RXG0012	Pipe Wrap 1/2-inch - Gas Water Heater
RXG0013	Handheld Showerheads - Gas Water Heater
RXG0014	Low-Flow Kitchen Faucet Aerators - Gas Water Heater
RXG0015	Low-Flow Bath Faucet Aerators - 1 GPM - Gas Water Heater

Measure Code

Measure Description

RXG0109	Setback Thermostat - Moderate Setback - Left with Customer - Gas Customers
RXG0115	Low-Flow Showerheads and Shower Start - Gas Water Heater
Appendix J: Insulation and Windows Program	
RWC0001	Roof Insulation (attic) - Combination Customers
RWC0002	Wall Insulation - Combination Customers
RWC0003	Basement Wall Insulation - Combination Customers
RWC0004	Crawlspace Insulation - Combination Customers
RWC0005	Window Replacement - Combination Customers
RWC0006	Rim Joist Insulation - Combination Customers
RWC0007	Door Replacement - Combination Customers
RWE0001	Roof Insulation (attic) - Electric Customers
RWE0002	Wall Insulation - Electric Customers
RWE0003	Basement Wall Insulation - Electric Customers
RWE0004	Crawlspace Insulation - Electric Customers
RWE0005	Window Replacement - Electric Customers
RWE0006	Rim Joist Insulation - Electric Customers
RWE0007	Door Replacement - Electric Customers
RWG0001	Roof Insulation (attic) - Gas Customers
RWG0002	Wall Insulation - Gas Customers
RWG0003	Basement Wall Insulation - Gas Customers
RWG0004	Crawlspace Insulation - Gas Customers
RWG0005	Window Replacement - Gas Customers
RWG0006	Rim Joist Insulation - Gas Customers
RWG0007	Door Replacement - Gas Customers
Appendix K: New Home Construction Program	
RNC0001	New Construction Combination Savings
RNE0001	New Construction Electric Savings
RNE0012	\$2.00 CFL Bonus Measure - CFL Bulbs Regular
RNG0001	New Construction Gas Savings
RNG0002	Tankless Gas Water Heater - EF > 0.80
RNG0003	Super High-Efficiency Gas Water Heater - EF ≥ 0.67
RNG0004	Tier 1 Natural Gas Furnace - AFUE $\geq 95 \%$ AFUE
RNG0008	Setback Thermostat - 5/2-Gas Customers
RNG0010	High-Efficiency Gas Water Heater - EF ≥ 0.62
RNG0011	High-Efficiency Boiler Tier I-AFUE $\geq 95 \%$, AHRI Rated
RNG0012	High-Efficiency Furnace Tier 2 - AFUE 92\% to 94.9\%, AHRI Rated
Appendix L: Home Energy Reports Program	
ROC0002	Track \#4: New Dual Fuel Program (high electric usage)
ROC0011	Track \#1a: Dual-Fuel Program - Former Pilot (high electric usage)
ROC0012	Track \#1b: Dual-Fuel Program - Refill (average electric usage)
ROE0001	Track \#2: Electric Program - Muskegon (average electric usage)
ROE0002	Track \#3: New Electric Program - Grand Rapids, Zeeland (high electric usage)

In the matter of the application of Consumer) Energy Company for Authority to Reconcile) Its 2013 Energy Optimization Plan Costs)
Associated With the Plan Approved in)
Case Nos. U-16670 and U-17138.)
\qquad

DIRECT TESTIMONY

OF
RICHARD A. MORGAN
ON BEHALF OF

CONSUMERS ENERGY COMPANY

RICHARD A. MORGAN

DIRECT TESTIMONY

Q. Please state your name and business address.
A. My name is Richard A. Morgan. I am President of Morgan Marketing Partners, LLC ("MMP"). My business address is 6205 Davenport Drive, Madison, Wisconsin 537112447.
Q. Can you describe MMP?
A. MMP is a professional services firm formed in 1995 that partners with utility and governmental clients to provide energy efficiency consulting services including program design and development, cost-effectiveness modeling, strategic marketing consulting, implementation and operations assistance, new product and service development, management assistance, and evaluation and assessments. MMP has worked with clients including, but not limited to, DTE Energy, Duke Energy, California Public Utility Commission, Energy Trust of Oregon, Missouri River Energy Services, Kansas City Power \& Light, Jacksonville Electric Authority, Rochester Public Utilities, MidAmerican Energy, Hawaii Electric, Northwest Energy Efficiency Alliance, the State of Indiana, and Wisconsin Focus on Energy administered by Wisconsin Energy Conservation Corporation. One of MMP's largest clients is Duke Energy. Since MMP was formed, I have worked with Duke Energy on program planning and design. One of these programs was recognized by The American Council for an Energy Efficient Economy ("ACEEE") as an award-winning program for low-income customers. From 2001 to 2011, MMP served as planner and advisor to Wisconsin Energy Conservation Corp. and the State of Wisconsin on the statewide residential and business public benefits efficiency program, Wisconsin Focus on Energy. MMP has also developed comprehensive energy efficiency program portfolios for Kansas City Power \& Light, NIPSCO, and Missouri River Energy Services. I served as one of two principal auditors to complete a management audit for the Energy Trust of Oregon to review all aspects of the Trust including organizational

RICHARD A. MORGAN

DIRECT TESTIMONY

structure, program design/delivery, support systems, public involvement, and overall management. The California Public Utility Commission retained MMP to participate on an independent review team to provide advice regarding the portfolio of utility energy efficiency programs developed for 2006-2008. In 2012, I also completed a portfolio program assessment with a team of evaluators to assess all the energy efficiency programs offered by the California utilities.
Q. Can you summarize your educational background and professional qualifications?
A. I earned a Bachelor of Science degree in Resource Management from Ohio State University, School of Natural Resources in 1976. I am the Past President of the American Marketing Association, Madison Chapter, and a past Board Member and Vice President, Business Development for the Association of Energy Services Professionals ("AESP"). I am currently on the board of the Midwest Energy Efficiency Alliance. I have had numerous papers and research published at AESP, ACEEE as well as general articles in energy literature and marketing articles in The Capital Times newspaper in Madison. I am also the winner of the 2002 AESP B.H. Prasad Outstanding Contributor of the Year.
Q. Can you describe your professional background and experience?
A. I have over 35 years of management, planning, program design, implementation, low-income program, and marketing experience in the energy field. Prior to starting MMP in 1995, I spent four years as a manager and consultant with A\&C Enercom, a leading energy services and consulting company. I was also marketing manager for EWI Engineering, a 100-person engineering consulting firm. Before joining EWI Engineering, I spent over 11 years with Wisconsin Power \& Light Company, a combined gas and electric company now a part of Alliant Energy, in its marketing and energy efficiency department. I held numerous positions managing many different services

RICHARD A. MORGAN

DIRECT TESTIMONY

including low-income programs, residential services, commercial and industrial gas services, demand-side management programs, and marketing/sales initiatives. Within my various positions my responsibilities included program planning, evaluation oversight, new product/service development, program design, market research, advertising/promotion planning, implementation and operations management, evaluation, budgeting, tracking, training, government interface, sales, field customer service support, quality control, and business center operations. Prior to joining Wisconsin Power \& Light, I worked for the Oregon Department of Energy and the Western SUN, a federally funded regional solar center.
Q. Have you previously provided testimony before the Michigan Public Service Commission ("MPSC" or the "Commission")?
A. Yes, I testified on behalf of Consumers Energy Company ("Consumers Energy" or the "Company") for its 2011 Energy Optimization ("EO") Reconciliation, Case No. U-16736, for its 2012 EO Reconciliation, Case No. U-17281, and for its 2015 EO Biennial Plan Filing, Case No. U-17351. In addition, I have testified in Detroit Edison's EO Plan approved by the Commission in its June 2, 2009 Order in MPSC Case No. U-15806 (approved EO Plan) and in Case No. U-15890 on behalf of MichCon. I also filed testimony in support of Detroit Edison's and MichCon's 2010 amended Plan to expand that program under that same case.
Q. What is the purpose of your testimony in this proceeding?
A. The purpose of my testimony is to (1) describe how MMP helped Consumers Energy model for cost-effectiveness Consumers Energy's EO programs; (2) describe the cost-effectiveness modeling for the EO programs; and (3) provide the results demonstrating that the EO portfolio is cost-effective using the Utility System Resource Cost Test ("UCT") (excluding the low-income customers).

RICHARD A. MORGAN

DIRECT TESTIMONY
Q. Are you sponsoring any exhibits?
A. No.
Q. Will you describe the services your firm has provided for Consumers Energy?
A. MMP provided cost effectiveness modeling services utilizing the DSMore modeling tool. In addition, MMP has also provided the Michigan Energy Measures Database for use by all Michigan utilities in their cost-effectiveness modeling.
Q. How was cost-effectiveness of these programs determined?
A. The DSMore cost analysis tool was used to calculate and report cost-effectiveness for the programs using the UCT as defined by Public Act ("PA 295") and the Commission’s December 4, 2008, Order in Case No. U-15800. As ordered, Consumers Energy's programs must be cost-effective utilizing the UCT, but several other cost-effectiveness tests were performed, and their results along with the UCT are tabulated in Exhibit A-11 (BMR-1).
Q. Can you describe the DSMore modeling tool?
A. The DSMore tool is award-winning modeling software that is nationally recognized and used in many states across the country to determine cost-effectiveness. Developed and licensed by Integral Analytics based in Cincinnati Ohio, the DSMore cost-effectiveness modeling tool takes hourly prices and hourly energy savings from the specific measures/technologies being considered for the EO program, and then correlates both to weather. This tool looks at over 30 years of historic weather variability to get the full weather variances appropriately modeled. In turn, this allows the model to capture the low-probability, but high-consequence weather events and apply appropriate value to them. Thus, a more accurate view of the value of the efficiency measure can be captured in comparison to other alternative supply options.

RICHARD A. MORGAN

DIRECT TESTIMONY

Q. Can you please describe the various tests run in your DSMore modeling?
A. Exhibit A-11 (BMR-1) shows the cost-effectiveness test results for the Consumers Energy gas and electric EO programs in total, by residential and business classes, and for each program. The various test results shown are for the following tests:

- UCT: Defined as the ratio of the net benefits of the programs to the program costs incurred by the utility for the programs. For a program to be cost-effective, this ratio needs to be greater than one.
- Total Resource Cost Test ("TRC"): Defined as the total avoided cost divided by the program costs plus the participant's costs. Incentives paid to the customer are in both the cost and benefit sides of the equation, so they cancel each other out.
- Rate Impact Measure ("RIM"): Defined as the avoided cost benefits divided by the program costs and lost revenues.
- Participant Test: Defined as the participant's benefits in energy savings from their bill plus their incentives divided by their costs to participate.
Q. What type of EO program information is used for model inputs?
A. Inputs into the model include participation rates, incentives paid, energy savings of the measure, life of the measure, implementation costs, administrative costs, and incremental costs to the participant of the high efficiency measure.
Q. What program costs and savings were used for the cost-effectiveness calculation?
A. Certified energy savings and participation amounts were provided by measure from the third-party independent evaluators, The Cadmus Group, Inc. and Energy Market Innovations, Inc., as described in witnesses M. Sami Khawaja's and Robert D. Bordner's testimony, respectively. Participation results multiplied by the certified savings number over the life of the measure yields the lifetime savings results used in the DSMore model. Program costs and incentives paid were based on actual payments for the year 2013 program year. Additional information such as measure life and incremental cost was taken from the 2013 Michigan Energy Measures Database ("MEMD").

RICHARD A. MORGAN

DIRECT TESTIMONY
Q. What type of utility information is used in DSMore?
A. For utility information, DSMore utilizes utility rates; escalation rates; discount rates for the utility, society and the participant; and avoided costs.
Q. What is the source of the utility information used for Consumers Energy's DSMore inputs?
A. Utility inputs were provided to me by Consumers Energy.
Q. Will you describe the cost-effectiveness results for the Consumers Energy's EO programs?
A. All Consumers Energy programs are cost-effective with the gas program portfolio UCT score of 2.13 and the electric program portfolio UCT score of 2.70. The combined fuel portfolio UCT score is 2.50 . This means that the savings benefits are 113% greater than the program cost for gas, 170% greater than the program cost for electric, and 150% greater than the program cost for the combined fuel portfolio.
Q. Based on the results of your work, do the Consumers Energy EO programs meet the cost-effectiveness requirements of the state legislation and MPSC Order?
A. Yes. Based on the analysis I performed using DSMore, the Consumers Energy reconciled results of the 2013 program passes the cost-effectiveness test in accordance to the guidelines outlined by the MPSC, and the legislative requirements of PA 295. This analysis was done in accordance to MPSC guidelines and did not include low-income programs. The results of my analysis are provided in Exhibit A-11 (BMR-1), Tables 4.7 and 4.8.
Q. Does this complete your testimony?
A. Yes, it does.

In the matter of the application of Consumer) Energy Company for Authority to Reconcile) Its 2013 Energy Optimization Plan Costs)

Case No. U-17601

Associated With the Plan Approved in)
Case Nos. U-16670 and U-17138.)
)

DIRECT TESTIMONY

OF
 BENJAMIN M. RUHL

ON BEHALF OF
CONSUMERS ENERGY COMPANY
Q. Please state your name and business address.
A. My name is Benjamin M. Ruhl. My business address is One Energy Plaza, Jackson, Michigan.
Q. By whom are you employed?
A. I am employed by Consumers Energy Company ("Consumers Energy" or the "Company").
Q. What is your position with Consumers Energy?
A. I am a Senior Energy Optimization Support Analyst in the Energy Efficient Solutions Group, managing the Group’s Regulatory and Planning functions.
Q. Please state your educational background.
A. I graduated from Purdue University in May 1981 with a Bachelor of Science Degree in Construction Technology.
Q. Please summarize your professional experience.
A. In June 1981, I joined the Company as a Cost Engineer in the Plant Modifications and Miscellaneous Projects Department. My primary responsibilities included documenting costs of power plant modification projects and tracking potential impacts of costs on authorized project budgets. These responsibilities included the development of monthly cost reports and their transmittal to management and the Corporate Treasury Department.

In January 1984, I transferred to the Midland Project to serve as a Budget Analyst. I was responsible for developing monthly cost reports, assisting in quarterly budget variance reviews, and preparing project budget forecasts. In July 1984, I joined the Legal Department as a Litigation Support Specialist to assist legal counsel with numerous tasks in preparation for the Midland Project litigation. I also assisted in the preparation of the

Midland Options Study and subsequent tasks involved in the formation of the Midland Cogeneration Venture.

In March 1987, I joined the Market Research and Pricing Department (now the Rates and Regulation Department) as a Rate Analyst. I was promoted to the position of General Rate Analyst in December 1989 and to Senior Rate Analyst in April of 2004 undertaking responsibilities including rate design, research and development of studies for Senior Management regarding electric industry restructuring and customer-specific rate analyses. I have served on several corporate task forces regarding deregulation, wheeling, transmission system utilization, and customer metering. I was involved as a Consumers Energy representative on the Tariff Working Group subcommittee of the Alliance Regional Transmission Organization ("Alliance RTO"). On April 16 of 2012 I accepted a promotional transfer to my current position in the Energy Efficient Solutions Group.
Q. During your tenure with Consumers Energy, have you provided testimony before the Michigan Public Service Commission ("MPSC" or the "Commission")?
A. Yes, I provided testimony on behalf of the Company in the following cases:

- Case No. U-12781 regarding transmission capability pursuant to Section 10 v of 2000 Public Act 141 ("PA 141").
- Case No. U-14347 supporting recovery of the Company's revenue requirement, transmission expense recovery, and for the elimination of rate skewing.
- Case Nos. U-15805 and U-15889 regarding cost recovery of the Company's Energy Optimization ("EO") program expenditures.
- Case No. U-16302 concerning the Company’s 2009 EO Reconciliation.
- Case No. U-16303 concerning the Company's 2010 EO Reconciliation.
- Case No. U-16412 regarding cost recovery of the Company's EO Amended Plan program expenditures.
- Case No. U-16670 regarding cost recovery of the Company's EO Amended Plan program expenditures.
- Case No. U-16794, supporting recovery of the Company's electric revenue requirement.
- Case No. U-17082 regarding reconciliation of gas revenues pursuant to the Pilot Revenue Decoupling Mechanism.
Q. What is the purpose of your testimony in this proceeding?
A. The purpose of my testimony is as follows:

1. To demonstrate that Consumers Energy has reasonably and prudently administered its 2013 EO Plan in compliance with 2008 PA 295 ("PA 295").
2. To demonstrate that the Company has met (exceeded), as independently certified, its 2013 electric and gas statutory energy savings targets as required by PA 295 within the spending cap established by that Act.
3. To demonstrate that the Company's 2013 electric and gas EO program portfolios each achieved (exceeded) a benefit/cost ratio of greater than 1.0, as independently certified, using the utility system resource cost test as required by PA 295.
4. To demonstrate that the Company's 2013 EO Plan performance met the performance incentive requirements set forth per the amended methodology established by the MPSC in its January 31, 2013 Order in Case No. U-17138.
Q. Are you sponsoring any exhibits with your direct testimony?
A. Yes, I am sponsoring the following exhibits.

- Exhibit A-11 (BMR-1) - Consumers Energy: 2013 Energy Optimization Annual Report. This exhibit is a comprehensive Report that reviews the Company's 2013 EO performance. It details customer participation levels, investment, energy savings, and cost-effectiveness results for each program.
- Exhibit A-12 (BMR-2) - Calculation of 2013 Electric and Natural Gas Savings Targets. This exhibit provides updates of each of these targets as compared to those contained in the original Plan approved by the Commission in MPSC Case No. U-16670. These updates are due to the replacement of 2012 estimated sales, used in the calculations in the original Plan, with 2012 actual sales, now that actual sales information is available.
- Exhibit A-13 (BMR-3) - 2013 Electric Program Portfolio Savings and Investment Summary. This exhibit summarizes the information in Exhibit A-11 (BMR-1), supra, including the energy savings generated through implementation of the Company's 2013 electric EO Plan, the investments made to achieve those savings, and metrics demonstrating the cost-effectiveness of those investments.
- Exhibit A-14 (BMR-4) - 2013 Gas Program Portfolio Savings and Investment Summary. This exhibit summarizes the information in Exhibit A-11 (BMR-1), supra, relating to the energy savings generated through implementation of the Company's 2013 gas EO Plan, the investments made to achieve those savings, and metrics demonstrating the cost-effectiveness of those investments.
- Exhibit A-15 (BMR-5) - Electric and Gas Incentive Justification. This exhibit illustrates the Company's justification of the amount of electric and gas incentive payments it has earned for the performance of its 2013 EO Plan.
Q. Have these exhibits been prepared by you or under your supervision?
A. Yes.
Q. What other Company witnesses are presenting testimony in this proceeding?
A. The following Company witnesses will be presenting testimony in this proceeding:
- Company witness Theodore A. Ykimoff will be presenting testimony regarding the 2013 Plan performance of the residential portfolio.
- Company witness Alfred A. Alatalo will be presenting testimony regarding the 2013 Plan performance of the business portfolio.
- Company witness James P. Schwanitz is presenting testimony and exhibits that detail the Company's 2013 EO Plan year costs, including adjusting out 2012 Plan year costs recorded in 2013, as well as adjusting in 2013 Plan year costs recorded in 2014.
- Company witness Katherine L. Allen is presenting testimony regarding the Company's actual booked costs per the general ledger for the 2013 Plan year, as well as for the actual recovery of the performance incentive earned for the 2010 Plan year versus the planned recovery. Witness Allen also addresses the Generally Accepted Accounting Principle ("GAAP") rules associated with revenue recognition for alternative revenue programs, as relating to the recovery period for the earned performance incentive.
- Company witness Laura M. Collins is presenting testimony and exhibits providing 1) a comparison of the EO surcharge revenue collected during 2013 to the Company's Commission-approved EO Plan and 2) the Company's proposed
mechanism for collecting incentive payments it has earned for its 2013 EO Plan performance, including reconciliation of the 2010 performance incentive.
- Company witness Richard A. Morgan is presenting testimony regarding the EO program cost-effectiveness modeling he performed for the Company.
- Company witness M. Sami Khawaja will be presenting testimony and exhibits on behalf of The Cadmus Group, Inc. ("Cadmus"), the Company’s independent third-party evaluator of the residential programs, presenting certification of the results for the Company's 2013 residential program performance.
- Company witness Robert D. Bordner will be presenting testimony and exhibits on behalf of Energy Market Innovations, Inc. ("EMI"), the Company’s independent third-party evaluator of the business programs, presenting certification of the results for the Company's 2013 business program performance.
Q. Has the Company produced an annual report for its 2013 EO performance as required by PA 295?
A. Yes. Exhibit A-11 (BMR-1), Consumers Energy: 2013 Energy Optimization Annual Report is a comprehensive Report that reviews the Company’s 2013 EO performance on 12-residential programs, nine-residential pilots, three-business programs, and eight-business pilots. The Report details customer participation levels, investment, energy savings, and cost-effectiveness results for each program.
Q. How is this Report organized?
A. The Company used the same basic template for the 2013 Report as was employed for the 2012 Energy Optimization Annual Report. The annual report submitted in this case shows actual 2013 performance compared to the 2013 program year approved by the Commission in the April 17, 2012 Order in MPSC Case No. U-16670 covering the period 2012-2015.
Q. Did the Company meet its 2013 electric energy savings target as prescribed by PA 295 ?
A. Yes, the Company met its 2013 electric energy savings target. The statutory requirement was 335,498 MWh as shown in Exhibit A-12 (BMR-2), page 1 on line 7, column (e).

BENJAMIN M. RUHL
 DIRECT TESTIMONY

With the Long-Life Equipment Savings ("LLES") Multiplier, the Company achieved 473,045 MWh of savings as shown in Exhibit A-13 (BMR-3) on line 24, column (d), or 141% of the statutory requirement.
Q. Did the Company meet its 2013 gas energy savings target as prescribed by PA 295?
A. Yes, the Company also met its 2013 gas savings target. The statutory requirement was 1,765,915 Mcf as shown in Exhibit A-12 (BMR-2), page 2 on line 8, column (e). With the LLES Multiplier, the Company achieved 2,173,124 Mcf of savings as shown in Exhibit A-14 (BMR-4) on line 23, column (d), or 123% of the statutory requirement.
Q. Did the Company make any adjustments to its 2013 gas energy savings target as prescribed by PA 295?
A. Yes, the Company adjusted the 2013 gas transportation targets pursuant to the Commission's December 2, 2010 Order in MPSC Case No. U-16412. In that Order, the Commission granted the Company authorization to adjust the sales target downward.
Q. Has the Company certified these electric and gas energy savings?
A. Yes. The Company engaged two independent consultants to perform this certification. Cadmus certified the residential energy savings and a team led by EMI certified the nonresidential energy savings. Energy savings for pilot programs as well as savings attributed to education and awareness are detailed in Exhibit A-11 (BMR-1) on page 14.
Q. What are Cadmus' qualifications for certifying the residential energy savings?
A. In its more than two decades of working in the energy industry, Cadmus has conducted several hundred process and impact program evaluations. Much of this work has involved multi-year, multi-program (portfolio) projects, many of which were residential evaluations. Cadmus team members have contributed to some of the most widely used
evaluation protocols, including the International Performance Measurement and Verification Protocols ("IPMVP"), the National Action Plan for Energy Efficiency Evaluation ("NAPEEE") Guidelines, and the California Evaluation Protocols. Cadmus staff has testified before several State regulatory agencies and legislatures on issues of energy efficiency program design, implementation, and evaluation.
Q. What were Cadmus' conclusions regarding the amount of electric and gas savings for the 2013 residential programs?
A. Cadmus' conclusions regarding the amount of electric and gas savings for the 2013 residential programs are presented in the testimony and exhibits of Company witness Khawaja.
Q. What are EMI's qualifications for certifying the nonresidential energy savings?
A. The commercial and industrial ("C\&I") evaluation team led by EMI includes several of the most reputable evaluation, research, and engineering firms in the energy industry. All the firms on the evaluation team have conducted independent impact, process, and engineering analyses for utilities and regulatory commissions throughout the United States for well over ten years. Evaluation team members have specific experience in evaluating the unique needs of the C\&I energy efficiency programs.
Q. What were EMI's conclusions regarding the amount of 2013 nonresidential electric and gas savings?
A. EMI's conclusions regarding the amount of 2013 nonresidential electric and gas savings are presented in the testimony and exhibits of Company witness Bordner.
Q. Did the Company achieve its 2013 electric savings target within the Commissionapproved 2013 spending level set by the Commission in MPSC Case No. U-16670?
A. Yes. The Commission approved the 2013 electric spending level in Case No. U-16670 to be $\$ 69.2 \mathrm{M}$. The Company actually spent $\$ 69.1 \mathrm{M}$ as shown on Exhibit A-13 (BMR-3), line 24 , column (e).
Q. Did the Company achieve its 2013 gas savings target within the Commission-approved 2013 spending level set by the Commission in Case No. U-16670?
A. Yes. The Commission approved the Company's 2013 gas spending level in Case No. U-16670 to be $\$ 47.9 \mathrm{M}$. The Company actually spent $\$ 47.8 \mathrm{M}$ as shown on Exhibit A-14 (BMR-4), line 23, column (e).
Q. Why do the actual electric and gas spending levels vary from the planned spending levels?
A. Due to the large number of programs and timing of program expenses it is not practically possible to exactly match planned spending with actual spending. It should be noted that the variance between planned spending and actual spending is a deminimus amount when compared to the total spending.
Q. Was the cost-effectiveness of the Company's EO programs measured per the industryaccepted standard practice tests?
A. Yes, benefit-cost ratios were calculated for the Utility Cost Test, Total Resource Cost Test, Rate Impact Measure, and Participant Cost Test.

BENJAMIN M. RUHL
 DIRECT TESTIMONY

Q. Who performed the calculations of the benefit-cost ratios for these standard practice tests?
A. Those calculations were performed by Mr. Morgan, President of Morgan Marketing Partners, LLC, utilizing DSMore, a software tool that is nationally recognized as one of the leading tools for performing such calculations. Mr. Morgan is sponsoring testimony in this case in support of these test results, as he did in Case No. U-17281, the Company's 2012 EO Reconciliation filing.
Q. Did the Company's portfolios of electric and gas EO programs each achieve the statutory requirement of a benefit/cost ratio of greater than 1.0 as calculated by the utility system resource cost test ("UCT")?
A. Yes, they did. The UCT score for the electric program portfolio was 2.70, as shown on Exhibit A-11 (BMR-1) in Table 4.7 Summary of Electric Programs Benefit-Cost Test Results. The UCT score for the gas program portfolio was 2.13, as shown on Exhibit A-11 (BMR-1) in Table 4.8 Summary of Natural Gas Programs Benefit-Cost Test Results.
Q. Is the Company requesting performance incentive payments for its 2013 EO program achievements?
A. Yes. The Company will demonstrate that it has earned performance incentives for both its electric and gas 2013 EO program achievements.
Q. Would you please summarize the adjustments made to the requirements for earning a performance incentive?
A. The performance incentive metrics prior to 2013 Plan year application for both the electric and gas portfolios required that the statutory savings target be exceeded by 15%

BENJAMIN M. RUHL
 DIRECT TESTIMONY

and that the UCT test score be 1.25 or greater. If these tests were met, the Company would be awarded an incentive equal to 15% of the EO program spend for the portfolio. Changes were made to the metrics of the performance incentive in the settlement of Case No. U-17138. In order to achieve the maximum performance incentive for 2013 performance, the UCT test scores still need to be 1.25 or greater. The 15% of spend award was divided into two components, an energy savings component worth a maximum of 12% for exceeding statutory savings by 15%, and a "deep-dive" component, comprised of a menu of initiatives from which to choose to fulfill the remainder of the allowable maximum incentive amount equal to 15% of program spend. The menus and metrics for these "deep-dive" components are contained in the Settlement Agreement of Case No. U-17138.
Q. Was the Company successful in achieving the necessary metrics to earn the maximum performance incentives for both its electric and gas EO programs?
A. Yes. The Company earned 12% of the program investment for its electric portfolio by achieving 141% of its statutory electric savings target with a UCT score of 2.70 . The remaining 3% of the maximum performance incentive for electric was met by exceeding the maximum incentive metrics for Low-Income Programs and Multi-Measure C\&I. The Company earned 12% of the program investment for its gas portfolio by achieving 123% of its statutory gas savings target with a UCT score of 2.13 . The remaining 3% of the maximum performance incentive for gas was met by exceeding the maximum incentive metrics for Low-Income Programs and New Construction Residential. The certifications of these non-energy performance incentive metrics are included in the Cadmus and EMI certification reports included in this filing.

BENJAMIN M. RUHL

DIRECT TESTIMONY
Q. What is the amount of performance incentive the Company has earned for its 2013 EO Plan performance?
A. Exhibit A-15 (BMR-5) illustrates the Company's performance incentives earned for its 2013 electric EO program portfolio to be $\$ 10.36 \mathrm{M}$, and the performance incentive for its 2013 gas EO program portfolio to be $\$ 7.17 \mathrm{M}$.
Q. How does the Company propose to collect these incentive payments?
A. The Company's proposed mechanism for collecting these payments is described in the testimony of Company witness Collins.
Q. Does that conclude your testimony?
A. Yes.

In the matter of the application of Consumer)
Energy Company for Authority to Reconcile)
Its 2013 Energy Optimization Plan Costs)
Case No. U-17601
Associated With the Plan Approved in) Case Nos. U-16670 and U-17138.

EXHIBITS

OF
BENJAMIN M. RUHL
ON BEHALF OF
CONSUMERS ENERGY COMPANY

May 2014

Consumers Energy
 Count on Us

Consumers Energy 2013 Energy Opti mi ZAtion Annual Report

Table of Contents

Foreword 1
Executive Summary 2
1 Annual Report Organization 4
2 Portfolio Development. 5
2.1 Deemed Savings 5
2.2 Portfolio Risk Management 5
3 Program Portfolio Summary 6
3.1 Summary of Residential Programs 7
3.2 Summary of Business Programs 9
4 Portfolio Summary Results 11
4.1 Portfolio Framework \& Summary 11
4.2 Energy Savings for Pilot and Education and Awareness. 15
4.3 Energy Optimization Credits 15
4.4 Benefit-Cost Background 16
4.5 Benefit-Cost Test Results 18
Electric Programs 18
Natural Gas Programs 19
4.6 Benefit-Cost Methodology 20
5 Residential Programs 22
5.1 Appliance Recycling Program 22
5.2 ENERGY STAR ${ }^{\circledR}$ Appliances Program 27
5.3 ENERGY STAR ${ }^{\circledR}$ Lighting Program 31
5.4 Home Energy Audit Program 36
5.5 Home Energy Report Program. 41
5.6 Home Performance with ENERGY STAR ${ }^{\circledR}$ Program 44
5.7 HVAC and Water Heating Program 51
5.8 Income Qualified Energy Assistance Program 57
5.9 Insulation and Windows Program 63
5.10 Residential Multifamily Program. 69
5.11 New Home Construction Program 79
5.12 THINK! ENERGY ${ }^{\circledR}$ Program 84
5.13 Residential Pilot Programs 88
Business Programs93
6.1 Comprehensive Business Program 93
6.1.1 Comprehensive - Prescriptive Program 93
6.1.2 Comprehensive - Custom Program 110
6.1.3 Comprehensive - Specialty: New Construction Program 116
6.1.4 Comprehensive - Specialty: Building Operator Certification Program 121
6.1.5 Comprehensive - Specialty: Compressed Air Program 125
6.1.6 Comprehensive - Specialty: Smart Buildings (EBCx) Program 129
6.2 Small Business Direct Install Program 132
6.3 Business Multifamily Program 138
6.4 Business Pilot Programs 147
6.4.1 Business Pilots - Multiple Measure Bonus 147
6.4.2 Business Pilots - Buy Michigan 150
6.4.3 Business Pilots - Agriculture 153
6.4.4 Business Pilots - Building Performance with ENERGY STAR ${ }^{\circledR}$ 156
6.4.5 Business Pilots - Refrigeration 160
6.4.6 Business Pilots - Industrial Continuous Improvement 162
6.4.7 Business Pilots - Energy Check. 166
6.4.8 Business Pilots - HVAC Quality Maintenance 169
6.5 Self-Direct Option for Large Business Customers 172
6.6 Opt-Out Option for Large Gas Business Customers 174
6.7 Electric Rate GSG-2 Opt-In Option for Business Customers 175
7 Portfolio Management 176
7.1 Marketing and Outreach Strategy 177
7.2 Tracking and Reporting. 177
7.3 Midstream Adjustments 177
7.4 Inter-Utility Coordination. 178
7.5 Leveraging Other Efficiency Initiatives 178
7.6 Trade Ally Coordination. 178
8 Evaluation, Measurement and Verification (EM\&V) 180
8.1 Overview 180
8.22013 Evaluation Activities 181
9 Energy Optimization Future I nvestment. 182
9.1 2014-2017 Planned Investment. 182
List of Tables
Table ES-1. 2013 Electric Results 3
Table ES-2. 2013 Natural Gas Results 3
Table 4-1. Statutory Savings Goals and Investment Levels 11
Table 4-2. 2013 Electric Results 12
Table 4-3. 2013 Natural Gas Results 12
Table 4-4. 2013 Portfolio Investment 13
Table 4-5. 2013 Portfolio Savings 14
Table 4-6. Comparative Benefit-Cost Tests 16
Table 4-7. Summary of Electric Programs Benefit-Cost Test Results 18
Table 4-8. Summary of Natural Gas Programs Benefit-Cost Test Results 19
Table 7-1. 2013 Program Implementation Contractors 176
Table 9-1. 2014-2017 Planned Investment. 182
List of Figures
Figure 3-1. 2013 Consumers Energy Portfolio of Programs. 6
Appendices
Appendix A: Glossary of Terms 183

FOREWORD

Consumers Energy Company ("Consumers Energy" or "Company"), the primary subsidiary of CMS Energy, is Michigan's largest utility and provides electric and natural gas service to a mix of residential, commercial, and diversified industrial customers in Michigan's Lower Peninsula. Consumers Energy works hard to keep its rates competitive, ensure high levels of customer satisfaction, and provide reliable utility service to its customers, which include 6.5 million of Michigan's 10 million residents.

In accordance with 2008 Public Act 295, the Company is pleased to present this Energy Optimization Annual Report for calendar year 2013. The report provides an account of the operational, costeffectiveness, and financial performance of the Company's energy optimization portfolio.

The programs in the portfolio provided a wide range of opportunities for customers in all classes to reduce their energy consumption and save money on their utility bills. Building on the momentum established with initial program implementation efforts in July 2009, customer participation continued to flourish in 2013; more than 30,000 students participated in the energy education program; more than 28,000 second refrigerators/freezers were recycled; more than 78,000 rebates were provided; more than 100,000 homes and businesses received services; more than 3.1 million energy efficient light bulbs were purchased or provided. As a result, the Company once again cost-effectively exceeded its statutory energy savings goals, and provided significant value to our customers.

ExECUTIVE SumMARY

Continuing the Challenge

In accordance with 2008 PA 295 and the Temporary Order of the Michigan Public Service Commission ("MPSC" or "Commission") in Case No. U-15800, Consumers Energy filed its 2009-2014 Energy Optimization Plan (Case Nos. U-15805/U-15889) on February 17, 2009. After a contested case hearing, the Commission issued an Order on May 26, 2009, approving the Company's plan.

With less than a year to achieve its 2009 statutory energy savings targets, the Company began preparation for implementation of the plan even as its case was being litigated. As a result of significant upfront planning and effort, the Company launched its programs in July, which left less than six months to achieve its 2009 statutory electric and natural gas savings targets. Fortunately, the 2009 targets were modest in comparison with those of future years and the Company succeeded in exceeding those targets.

In 2010, the Company had a full year's opportunity to be in-market with its robust portfolio of programs. Compared to the 2009 energy savings targets, the 2010 electric target increased 63% and natural gas target increased 218%. In total, the Company delivered 143% of the electric statutory target and 144% of the natural gas statutory target.

In 2011, the electric target increased 45% and natural gas target increased 95% compared to 2010 targets. The Company delivered 138% of the electric statutory target and 161% of the natural gas statutory target.

Beginning in 2012, we reached a full run rate of 1% electric annual savings and $.75 \%$ natural gas savings. Compared to the 2011 energy savings targets, the 2012 electric target increased 31% and natural gas target increased 46%. The Company delivered 123% of the electric statutory target and 129% of the natural gas statutory target.

The Company once again was well prepared to face the continued energy savings challenge as it was equipped with a strong foundation of best practice programs, seasoned implementation contractors, energetic and engaged trade ally networks, and a Michigan market receptive to energy efficient solutions. The success experienced with each of those key business drivers positioned the Company to exceed the energy savings challenges in 2013, delivering 141% of the electric statutory target and 123% of the natural gas statutory target.

Exceeding the Challenge - Helping Michigan Save Energy

Trade ally and customer reaction continued to be very positive, as evidenced by high program participation levels and electric and gas energy savings that exceeded the statutory targets. The total firstyear energy savings delivered in 2013 represented enough to supply electricity to over 56,000 residential homes and natural gas to over 22,000 residential homes for a year. These energy savings were achieved cost-effectively and within the allowable statutory collection limits. As a result, the Company is eligible to receive an incentive payment based on the formula approved by the Commission in Case No. U-15806 on September 29, 2009, as modified in Case No. U-17138 on January 31, 2013.

As shown in Table ES-1 the Company achieved 141% of its statutory electric savings target within the planned investment and a Utility Cost Test (UCT) score of 2.70 . Achieving 115% or more of the energy savings target with a UCT score of 1.25 or greater qualified the Company to earn a performance incentive worth 12% of its program investment. Another 3% was earned by achieving the "deep dive" metrics for low-income programs and multi-measure commercial and industrial. As a result, the Company earned a $\$ 10.4$ million (15% of $\$ 69.1$ million) incentive payment for its electric portfolio performance in 2013.

Table ES-1. 2013 Electric Results

Savings	Actual	Target
MWh	473,045	335,498
\% of Statutory Target	141%	100%
Investment		
\$ Millions	$\$ 69.10$	$\$ 69.22$
\% of Statutory Spending Cap	92.8%	92.9%
Benefit-Cost Test Results		
UCT Score	2.70	

As shown in Table ES-2 the Company achieved 123% of its statutory natural gas savings target within the planned investment and a UCT score of 2.13. Achieving 115% or more of the energy savings target with a UCT score of 1.25 or greater qualified the Company to earn a performance incentive worth 12% of its program investment. Another 3% was earned by achieving the "deep dive" metrics for low-income programs and new construction for residential. Thus, in 2013, the Company earned a $\$ 7.17$ million (15% of $\$ 47.78$ million) incentive payment for its natural gas portfolio performance.

Table ES-2. 2013 Natural Gas Results

Savings	Actual	Target
Mcf	$2,173,124$	$1,765,915$
\% of Statutory Target	123%	100%
Investment		
\$ Millions	$\$ 47.78$	$\$ 47.94$
\% of Statutory Spending Cap	102.8%	103.1%
Benefit-Cost Test Results		
UCT Score	2.13	

1 Annual Report Organization

The remainder of the Annual Report is divided into the following sections:
Section 2 - Portfolio Development: Provides an overview of the statewide energy savings database and the risk mitigation strategies the Company employed in developing and implementing its portfolio of Energy Optimization (EO) programs.

Section 3 - Program Portfolio Summary: Provides a high-level overview of each of the Company's EO programs.

Section 4 - Portfolio Summary Results: Details the summary results of the energy savings, investment levels, and benefit-cost results achieved by the Company's electric and natural gas EO program portfolios.

Section 5 - Residential Programs: Presents detailed program results for each of the Company's residential programs.

Section 6 - Business Programs: Presents detailed program results for each of the Company's business programs.

Section 7 - Portfolio Management: Presents an overview of the Company's approach to delivering its EO programs through a combination of in-house staff resources and third-party implementation contractors. Also provides an overview of management approach, results tracking, and coordination with other entities.

Section 8 - Evaluation, Measurement and Verification (EM\&V): Provides an overview of the various EM\&V activities the Company carried out to ensure programs achieved intended goals. Discussions of evaluation activities for individual programs are contained in each individual program write-up in Sections 5 and 6.

Section 9 - Energy Optimization Future Investment: Details the company's planned investment in its EO programs each year 2014-2017.

Appendix A - Contains a glossary of terms used in this report.

2 Portfolio Development

The majority of programs contained in Consumers Energy's 2013 portfolio were a continuation of programs launched in 2009. The development of these programs was based on a national review of leading energy efficiency programs, and they achieved significant and immediate energy savings, while also building on established trade ally and retailer partnerships. The programs targeted all major sectors and customer classes, including low-income and small business customers. Programs were designed to capture both electric and natural gas savings. For those Consumers Energy customers with only electric or only natural gas service, efforts were made to coordinate and align with other utilities so that customers could easily take advantage of efficiency program offerings across both fuel types, thereby producing an overall benefit for Michigan's energy efficiency goals.

The Company offered a diverse portfolio of "tried and true" major programs across the residential, commercial and industrial (C\&I) sectors. Additionally, the Company planned and/or implemented several residential and business pilots targeting experimental opportunities.

2.1 Deemed Savings

To assess energy savings for electric and natural gas measures, Consumers Energy used the Michigan Energy Measures Database ("MEMD") which was developed in conjunction with the MPSC and other energy utilities specifically for the Michigan market. In the MEMD, non-weather sensitive measure savings estimates are standardized throughout the state. For weather-sensitive measures, a weighting calculation tool allowed weighting of the energy savings from measures based on the mix of weather station locations throughout the Company's service territory. Except for custom business projects, this report relied on the 2013 MEMD for savings calculations, measure lifetimes, and incremental cost estimates.

2.2 Portfolio Risk Management

Despite the challenges faced by Michigan in 2013 as it moved toward economic recovery, the Company still was able to exceed its statutory electric and natural gas energy savings targets. The risks from these challenges were mitigated by employing five key strategies that were essentially a continuation from 2009 through 2012: (1) implementation of a broad portfolio of programs; (2) implementation of a portfolio of programs that had previously proven successful; (3) use of existing program implementation contractors; (4) use of the MEMD as the basis for estimating program savings; and (5) use of program evaluation results to fine-tune programs.

3 Program Portfolio Summary

Figure 3-1 below represents the Company's 2013 portfolio of EO programs and pilots. By design, the programs are not divided by energy; rather, they are presented as a comprehensive program portfolio that seeks to capture all cost-effective electric and/or natural gas savings. In total, the Company had available 12 residential programs, nine residential pilots, three business programs, and eight business pilots.
Customer participation, investment levels, and energy savings by fuel type are included in Sections 5 and 6 of this report.

Figure 3-1. 2013 Consumers Energy Portfolio of Programs

3.1 Summary of Residential Programs

Residential Sector

Appliance Recycling Program

Many refrigerators and freezers being replaced by the Company's customers are still functioning, and often end up as energy-guzzling back-up appliances in basements and garages or are sold in the used appliance market. The Appliance Recycling Program targeted "second" refrigerators and freezers, and provided the dual benefit of cutting energy consumption while keeping the appliances out of the used resale market. The program offered an environmentally responsible turnkey pick-up and recycling service.

ENERGY STAR ${ }^{\circledR}$ Appliances

The ENERGY STAR ${ }^{\circledR}$ Appliances Program employed a web-based and in-store promotional strategy to influence the purchase of high-efficiency appliances. Since appliance standards, as well as the market share of high-efficiency appliances, are gradually increasing, the program was specific in its list of qualifying models, as well as marketing emphasis. To increase the opportunity for customer participation, low-flow showerheads and programmable thermostats were included as eligible measures.

ENERGY STAR ${ }^{\circledR}$ Lighting

In 2013, the Residential Lighting Program provided incentives and marketing support through major retailers at over 404 locations to promote sales and use of ENERGY STAR ${ }^{\circledR}$ lighting products. General advertising, in-store signage, sales associate training, and instant customer incentives through price markdowns drove participation.

Home Energy Analysis(HEA)

The Home Energy Analysis Program was launched in January 2012 after a six-month pilot. Participating customers received direct installation of energy saving measures, a walk through energy inspection of their homes that culminated in a customized summary report with energy saving tips and recommendations. The low-cost measures installed included compact fluorescent light bulbs (CFLs) and low-flow water devices that were installed free of charge to residential customers. While the program was promoted as having a $\$ 25$ customer fee, this was waived in all circumstances by the customer simply using a promotional code. This provided an effective method of tracking customer response by promotional channel. Other utility energy efficiency programs were cross-promoted, and customers were encouraged to take the next step in their energy efficiency journey by participating in the Home Performance with ENERGY STAR ${ }^{\circledR}$ Program.

Home Performance with ENERGY STAR ${ }^{\circledR}$ (HPwES)

The Home Performance with ENERGY STAR ${ }^{\mathbb{}}$ Program generated interest and activity by offering several incentive options to customers who took a whole house approach when installing energy efficient measures. HPwES enrolled and trained over 100 contractors to conduct comprehensive audits that identified areas of opportunity. Customers received incentives to help offset the incremental cost of purchasing and installing the energy efficiency measures.

Home Energy Report (HER)

The HER Program provided residential customers with energy information through personalized reports delivered by mail, email or an integrated Web portal to empower them to make better energy usage decisions. Behavioral science research has demonstrated that peer-based comparisons are highly motivating ways to present information. The HER Program created a comparison group for each participating residence comprised of other similarly sized and located households. This behavioral science based approach complemented other residential energy efficiency programs, and was a driving force behind consistent and reliable behavior-based energy efficiency.

HVAC and Water Heating

The high-efficiency HVAC and Water Heating Program increased demand using a market push and pull strategy. The strategy focused on educating customers about the economic benefits of high-efficiency heating, cooling and water heating equipment and also enlisted contractor participation to promote the program and ensure equipment purchased was sized and correctly installed. Financial incentives paid to customers helped reduce the incremental cost of purchasing qualifying high-efficiency models.

Income Qualified Energy Assistance

The Income Qualified Energy Assistance Program identified specific opportunities for low-income customers to lower their energy bills through installation of energy efficiency measures, provided financial assistance to cover the full cost of installation, and educated customers with limited income about how to reduce their energy use and manage their utility costs. The program coordinated lowincome services with local weatherization providers to offer comprehensive assistance at lower administrative costs.

Insulation and Windows

The Insulation and Windows Program provided incentive rebates to customers to encourage them to install qualified energy savings windows and home insulation. The program was unique in that customers could use the services of a contractor or perform the improvements and apply for rebates themselves. This was particularly appealing for do-it-yourself customers.

Multifamily Program

The Multifamily Program produced immediate electric and natural gas energy savings in multifamily buildings through the direct installation of energy-saving measures in individual living units. Since this is traditionally a hard-to-reach market, the Company's implementation contractor dispatched a crew of installers to targeted buildings to install low-cost measures, such as lighting and low-flow water devices free of charge to the property owner and tenants. The common areas of these complexes were also an area of focus to engage in energy efficient opportunities through the Prescriptive and Custom Program offerings.

New Construction

The New Construction Program produced long-term electric and natural gas savings by encouraging the construction of single-family homes and duplexes that met the ENERGY STAR ${ }^{\circledR}$ Version 3.0 standard or included a high-efficiency package. Builders who participated were provided incentives that covered approximately 40% of the cost to upgrade and certify each home to meet program standards. The program also employed a training component for builders on building practices and ways to sell the value of energy efficiency to their customers.

THINK! ENERGY ${ }^{\circledR}$ Program Grades 4-6

The THINK! ENERGY ${ }^{\circledR}$ Program influenced students and their families to take actions to reduce their home energy use and increase efficiency. The program targeted students in grades $4-6$, providing education and a "take-home" kit that raised awareness about how individual actions and low-cost measures can provide reductions in consumption of electricity, natural gas, and water. The program is endorsed by the Michigan Department of Education.

Residential Pilots

The objective of the Residential Pilots was to help homeowners learn more about new energy efficient opportunities to capture additional electric and natural gas energy savings. The nine pilots included Multi-measure Engagement (Energy Advisor), Smart (Learning) Thermostats, Smart Energy Challenge, Virtual Smart Energy Challenge, Demonstration Project (MEEp), Made in Michigan, Agriculture, Habitat for Humanity - Phase Two and Secondary Education (Youth Energy Advisory). Details for each pilot are included in Section 5.

Summary of Business Programs

Business Sector

Comprehensive Business Solutions Program

Prescriptive

The Comprehensive Business Solutions Programs generated energy savings for C\&I customers through the promotion of high-efficiency electric and natural gas equipment. Cash-back mail-in incentives typically ranged from 20% to 70% of the incremental cost to purchase high-efficiency models.

Custom

The Custom Business Solutions Program assisted larger commercial and industrial customers with the analysis and selection of high-efficiency equipment or processes not covered under the Comprehensive Business Solutions Program. The program approach identified more complex energy saving projects, provided economic analysis, and aided in the completion of the incentive application. Incentives for energy savings were based on per kWh and/or per Mcf for installed measures.

Specialty - New Construction

This program captures energy efficiency opportunities through comprehensive efforts to influence building design and construction practices. The program worked with design professionals and construction contractors to influence prospective building owners and developers to construct highperformance buildings that provided improved energy efficiency, systems performance and comfort.

Specialty - Builder Operator Certification (BOC)

BOC is a competency-based training and certification program for operations and maintenance staff working in commercial, institutional, or industrial buildings. BOC achieves energy savings by training individuals directly responsible for the maintenance of energy-using building equipment and day-to-day building operations.

Specialty - Compressed Air

This program was to implement compressed air system audits at a number of facilities in order to determine the potential savings that would result from the implementation of the measures identified in the audits.

Specialty - Smart Buildings (EBCx)

The Smart Building Program offers a retro-commissioning audit and consulting service to customers with energy management systems in need of improvement. The program structure allows the Comprehensive Business Solutions Program a method to achieve energy savings related to low-cost/no-cost building system optimization measures previously not available to be incentivized as capital measures.

Small Business Direct Install Program

The Small Business Direct Install Program targeted small business customers who otherwise would not participate in energy efficiency program offerings. The program offered highly discounted services for direct installation of efficient lighting and other low-cost energy saving measures.

Business Multifamily Program

The Multifamily Program produced immediate electric and natural gas energy savings in multifamily buildings through the direct installation of energy-saving measures in individual living units. Since this has been a traditionally hard-to-reach market, the Company's implementation contractor dispatched a crew of installers and targeted buildings to install low-cost measures such as lighting and low-flow water devices free of charge to the property owner and tenants. The common areas of these complexes were
also an area of focus to engage in energy efficient opportunities. In addition incentives were offered for Prescriptive, Custom and Comprehensive energy efficiency projects.

Business Pilots

The Business Pilot Programs focused on eight areas: (1) Multi-Measure Bonus with incentives to customers who completed comprehensive "deep dive" projects; (2) Buy Michigan Bonus with incentives to customers who bought energy efficient products manufactured in Michigan; (3) Agriculture with incentives for audits and projects specific to the agriculture industry; (4) Building Performance with ENERGY STAR ${ }^{\circledR}$ for K-12 Schools to help identify opportunities to make schools more energy efficient; (5) Refrigeration, provided detailed analysis of energy saving opportunities for customers with heavyduty refrigeration systems; (6) Industrial Continuous Improvement which worked closely with industrial customers in a long-term relationship to improve their overall management of energy; (7) Energy Check which provided benchmarking information and recommendations for saving energy through periodic reports and a data portal; and (8) HVAC Quality Maintenance to promote more effective tune ups of rooftop air conditioning units.

4 PORTFOLIo Summary Results
 4.1 Portfolio Framework \& Summary

Consumers Energy invested a total of $\$ 116.9$ million in energy efficiency programs during calendar year 2013. That investment included $\$ 56.7$ million for residential programs, $\$ 44.5$ million for commercial and industrial programs, and $\$ 15.7$ million for associated program support services.

The plan sought to maximize the amount of program investment that went directly to customers through rebates and incentives, training and technical assistance, and customer education. Investment was made to adequately plan, develop, deliver, and evaluate quality programs. Additional investment was made to build customer awareness of the Company's program offerings and provide enhancements to a comprehensive data tracking system.

Table 4-1 details the statutory percentages that were used to calculate the energy savings goals and investment caps.

Table 4-1. Statutory Savings Goals and Investment Levels

Electricity	2013
Electric Savings Goal as \% of Total Sales	1.00%
Investment as \% of Electric Revenue	2.00%
Natural Gas	$\mathbf{2 0 1 3}$
Natural Gas Savings Goal as \% of Total Sales	0.75%
Investment as \% of Natural Gas Revenue	2.00%

As shown in Table 4-2, the Company achieved 141% of its statutory electric savings target within the investment target and a UCT score of 2.70. Achieving 115% or more of the energy savings target with a UCT score of 1.25 or greater qualified the Company to earn a performance incentive worth 12% of its program investment. Another 3\% was earned by achieving the "deep dive" metrics for low-income programs and multi-measure commercial and industrial. As a result, the Company earned a $\$ 10.36$ million (15% of $\$ 69.10$ million) incentive payment for its electric portfolio performance in 2013.

Table 4-2. 2013 Electric Results

Savings	Actual	Target
MWh	473,045	335,498
\% of Statutory Target	141%	100%
Investment		
\$ Millions	$\$ 69.10$	$\$ 69.22$
$\%$ of Statutory Spending Cap	92.8%	92.9%
Benefit-Cost Test Results		
UCT Score	2.70	

As shown in Table 4-3, the Company achieved 123% of its statutory natural gas savings target within the planned investment and a UCT score of 2.13 . Achievement of 115% or more of the energy savings target with a UCT score of 1.25 or greater qualifies the Company to earn a performance incentive worth 12% of its program investment. Another 3% was earned by achieving the gas "deep dive" metrics for lowincome programs and residential new construction. As a result, the Company earned a $\$ 7.17$ million (15% of $\$ 47.78$ million) incentive payment for its natural gas portfolio performance in 2013.

Table 4-3. 2013 Natural Gas Results

Savings	Actual	Target
Mcf	$2,173,124$	$1,765,915$
\% of Statutory Target	123%	100%
Investment		
\$ Millions	$\$ 47.78$	$\$ 47.94$
\% of Statutory Spending Cap	102.8%	103.1%
Benefit-Cost Test Results		
UCT Score	2.13	

A summary of 2013 overall utility cost test results and investment by program is provided in Table $4-4$ on the following page. Table $4-5$ shows first-year annualized energy savings for 2013, as well as Long-Life Equipment Savings (LLES) Multiplier (refer to 2/28/2013 order of Case No. U-17138 for details) and lifetime savings. The LLES Multiplier was instituted to incent Consumers to implement measures having measure lives of 10 years or more. Energy savings associated with such measures receive an additional 10% first year savings incentive. Energy savings over the useful lifetimes of the measures implemented in 2013 equate to $3,972,554 \mathrm{MWh}$ and $23,200,831 \mathrm{Mcf}$, which will represent approximately $\$ 600$ million of future customer utility bill savings. Additionally, demand reduction for programs delivered in 2013 was 19.3 MW for residential programs and 40.5 MW for business programs for a total of 60 MW saved. Please note that the overall portfolio UCT score of 2.91 in this table does not include (per statute) the costs and energy savings of the Income Qualified Program, nor does it include the costs of the incentive payments the Company has earned for the performance of its electric and natural gas EO portfolios.
Table 4-4. 2013 Portfolio I nvestment

	Utility System Resource Cost Test	Lifetime CCE /kWh	$\begin{aligned} & \text { Life time } \\ & \text { CCE /Mcf } \end{aligned}$			
				Electric Investment	Natural Gas Investment	Total Investment
RESIDENTIAL PROGRAMS						
Appliance Recycling	3.34	\$0.017	-	\$4,521,572	-	\$4,521,572
ENERGY STAR ${ }^{\text {® }}$ Appliances	2.14	\$0.018	\$2.53	\$85,598	\$228,162	\$313,760
ENERGY STAR ${ }^{(1)}$ Lighting	7.99	\$0.006	-	\$6,418,208	-	\$6,418,208
Home Energy Analys is	1.52	\$0.050	\$2.53	\$1,730,680	\$2,861,933	\$4,592,613
Home Energy Report	0.78	\$0.068	\$10.18	\$2,111,089	\$527,772	\$2,638,861
Home Performance with ENERGY STAR ${ }^{\circledR}$	1.04	\$0.081	\$3.51	\$855,858	\$2,490,192	\$3,346,049
HVAC and Water Heating	3.05	\$0.024	\$1.27	\$2,033,870	\$7,252,346	\$9,286,216
Income Qualified Energy Assistance	0.40	\$0.077	\$12.40	\$1,553,208	\$9,892,713	\$11,445,921
Insulation and Windows Program	1.83	\$0.047	\$1.78	\$678,638	\$2,325,038	\$3,003,677
Residential Multifamily	2.41	\$0.045	\$0.87	\$3,679,529	\$2,093,274	\$5,772,803
New Home Construction	1.56	\$0.064	\$2.02	\$208,928	\$515,788	\$724,716
THINK! ENERGY ${ }^{\text {® }}$	2.98	\$0.022	\$1.25	\$601,997	\$973,912	\$1,575,909
Residential Pilot Programs	-	-	-	\$1,398,767	\$1,642,140	\$3,040,908
Residential Subtotal	2.18	\$0.020	\$2.36	\$25,877,944	\$30,803,270	\$56,681,215
BUSINESS PROGRAMS						
Comprehensive \& Custom Business Solutions	4.29	\$0.010	\$1.01	\$21,534,553	\$8,630,429	\$30,164,982
Small Business Direct Install	2.94	\$0.018	\$0.82	\$10,068,877	\$981,572	\$11,050,450
Business Multifamily Direct Install	4.92	\$0.010	\$0.77	\$391,573	\$295,176	\$686,749
Business Pilots	-	-	-	\$1,952,000	\$623,198	\$2,575,197
Self-Direct	-	-	-	-	-	\$0
Business Subtotal	2.84	\$0.016	\$1.39	\$33,947,003	\$10,530,375	\$44,477,378
Utility Oversight	-	-	-	\$3,690,106	\$2,564,311	\$6,254,417
Tracking System	-	-	-	\$723,339	\$502,659	\$1,225,998
Education \& Awareness	-	-	-	\$1,929,702	\$1,340,975	\$3,270,677
EM\&V	-	-	-	\$2,928,945	\$2,035,368	\$4,964,313
Support Services Subtotal	-	-	-	\$9,272,092	\$6,443,313	\$15,715,405
TOTAL	2.5	\$0.018	\$1.94	\$69,097,040	\$47,776,959	\$116,873,998

[^21]| | First Year
 Net MWh
 Savings | First Year MWh Savings w/ LLES Multiplier | MWh
 Lifetime
 Savings | First Year
 Net MW
 Savings | First Year MW Savings
 w/ LLES
 Multiplier | First Year
 Net Mcf
 Savings | First Year Mcf
 Savings w/
 LLES
 Multiplier | Mcf Lifetime
 Savings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RESIDENTIAL PROGRAMS | | | | | | | | |
| Appliance Recycling | 31,357 | 31,357 | 250,859 | 3.7 | 3.7 | - | - | - |
| ENERGY STAR® Appliances | 421 | 446 | 4,329 | 0.1 | 0.1 | 8,491 | 9,038 | 90,039 |
| ENERGY STAR® Lighting | 101,878 | 101,918 | 921,349 | 12.1 | 12.1 | - | - | - |
| Home Energy Analys is | 3,354 | 3,435 | 31,618 | 0.4 | 0.4 | 116,929 | 123,693 | 1,132,575 |
| Home Energy Report | 28,410 | 28,410 | 28,410 | - | - | 51,858 | 51,858 | 51,858 |
| Home Performance with ENERGY STAR® | 706 | 759 | 9,695 | 0.2 | 0.2 | 46,788 | 50,999 | 708,524 |
| HVAC and Water Heating | 5,502 | 6,002 | 79,108 | 1.1 | 1.2 | 410,922 | 444,641 | 5,704,408 |
| Income Qualified Energy Assistance | 2,033 | 2,075 | 18,598 | 0.2 | 0.2 | 84,676 | 89,201 | 773,895 |
| Insulation and W indows Program | 660 | 726 | 13,193 | 0.4 | 0.4 | 65,421 | 71,963 | 1,308,420 |
| Residential Multifamily | 7,626 | 7,955 | 75,725 | 0.9 | 1.0 | 184,682 | 199,006 | 2,414,800 |
| New Home Construction | 152 | 167 | 3,011 | 0.0 | 0.0 | 12,986 | 14,277 | 255,035 |
| THINK! ENERGY® | 2,641 | 2,685 | 25,106 | 0.3 | 0.3 | 64,948 | 71,443 | 779,380 |
| Res idential Pilot Programs | 6,792 | 6,792 | - | - | - | 60,696 | 60,696 | - |
| Residential Subtotal | 191,532 | 192,728 | 1,461,002 | 19.3 | 19.5 | 1,108,398 | 1,186,815 | 13,218,933 |
| BUSINESS PROGRAMS | | | | | | | | |
| Comprehensive \& Custom Business Solutions | 154,270 | 166,774 | 1,932,456 | 23.9 | 25.6 | 702,517 | 750,276 | 8,396,337 |
| Small Business Direct Install | 81,964 | 84,184 | 536,499 | 16.2 | 16.5 | 131,420 | 132,612 | 1,194,696 |
| Business Multifamily Direct Install | 4,317 | 4,576 | 42,596 | 0.4 | 0.4 | 28,218 | 30,823 | 390,865 |
| Business Pilots | 9,478 | 9,478 | - | - | - | 23,034 | 23,034 | - |
| Self-Direct | 5,936 | 5,936 | - | - | - | - | - | - |
| Business Subtotal | 255,965 | 270,948 | 2,511,552 | 40.5 | 42.5 | 885,189 | 936,745 | 9,981,898 |
| | | | | | | | | |
| Utility Overs ight | - | - | - | - | - | - | - | - |
| Tracking System | - | - | - | - | - | - | - | - |
| Education \& Awareness | 9,370 | 9,370 | - | - | - | 49,565 | 49,565 | - |
| EM\&V | - | - | - | - | - | - | - | - |
| Support Services Subtotal | 9,370 | 9,370 | - | - | - | 49,565 | 49,565 | - |
| TOTAL | 456,867 | 473,045 | 3,972,554 | 59.8 | 62.1 | 2,043,152 | 2,173,124 | 23,200,831 |

[^22]
4.2 Energy Savings for Pilot and Education and Awareness

Because pilot and education programs have uncertain outcomes in terms of energy savings, utilities may be reluctant to invest much funding in them; instead choosing to direct investment toward proven programs. However, such lack of investment may result in missed opportunities for promising new programs and increased customer awareness leading to greater participation. Recognizing this challenge, the Commission put forth in Case No. U-15800 a methodology for calculating deemed energy savings for pilot and education programs.

Pilots
In Section 3(c) of Attachment E, the Order indicates "Utilities may designate up to five percent of the energy optimization budget for pilot programs, future energy optimization program development or to assess emerging technologies." Further in that section, the Order states that "These budget funds will be deemed to generate a proportional amount up to five percent of the required energy savings for the program year during which the money is spent."

In 2013, the Company invested 4.85% ($\$ 3.35$ million divided by $\$ 69.10$ million) of the total electric budget for pilot programs, and the required electric energy savings per statute was $335,498 \mathrm{MWh}$. As a result, pilot programs were deemed to have generated $16,270 \mathrm{MWh}(4.85 \%$ of $335,498 \mathrm{MWh})$ of electric savings. The Company invested 4.74% ($\$ 2.27$ million divided by $\$ 47.78$ million) of the total natural gas budget for pilot programs. The required natural gas energy savings per statute in 2013 were $1,765,915$ Mcf. As a result, pilot programs were deemed to have generated 83,731 Mcf (4.74% of $1,765,915 \mathrm{Mcf}$) of natural gas savings.

Education \& Awareness

In Section 3(d) of Attachment E, the Order states that "Up to three percent of the energy optimization budget may be used for the cost of energy optimization education programs." Further in that section, the Order states that "These budget funds will be deemed to generate a proportional amount up to three percent of the required energy savings for the program year during which the money is spent."

In 2013, the Company invested 2.79% ($\$ 1.93$ million divided by $\$ 69.10$ million) of the total electric budget for education programs, and the required electric energy savings per statute was $335,498 \mathrm{MWh}$. As a result, education programs were deemed to have generated $9,370 \mathrm{MWh}(2.79 \%$ of $335,498 \mathrm{MWh})$ of electric savings. The Company invested 2.81% ($\$ 1.34$ million divided by $\$ 47.78$ million) of the total natural gas budget for education programs, and the required natural gas energy savings per statute were $1,765,915 \mathrm{Mcf}$. As a result, education programs were deemed to have generated $49,565 \mathrm{Mcf}(2.81 \%$ of $1,765,915 \mathrm{Mcf}$) of natural gas savings.

4.3 Energy Optimization Credits

As shown on Table 4-5, Consumers Energy delivered 456,867 MWh of electric savings in 2013. Since each MWh saved equates to one energy optimization (EO) credit, the Company earned 456,867 electric EO credits. Also as shown on Table 4-5, Consumers Energy delivered 2,043,152 Mcf of natural gas savings in 2013. As each Mcf saved equates to one EO credit, the Company earned 2,043,152 natural gas EO credits.

All 2013 electric and natural gas EO credits necessary to maximize achievement of utility incentive payments will be used for that purpose and any remaining electric credits are expected to be applied toward renewable energy credits.

4.4 Benefit-Cost Background

There are five standard practice benefit-cost tests commonly utilized in the energy efficiency industry, each of which addresses different perspectives as shown in Table 4-6 below.
Table 4-6. Comparative Benefit-Cost Tests
\(\left.$$
\begin{array}{|l|c|c|c|c|c|}\hline & \begin{array}{c}\text { UTILITY SYSTEM } \\
\text { RESOURCE COST } \\
\text { TEST (UCT) }\end{array} & \begin{array}{c}\text { TOTAL } \\
\text { RESOURCE } \\
\text { COST TEST }\end{array} & \begin{array}{c}\text { PARTICI PANT } \\
\text { COST TEST }\end{array}
$$ \& \begin{array}{c}RATE IMPACT

MEASURE TEST\end{array} \& SOCI ETAL TEST\end{array}\right]\)| |
| :--- |
| BENEFITS |

The Utility System Resource Cost Test measures the net benefits of a demand-side management (DSM) program as a resource option based on the costs and benefits incurred by the utility (including incentive costs) and excluding any net costs incurred by the customer participating in the efficiency program. The benefits are the avoided supply costs of energy and demand, the reduction in transmission, distribution, generation and capacity valued at marginal costs for the periods when there is a load reduction. The costs are the program costs incurred by the utility, the incentives paid to the customers, and the increased supply costs for the periods in which load is increased.

The Total Resource Cost Test is a test that measures the total net resource expenditures of a DSM program from the point of view of the utility and its ratepayers. Resource costs include changes in supply and participant costs. A DSM program which passes this test (i.e., a ratio greater than 1.0) is viewed as beneficial to the utility and its customers because the savings outweigh the DSM costs incurred by the utility and its customers.

The Participant Cost Test illustrates the relative magnitude of net benefits that go to participants compared to net benefits achieved from other perspectives. While called a "participant" perspective, it is not necessarily a perspective indicating whether customers participate. The implied discount rate can vary substantially among customers. More importantly, many customers do not even know what a
present-value benefit-cost analysis is let alone feel confident in making decisions based on it.
Consequently, a simple payback (years) net of rebate has been shown to provide further guidance on customer participation. The benefits derived from this test reflect reductions in a customer's bill and energy costs plus any incentives received from the utility or third parties and any tax credit. Savings are based on gross revenues. Costs are based on out-of-pocket expenses from participating in a program, plus any increases in the customer's utility bill(s).

The Rate Impact Measure (RIM) Test measures the change in utility energy rates resulting from changes in revenues and operating costs. The higher the RIM test, the less impact on increasing energy rates. While the RIM results provide a guide as to which technology has more impact on rates, generally it is not considered a pass/fail test. Instead, the amount of rate impact is usually considered at a policy level. The policy level decision is whether the entire portfolio's impact on rates is so detrimental that some net benefits have to be forgone.

The Societal Cost Test is similar to the Total Resource Cost test. However, it also accounts for the effects of externalities, such as reductions in carbon dioxide $\left(\mathrm{CO}_{2}\right)$, nitrogen oxides (NOx), and sulfur dioxide $\left(\mathrm{SO}_{2}\right)$.

Statutory Standard

2008 PA 295 established the Utility System Resource Cost Test (UCT) as the official one by which the costeffectiveness of utility EO program portfolios will be judged. In addition to calculating the benefit-cost ratios for this test, the Company performed similar calculations for three others, the results of which are shown on pages 18 and 19. The Company did not calculate benefit-cost ratios for the Societal Test because of the uncertainty of values associated with environmental externalities.

4.5 Benefit-Cost Test Results

Electric Programs

As shown in Table 4-7 below, the Company's 2013 overall portfolio of electric programs passed the utility cost test with a score of 2.70 with the inclusion of the $\$ 10.36$ million electric performance incentive the Company has earned.

Table 4-7. Summary of Electric Programs Benefit-Cost Test Results

RESIDENTIAL PROGRAMS	Utility Cost Test	Total Resource Cost Test	Participant Measure	Rate Impact Measure
Appliance Recycling	3.34	2.78	15.00	0.42
ENERGY STAR $^{\circledR}$ Appliances	3.03	0.39	0.93	0.43
ENERGY STAR $^{\circledR}$ Lighting	7.99	3.88	11.44	0.43
Home Energy Analysis	1.01	0.94	17.25	0.31
Home Energy Report	0.81	0.81	-	0.26
Home Performance with ENERGY STAR ${ }^{\circledR}$	0.89	0.73	2.85	0.40
HVAC and Water Heating	2.47	2.19	7.23	0.47
Income Qualified Energy Assistance	0.68	0.68	-	0.27
Insulation and Windows Program	1.51	0.45	0.84	0.53
Residential Multifamily	1.15	1.15	-	0.33
New Home Construction	1.21	0.55	1.12	0.51
THINK! ENERGY	2.08	2.08	12.33	0.34
Residential Pilot Programs	-	-	-	-
Residential Portfolio Average*	$\mathbf{2 . 6 0}$	$\mathbf{1 . 9 7}$	$\mathbf{1 1 . 2 1}$	$\mathbf{0 . 4 0}$
BUSINESS PROGRAMS	4.39	1.48	3.83	0.45
Comprehensive \& Custom Business Solutions	2.64	2.64	-	0.41
Small Business Direct Install	4.67	4.67	-	0.42
Business Multifamily Direct Install	$\mathbf{-}$	-	-	-
Business Pilots	$\mathbf{2 . 7 8}$	$\mathbf{1 . 4 2}$	5.02	$\mathbf{0 . 4 2}$
Business Portfolio Average	$\mathbf{2 . 7 0}$	$\mathbf{1 . 6 1}$	$\mathbf{6 . 5 5}$	$\mathbf{0 . 4 1}$
		$\mathbf{1 . 7 4}$	$\mathbf{6 . 5 5}$	$\mathbf{0 . 4 2}$
Total Portfolio without Incentive*				
	Total Portfolio with Incentive*			

*Does not include Residential Income Qualified Program

Natural Gas Programs

As shown in Table 4-8 below, the Company's 2013 overall portfolio of natural gas programs passed the utility cost test with a score of 2.13 with the inclusion of the $\$ 7.17$ million natural gas performance incentive the Company has earned.

Table 4-8. Summary of Natural Gas Programs Benefit-Cost Test Results

RESIDENTIAL PROGRAMS	Utility Cost Test	Total Resource Cost Test	Participant Measure	Rate Impact Measure
Appliance Recycling	-	-	-	-
ENERGY STAR ${ }^{\circledR}$ Appliances	1.80	0.31	0.54	0.52
ENERGY STAR ${ }^{\circledR}$ Lighting	-	-	-	-
Home Energy Analysis	1.83	1.72	22.15	0.52
Home Energy Report	0.65	0.65	-	0.35
Home Performance with ENERGY STAR ${ }^{\circledR}$	1.09	0.80	2.12	0.43
HVAC and Water Heating	3.21	1.33	2.35	0.58
Income Qualified Energy Assistance	0.36	0.36	-	0.24
Insulation and Windows Program	1.92	0.35	0.65	0.51
Residential Multifamily	4.62	4.62	-	0.61
New Home Construction	1.70	1.63	3.87	0.49
THINK! ENERGY ${ }^{\circledR}$	3.54	3.54	11.81	0.60
Residential Pilot Programs	-	-	-	-
Residential Portfolio Average*	1.73	0.99	2.55	0.50
BUSINESS PROGRAMS				
Comprehensive \& Custom Business Solutions	4.05	1.73	2.95	0.62
Small Business Direct Install	5.96	5.96	-	0.68
Business Multifamily Direct Install	5.26	5.26	-	0.64
Business Pilots	-	-	-	-
Business Portfolio Average	3.02	1.66	3.51	0.60
Total Portfolio without Incentive*	2.54	1.32	2.89	0.56
Total Portfolio with Incentive*	2.13	1.21	2.89	0.54

*Does not include Residential Income Qualified Program

4.6 Benefit-Cost Methodology

For the 2013 analysis of program benefits, a software program called DSMore ${ }^{\mathrm{TM}}$ was utilized, which applies avoided cost savings generated by each measure or program across the entire portfolio.

DSMore ${ }^{\mathrm{TM}}$ was selected because it reflects the variation of savings and avoided costs over more than 30 years of weather data. The correlation and covariance between savings and price (or cost) of avoided energy is incorporated into the analysis rather than using a static typical year. Simply, weather variations concurrently cause savings and energy prices to increase or decrease. Simple averages are not as accurate because price variations are not symmetrical. Thus, DSMore ${ }^{\mathrm{TM}}$ improves the valuation of measures with weather-sensitive savings more accurately than using typical year or average savings.

DSMore ${ }^{\mathrm{TM}}$ also uses load-shape and price-shape input files. These files are tailored to the specific group of customers for which a program is designed. A full enumeration of hourly load and price distributions for over 30 years is modeled. The files statistically measure price and load covariance. DSMore ${ }^{\mathrm{TM}}$ calculates a full distribution of load shapes and reports the mean load shape for each month, both weekend and weekday, along with the standard deviation of theses shapes at the hourly level.

Discount Rate

There is a time value of money because money spent in the future does not have the same value as money spent today. This time value is represented by a discount rate (analogous to an interest rate). Economic equations use the discount rate to convert all costs and benefits to a "present value" for comparing alternative costs and benefits. Consumers Energy used a uniform discount rate of 8.70% for electric and 8.63% for gas energy efficiency programs and supply-side resources.

Pricing Scenario

The DSMore ${ }^{\mathrm{TM}}$ price simulation file allows modeling of a range of energy cost (price) scenarios. Consumers Energy's avoided energy cost served as the basis for selecting a DSMore ${ }^{\mathrm{TM}}$ pricing scenario which statistically modeled energy prices (costs) for 8,760 hours per year over 30 -plus years of weather statistics. Subsequent years used Consumers Energy's projected escalation factors to model avoided costs. The base assumptions were the same as those used to model the Company's 2012-2015 Amended Energy Optimization Plan in Case No. U-16670 that received Commission approval April 17, 2012.

Avoided Capacity and Energy Benefits
DSMore ${ }^{\mathrm{TM}}$ avoided cost benefits fall into two categories: avoided capacity benefits and avoided energy benefits. Avoided capacity benefits are the benefits derived from deferring the need to build new generating plants in the future. Avoided capacity values were based on Consumers Energy's projections of future power plant costs considering expected levels of capacity available over future years and the costs of that capacity.

Avoided energy benefits are estimated by DSMore ${ }^{\mathrm{TM}}$ using the annual hourly patterns of equipment use and input values supplied by Consumers Energy that incorporate the varying costs to generate electricity at different times of the day and year.

Avoided Transmission and Distribution Benefits

The transmission and distribution system line losses can be avoided, thus producing benefits when customers save energy. Losses are incurred from electrical resistance in lines and from transformation of voltage from high voltage to the voltage level used by the customer. The Consumers Energy line loss study was used to value losses at the secondary, primary and transmission voltage levels ($9.7 \%, 6.0 \%$ and 3.8% respectively). While the cost of building transmission and distribution systems - by either building with less capacity or avoiding building completely - theoretically might be avoided, Consumers Energy's current transmission and
distribution systems are typically adequate to meet customers' needs. The current situation, relative to numbers of customers and demand, would need to substantially change before costs of building transmission and distribution systems could be avoided.

Administration, Implementation and Direct Costs
Administration, implementation and direct costs were included as technology inputs of DSMore ${ }^{\mathrm{TM}}$ to allow aggregation into total program cost-effectiveness. Consumers Energy support services that are not specific to individual programs are added as costs at the portfolio level for all programs.

5.1 Appliance Recycling Program

Program	Appliance Recycling
Objective	Produce long-term electric energy savings in the residential sector by permanently removing operable second refrigerators and freezers from the power grid and recycling them in an environmentally safe manner.
Target Market	Residential electric customers who are currently operating second refrigerators and/or freezers.
Program Duration	The Appliance Recycling Program began in 2009 and is an ongoing element of the program portfolio.
Program Description	The average household replaces a refrigerator every 10 years. However, many of the refrigerators and freezers being replaced still functioned and often end up as energyguzzling back-up appliances in basements and garages or are sold in a used appliance market. The Appliance Recycling Program targeted second refrigerators and freezers, providing the dual benefit of cutting energy consumption and keeping the appliances out of the used market. An appliance recycling contractor provides turnkey implementation services that include verification of customer eligibility, scheduling of pick-up appointments, appliance pick-up, rebate processing, and recycling services.
Program Log	Following are the primary barriers in this market and the program elements that addressed them:
	Market Barrier - Lack of awareness about operating costs for "second" refrigerators and freezers, as well as for older units - Inconvenience of removing older units - Cost of disposal Program Element - Marketing materials with operating cost estimates - Free pickup/removal from customer site plus incentive - Free disposal and proper recycling
Incentive Strategy	During 2013, customers were offered a $\$ 50$ rebate and free pickup and recycling of their old operable second refrigerators and freezers. Typically, a customer would have to pay a municipal fee of about $\$ 35$ for appropriate disposal of the unit, so the free pick-up service provided additional value.
	To provide additional customer value, customers also were offered free pickup and recycling of their old operable window air conditioners and dehumidifiers during a home pickup of a refrigerator or freezer. This offering began in July and customers were offered $\$ 15$ for each small unit.

Eligible
Measures,
Efficiency
Requirements \&
Incentives

Implementation Strategy

Deemed savings values are based on documented values from the Michigan Energy Measures Database.

Measure	Eligibility	Incentive per Unit
Recycled Refrigerator	Operable Unit	$\$ 50$
Recycled Freezer	Operable Unit	$\$ 50$
Recycled Room Air Conditioner	Operable Unit	$\$ 15$
Recycled Dehumidifier	Operable Unit	$\$ 15$

Key elements of the implementation strategy included:

- Turnkey appliance pickup/recycling. Consumers Energy continued work with its implementation contractor to provide comprehensive turnkey implementation services, from eligibility verification and scheduling of pickups to proper disposal and recycling of turned-in appliances.
- Incentive coordination and processing. The implementation contractor coordinated prompt processing of incentive payments. As prompt incentive payment is essential to retailer/customer satisfaction, the implementation contractor established protocols and service level requirements that expedited payments.

To minimize free ridership, the program used marketing messages targeted at customers with second refrigerators/freezers. Mass marketing that emphasized the cost of operating second refrigerators/freezers also had the potential to increase spillover impacts.

The implementation contractor handled implementation-related administrative requirements, including the following:

- Management of the scheduling, pickup, and appliance recycling processes
- Marketing strategy and messaging
- Incentive processing
- Data tracking and reporting
- Investment tracking and reporting
- Call Center services
- Managing public relations
- Customer satisfaction/Problem resolution

All marketing materials carried a strong consumer education message emphasizing the cost of operating second refrigerators and freezers and older, inefficient appliances, and the importance of proper disposal and recycling of older units. Key elements of the marketing strategy included:

- Customer marketing through Consumers Energy's website, social media, bill inserts, newsletters and email blasts.
- A referral campaign was piloted for three months through the Company's Call Center where customer service representatives promoted the program.
- Press releases.
- Mass media advertising including print, radio and television.

Major Milestone	Date
Picked up small appliances during home collections of large appliances	$7 / 13$
Achieved 75,000th large appliance pickup	$9 / 13$
Received 2013 MDEQ Neighborhood Environmental Partnership Award	$9 / 13$
Implemented a three-month internal referral program	$9 / 13-11 / 13$

In July, Consumers Energy began picking up window air conditioners and dehumidifiers during home collections of large appliances (refrigerators and/or freezers). This customer value offering resulted in an additional 907 small appliances being recycled.

In September, Consumers Energy achieved a milestone of recycling 75,000 refrigerators and freezers. This achievement was recognized in the media, which showcased the environmental impacts and the Company's award to its $75,000^{\text {th }}$ customer.

Also in September, the Michigan Department of Environmental Quality (MDEQ) honored Consumers Energy with the Neighborhood Environmental Partnership Award for participation in community-based recycling events in collaboration with Holland Board of Public Works. At these one-day drop-off collection events, room air conditioners and dehumidifiers were collected along with second refrigerators and freezers for recycling.

During the months of September through November, Consumers Energy implemented a Customer Service Representative (CSR) referral pilot. This pilot resulted in 537 successful referrals during the three-month pilot, 165 CSRs (over $55 \%)$ participated by providing at least one successful referral. The pilot demonstrated the internal referral option was successful and also raised employee awareness of the program and other energy efficiency programs in the portfolio. The overall employee referral rate increased from $.06 \%$ outside of the pilot campaign to 6.3% during the pilot.

Recycling drop-off events were conducted with Holland Board of Public Works, Lowell Light \& Power, city of South Haven, city of Sturgis and Traverse City Light

and Power where customers were provided with an opportunity to drop off eligible appliances on a weekend day without setting up an appointment for pickup. The events promoted collaboration and goodwill with municipal utility partners and offered customers a convenient opportunity to recycle other items such as electronics and noneligible appliances through nonrelated participating vendors.

The Appliance Recycling Program also has made considerable impacts on the environment. Over 95% of the materials in old refrigerators are transformed into new products when recycled, and hazardous oils, toxins and chlorofluorocarbon gases are safely disposed of. Since inception of the program in 2009, 82,894 units have been responsibly recycled. This equates to:

- Properly recycling over 124 tons of aluminum, 6,217 tons of metal, 124 tons of glass and 1,036 tons of plastic
- Keeping over 414 tons of foam insulation containing toxins and chlorofluorocarbon gases out of landfills
- Avoiding CO_{2} emissions equal to 165,788 cars per year

Consumers
Energy
Administrative
Requirements

Participation

Measure	Units Recycled
Refrigerator Recycling	22,780
Freezer Recycling	5,400
Air Conditioner Recycling	368
Dehumidifier Recycling	539
Total	29,087

I nvestment

	2013 Actual	2013 Plan
Electric	$\$ 4,521,572$	$\$ 3,961,125$
Gas	-	$\$ 46,125$
Total	$\$ 4,521,572$	$\$ 4,007,250$

Energy Savings

		2013 Actual w/ LLES Multiplier	2013 Plan
MWh	31,357	31,357	43,840
MW	3.7	3.7	4.9
Mcf	-	-	17,321

Benefit-Cost Test Results

Benefit-Cost Test	B/C Ratio
Utility Cost Test	3.34
Total Resource Cost Test	2.78
Participant Test	15.00
Rate Impact Measure	0.42

5.2 ENERGY STAR ${ }^{\bullet}$ Appliances Program

Program	ENERGY STAR ${ }^{\circledR}$ Appliances
Objective	Produce long-term energy savings in the residential sector by promoting highefficiency home appliances through the retail channel.
Target Market	
	The program targeted residential customers in the market for new clothes washers, low-flow showerheads, room air conditioners, dehumidifiers, and programmable thermostats. Residential rental property owners also were eligible to participate.
Program Duration	The ENERGY STAR ${ }^{\circledR}$ Appliance Program is an ongoing element of the portfolio.
Program Description	Since appliance standards as well as the market share of high-efficiency appliances are gradually increasing, the program was very specific regarding qualifying models as well as marketing emphasis. The program provided incentives to customers to encourage them to purchase highefficiency clothes washers meeting Consortium for Energy Efficiency (CEE) standards. In addition, customer incentives were available for low-flow showerheads, programmable thermostats, dehumidifiers and room air conditioners.
Program Logic	
	Although consumer awareness of high-efficiency clothes washers has significantly increased, a first cost barrier still exists when promoting the highest efficiency units.
	Following is a list of the primary barriers in this market and the program elements addressing them:
	Market Barrier Program Element \bullet - First-cost concerns • \bullet Customer incentives \bullet Consumer information - Retail sales force information -
Incentive Strategy	The following incentive strategy was employed to address current market barriers:
	Mail-in rebates for high-efficiency clothes washers. Customers and retailers could download a rebate application from Consumers Energy's website. The rebate application also listed rebates on eligible low-flow showerheads, programmable thermostats, ENERGY STAR ${ }^{\circledR}$ room air conditioners and ENERGY STAR ${ }^{\circledR}$ dehumidifiers.
	Electric-only or gas-only customers received a $\$ 25$ rebate for the purchase of a qualifying clothes washer. Combination customers who purchased qualifying clothes washers received a $\$ 50$ rebate.

Implementation Strategy

Key elements of the implementation strategy included:

- Retailer education and outreach. Consumers Energy's implementation contractor utilized field representatives to facilitate the education of participating retailers. The field representatives maintained regular contact with participating retailers to ensure the following:
(1) Retail sales staff were informed about the program offerings, rebate application process, and benefits of ENERGY STAR ${ }^{\circledR}$ qualifying products
(2) Retailers' concerns and issues were addressed promptly
- Incentive coordination and processing. The implementation contractor processed all incentive requests and managed prompt processing of incentive payments.
Strategies to limit free ridership and promote spillover included:
- Clothes washer incentives for only the highest efficiency levels
- Program promotion primarily on Consumers Energy's Website

The implementation contractor was responsible for handling implementationrelated administrative requirements, including the following:

- Retailer education
- Marketing strategy and messaging
- Field services
- Rebate processing
- Data tracking and reporting
- Investment tracking and reporting
- Call Center services
- Managing public relations
- Customer satisfaction/Problem resolution

Key elements of the marketing strategy included:

- Customer marketing through Consumers Energy's Website
- Television, radio, and print media encouraging customers to visit Consumers Energy's website to find out more about ways to save energy and money

The website carried a strong consumer education message emphasizing the benefits of high-efficiency appliances and early replacement with ENERGY STAR ${ }^{\circledR}$ qualified models (lifetime dollar savings, energy-savings, water savings, and lower noise levels).

ENERGY STAR ${ }^{\circledR}$ Appliances, Appliance Recycling, CFL Recycling Program and Home Energy Analyzer) was included in the kit.

Milestones
EM\&V Strategy

Major Milestone	Date
Partnered with Kent District Library to provide 37 Kill-a- Watt energy meters for check-out with library card	$4 / 13$

The following evaluation activities were performed for the 2013 ENERGY STAR ${ }^{\circledR}$ Appliance Program.

Participant Online Surveys: Surveys with 2013 participants in the ENERGY STAR ${ }^{\circledR}$ Appliance Program were conducted while the program was active. The participant surveys assessed satisfaction with key program elements including rebate levels, the energy efficient equipment purchased, interaction with retailers, and the program overall. Nearly 200 surveys were completed by program participants.

Consumers Energy staff were responsible for general administrative oversight of the program portfolio and addressed the following:

- Overall program administration
- Management of the implementation contractor
- Coordination of marketing strategy/public relations among programs and market sectors
- Development and placement of marketing materials with input from the implementation contractor
- Coordination of all educational services
- Customer satisfaction
- Data warehousing
- Management of key performance metrics and reporting
- Goal achievement within investment

Measure	Number of Rebates
Clothes Washer	3,367
Setback Thermostat	614
Low-Flow Showerhead	45

Room Air Conditioner	15	
Dehumidifier	49	
Total	4,090	
	Energy Efficiency Kits	1,525

Investment

	2013 Actual	2013 Plan
Electric	$\$ 85,598$	$\$ 413,987$
Gas	$\$ 228,162$	$\$ 197,524$
Total	$\$ 313,760$	$\$ 611,510$

Energy Savings

		2013 Actual w/ LLES Multiplier	2013 Plan
MWh	421	446	877
MW	0.1	0.1	0.2
Mcf	8,491	9,038	95,933

Benefit-Cost Test
Results

Benefit-Cost Test	B/C Ratio
Utility Cost Test	2.14
Total Resource Cost Test	0.33
Participant Test	0.67
Rate Impact Measure	0.48

5.3 ENERGY STAR ${ }^{\circledR}$ Lighting Program

Program	ENERGY STAR ${ }^{\text {® }}$ Lighting
Objective	Produce long-term electric energy savings in the residential sector by increasing the market share of high-efficiency lighting products sold through retail sales channels.
Target Market	All residential customers purchasing light bulbs and fixtures through retail sales channels. Residential rental property owners and customers living in rental properties also were eligible.
Program Duration	The ENERGY STAR ${ }^{\circledR}$ Lighting Program began in 2009 and is an ongoing element of the portfolio.
Program Description	The program provided incentives and marketing support through retailers to build market share and usage of ENERGY STAR ${ }^{\circledR}$ lighting products: CFLs, LEDs and holiday LED light strings. It targeted the purchase of lighting products through instore promotion as well as special sales events. Customer incentives, in the form of instant savings, facilitated the increased purchase of high-efficiency products, while in-store signage, sales associate training, and support made provider participation easier.
Program Logic	The retail channel approach leveraged the normal retail sales channels for lighting products, creating opportunities for cooperative promotions, increasing the demand and, therefore, the stocking of qualifying products, and supporting long-term market transformation.
	Following is a list of the primary barriers in this market and the program elements that addressed those barriers:
	Market Barrier Program Element
	- First cost concerns - Consumer information - Limited product availability - Retail sales force information - Customer incentives - Point-of-sale displays - Field work with retailers - Field work with retailers
Incentive Strategy	Although several incentive strategies were re-examined to address current market conditions, it was decided to continue with the approach launched in July 2009 due to its ease of customer participation and the successful results delivered.
	CFL and LED markdowns. The markdown approach was the primary driver of volume within the program. Consumers Energy agreed to reimburse select retailers for discounting the cost of CFLs, LEDs and holiday light strings by a specified dollar amount per unit, during special limited-term promotions. Qualifying products were listed at a lower retail price on store shelves, and point-of-purchase materials helped direct customers to the program's specially-priced lighting products. At the end of every month, the retailer provided a point-of-sale report and was reimbursed for the

 discount provided on each unit sold. This strategy eliminated costs associated with mail-in rebate fulfillment, claim form printing, and store location setup. Volume was controlled by allocating a specific number of bulbs that each retailer could sell in advance of the promotion, and discounts were offered on a "while supplies last" basis.

Note that the incentive amounts listed below are an average. Incentive amounts offered in conjunction with markdown promotions varied based on specific agreements negotiated with retailers.

Measure	Eligibility	Average Incentive per Unit
CFL Standard $^{\text {CFL Specialty }}$	ENERGY STAR $^{\circledR}$	$\$ 1.20$
LED Bulb 60W Replacement	ENERGY STAR $^{\circledR}$	$\$ 1.73$
LED Flood Par	ENERGY STAR $^{\circledR}$	$\$ 4.28$
LED Holiday Lighting Strings	ENERGY STAR ${ }^{\circledR}$	$\$ 2.00$

Key elements of the implementation strategy included:

- Retailer/manufacturer recruitment for markdown component. Consumers Energy's implementation contractor continued working with its subcontractor to help manage the lighting program. The contractors were very experienced in launching similar lighting programs throughout the United States and were able to leverage their existing relationships with several "big box" retailers to maintain seamless program participation in 2013. Building on the momentum of past years, marketing activities focused on leveraging the program's historic success. To that end, Consumers Energy added new partnerships with lighting retailers in 2013 that increased store count by 53% compared to 2012.
- Participating retailers included Ace, ACO Hardware, Big Lots, Costco, Dollar General, Dollar Tree, Home Depot, Lowe's, Meijer, Menards, Sam's Club, True Value, Walgreens and Wal-Mart. In total, these retailers represented 404 participating locations throughout Consumers Energy's service territory.
- The agreement with each participating retailer specified program requirements such as product specifications, performance criteria, product stocking objectives and data sharing requirements.
- Retailer recruitment, education and outreach. The implementation contractors utilized six field representatives to maintain regular contact with participating retailers to ensure the following:
- Retail sales staff were informed about the program offering and benefits of qualifying products
- Point-of-purchase displays were visible and qualifying products were stocked in accordance with retailer commitments
- Retailers' concerns and issues were addressed promptly
- Retailers were informed well in advance of planned promotional activities
- Retail sales staff and customers were educated on high-efficiency lighting options and Energy Independence and Security Act (EISA) regulations

- Retail sales staff and customers were briefed on other energy efficiency programs offered by Consumers Energy
- Incentive processing. The implementation contractor managed the processing of retailer incentive payments. A prompt incentive payment was essential to ensuring manufacturer and retailer satisfaction, and they established protocols that expedited payments.
- Collaboration with other Michigan utilities. Consumers Energy worked with other Michigan utilities to ensure coordination with lighting manufacturers and "big-box" retailers on CFL incentive strategies. These efforts included collaboration to identify stores in western Michigan to assist Wisconsin Energy Conservation Corporation (WECC) in achieving electric energy savings for the Efficiency United cooperative utilities they represent.
The implementation contractor handled implementation-related administrative requirements, including the following:
- Retailer/manufacturer recruitment, negotiation, and support
- Field services
- Marketing strategy
- Content recommendations for marketing materials and advertising
- Invoice and rebate processing
- Data tracking and reporting
- Investment tracking and reporting
- Call Center services
- Customer satisfaction/problem resolution
- Measurement and verification

Key elements of the marketing strategy included:

- Point-of-purchase displays
- Cooperative advertising with retailers
- Customer marketing through Consumers Energy's website and newsletter
- Mass-market advertising through bill inserts, radio, newspaper, and television
- Leveraging the program as an entry point to other Consumers Energy Savings Solutions Programs
- LED light bulbs and holiday LED light campaign promotion

The program was marketed in stores through point-of-purchase displays, signage, and other materials that were developed in cooperation with participating retailers. Materials employed a strong consumer education component emphasizing the benefits of high-efficiency lighting products (e.g., lifetime dollar savings, energy savings, longer product life, safety, appropriate light quality). The marketing materials leveraged the ENERGY STAR ${ }^{\mathbb{B}}$ brand, which enjoys a high level of consumer recognition and acceptance.

In 2013, LED light bulb offerings were expanded. Over 7,500 LED light bulbs were sold, nearly a 313% increase from 2012 levels. Overall, retailers welcomed the program and requested to participate in future promotions.
Consumers Energy continued a partnership with the Feeding America West Michigan Food Bank and with it came the announcement of 100,000 CFLs being provided to

the Food Bank to help struggling families save energy and money. The distribution events were held in February and October.

On the Consumers Energy website, comprehensive information about energy efficient bulbs was posted with links provided to the ENERGY STAR ${ }^{\circledR}$ website. Additionally, the Consumers Energy site contained a listing of participating store locations where customers could purchase specially priced bulbs.

Bill inserts and mass media advertising (radio, print, and television) were developed and placed by Consumers Energy to support the markdown campaign. The primary objective was to increase customer awareness of Consumers Energy's energy efficiency programs and drive customers to its website for more information.

Major Milestone	Date
3 million CFL bulbs sold in 2013	$11 / 13$
Surpassed 11 million CFL bulbs sold since program launch in 2009	$12 / 13$
Performed 8,137 program retailer site visits and 276 special promotional events	$12 / 13$

The following evaluation activities were performed for the ENERGY STAR ${ }^{\circledR}$ Lighting Program in 2013 to assess program effectiveness, customer awareness, and the influence of the program on the adoption of energy efficient lighting. The Michigan Public Service Commission directed Consumers Energy to determine the appropriate net-to-gross ratio for standard CFLs promoted through upstream lighting programs.

Customer Telephone Surveys: Surveys were conducted with nearly 500 customers who recently purchased light bulbs. The surveys explored familiarity with the phaseout of incandescents, lumen levels, the Lighting Facts label, and Consumers Energy's efforts to promote energy efficient lighting products. The surveys asked about customer purchase patterns, including CFL selections, storage, replacement, and recycling. Customer purchases were characterized by bulb type and store. Survey respondents also were recruited for in-home audits of lighting use.

Lighting Saturation Studies: Site visits were conducted in 103 homes to capture home lighting composition, determine changes in lighting usage since the study was conducted in 2010, and gather information to determine program attribution.

Price Response Modeling: This approach involves using point-of-sale data to estimate the effect of price changes on the number of bulbs sold. Price response modeling uses variation in bulb prices over time to estimate the price elasticity of customer demand or the change in demand quantity due to a change in price. This analysis provided estimates of free ridership to determine a net-to-gross ratio (NTGR) for standard CFLs.

Advisory Panel: Conducted in coordination with DTE Energy, the evaluation teams convened an advisory panel to review the range of NTGR results associated with the research conducted up to that point, and to bring the expert panelists' own market knowledge to bear in establishing a single estimate of NTGR for use by both companies for 2014-2015.

Administrative
Requirements

Consumers Energy staff were responsible for general administrative oversight of the program portfolio including:

- Program administration
- Management of the implementation contractor
- Coordination of marketing strategy/public relations among programs and market sectors
- Data warehousing
- Customer satisfaction
- Managment of key performance metrics and reporting
- Goal achievement within investment

Participation

Bulb Type	2013 Actual Sales
CFL	
$\bullet \quad$ Standard	$2,804,318$
$\bullet \quad$ Specialty	322,707
LED Bulbs	7,646
LED Holiday Lights	13,019
Total	$3,147,690$

Investment

	2013 Actual	2013 Plan
Electric	$\$ 6,418,208$	$\$ 4,888,497$
Gas	-	-
Total	$\$ 6,418,208$	$\$ 4,888,497$

Energy Savings

		2013 Actual w/ LLES Multiplier	2013 Plan
MWh	101,878	101,918	59,439
MW	12.1	12.1	5.4
Mcf	-	-	-

Benefit-Cost Test

Results

Benefit-Cost Test	B/C Ratio
Utility Cost Test	7.99
Total Resource Cost Test	3.88
Participant Test	11.44
Rate Impact Measure	0.43

5.4 Home Energy Analysis Program

Program
Objective
Target Market
Program Duration
Program
Description

Home Energy Analysis

Initiate a conversation about energy efficiency with customers that increased awareness of the portfolio of programs and satisfaction levels for participants, while capturing both short- and long-term energy savings.

Residential customers in single-family homes and duplexes who had interest in learning about ways to improve the energy efficiency of their home.

The program was piloted the last two quarters of 2011 and launched in January 2012.

The program provided an in-home assessment performed by a trained analyst. The assessment included a visual inspection of the home, installation of energy efficiency measures, and a customized summary report with energy-saving tips and recommendations.

Introduction: A trained analyst introduced him/herself, described what the assessment consisted of and how they would help identify areas where energy saving opportunities could be present.

Visual Inspection: The analyst walked the perimeter of the home with the customer, checked the mechanicals, rim joist and attic insulation levels while looking for other common areas where obvious signs of potential energy inefficiencies existed.

Direct Install: Energy saving measures were installed throughout the home during the assessment that included: compact fluorescent light bulbs, LED night lights, energy efficient shower heads, energy efficient kitchen and bathroom faucet aerators, water heater pipe insulation and programmable thermostats.

On average, a customer participating in the Home Energy Analysis program received $\$ 50$ worth of energy-saving measures which would provide an estimated annual savings up to $\$ 150$.

Customizable Report: As the analyst walked through the home performing the visual inspection, findings were entered into a web-based intake tool to create a personalized report for each customer. The analyst discussed the report with the customer during the last step of the Home Energy Analysis. The discussion focused on educating the homeowner and was based on the findings during the inspection.

The report included usage data, measures installed during the assessment and their estimated annual and lifetime savings. It also included additional notes and tips, suggestions for next steps and additional energy-saving programs in the residential portfolio. Details regarding infiltration, insulation and current efficiency of mechanical systems were not attainable during a Home Energy Analysis.

Therefore, analysts briefly explained the benefits of a more comprehensive energy audit and how it could potentially improve the comfort and efficiency of their home.

At the homeowner's request, the report was either printed or emailed after the analysis was completed.

The program was designed to overcome one of the key barriers in the residential existing homes market - lack of information about how the home uses energy and actions that will save the most energy and money. The program provided an educational resource to consumers to make it as easy as possible for them to take action.

The educational component of the program was achieved by having a team of trained analysts identify simple and low-cost ways to immediately improve a home's efficiency, and answer customer questions about all other residential programs in the portfolio.

In addition to the educational aspect, the Home Energy Analysis program included an energy efficiency direct install component, completed during the same visit.

The Home Energy Analysis included a $\$ 25$ fee, which was waived by entering a promotional code at time of scheduling the appointment. The fee represented the value of the service to customers and helped reduce appointment cancellations. Promotional codes were made available to customers via a variety of marketing outlets. Marketing messaging included expiration dates for the promotional codes as a call to action for customers.

In terms of cross promoting other programs in the portfolio and encouraging customers to take the next step in the energy efficiency journey, Home Energy Analysis (CHA)field staff also promoted the Home Performance with ENERGY STAR ${ }^{\circledR}$ program through offering coupons good toward $\$ 100$ off a comprehensive home assessment. In 2013, 207 coupons were redeemed by contractors who performed a CHA for a customer and 36% of those customers had several recommended measures installed as a result of the CHA.
Eligible Measures, Efficiency
Requirements \&
Incentives
Implementation Strategy

The Home Energy Analysis program was not designed to provide additional incentives for customers to participate, nor does it offer incentives for energy efficiency measures installed by customers

Key elements of the implementation strategy included:
Recruiting and training of field staff: The staff hired to perform field work were experts in delivering home energy efficiency, several were Building Performance Institute (BPI) certified and/or RESNET certified analysts. This level of expertise proved essential in delivering accurate and credible energy saving information and ensured customer satisfaction and safety.

Web based intake tool: The online intake tool enabled the field staff to capture data as it pertained to a customer's home and its current level of efficiency. This tool proved very important in delivering a high level of customer satisfaction by providing service in a timely fashion and delivering a personalized on-site report.

Milestones

The following implementation-related administrative requirements were handled by the implementation contractor:

- Dedicated Web page and online intake tool
- GIS-enabled scheduling system
- Call Center services
- Recruiting and training of field team staff
- On-premise direct installation services
- Walk-through analysis report
- Quality assurance verification
- Post-service follow-up
- Inventory management
- Segment-targeted marketing strategy and materials
- Data tracking and reporting
- Investment tracking and reporting
- Customer satisfaction/problem resolution

Key elements of the marketing strategy included:

- Direct mail campaigns targeted a specific geographic area
- Utility newsletter bill inserts and messages
- Program website
- Press releases in targeted communities
- Email messaging
- Outreach events held in different areas throughout the state

The program primarily utilized direct mail and email media advertising to promote and direct customers to contact the call center or visit the program's website for program information and scheduling opportunities.

Major Milestone	Date
Over 14,000 Home Energy Analysis completed	$12 / 13$
Over 30,000 Home Energy Analysis completed since program launched in 2012	$12 / 13$
Over 600,000 energy-saving measures installed since program launched in 2012	$12 / 13$

EM\&V Strategy

The following evaluation activities were performed for the Home Energy Analysis (HEA) program in 2013.

Focus Groups: Focus group discussions were held in two locations with HEA participants. The group discussions were structured to assess the level of program awareness and understanding, explore motivations and perceived barriers to participation, including follow through of HEA recommendations, and gauge program satisfaction,

Field Observation: The evaluation team accompanied program analysts to observe: the HEA processes and adherence to protocols; the measure installation processes; and interaction with participants including identification of energy savings opportunities and delivery of the HEA report. The field observations

Participation

provided additional understanding of the participation process including customers' experiences with HEA analyst, direct install measures, and audit reports; their understanding of HEA recommendations; and their knowledge of additional program offerings.

Analyst Interviews: In-person interviews were conducted to gather analysts’ insights on program experiences, including training, implementation challenges, and best practices for introducing customers to other Consumers Energy programs.

Participant Online Surveys: Surveys with 2013 participants in the Home Energy Analysis program were conducted throughout the year. The participant surveys assessed satisfaction with key program elements including scheduling of the home analysis, energy savings equipment installed, the interaction with the analyst, and, the program overall. Over 2,000 surveys were completed.

Consumers Energy was responsible for general administrative oversight of the program portfolio. Key oversight functions included:

- Overall program administration
- Recruitment, selection, and management of the Implementation Contractor
- Coordination of marketing strategy/public relations among programs and market sectors
- Coordination of all educational services
- Customer satisfaction
- Data warehousing
- Management of key performance metrics and reporting
- Goal achievement within investment

Measure Description	Number of Measures Installed
Compact Fluorescent Light Bulbs	68,385
LED Night Lights	8,959
Pipe Wrap Insulation (linear feet)	174,488
Energy Efficient Showerheads	16,068
Energy Efficient Showerheads with Shower Start	376
Bathroom Faucet Aerators	22,124
Kitchen Faucet Aerators	7,334
Programmable Thermostats	1,577

	2013 Actual	2013 Plan
Electric	$\$ 1,730,680$	$\mathrm{~N} / \mathrm{A}$
Gas	$\$ 2,861,933$	$\mathrm{~N} / \mathrm{A}$
Total	$\$ 4,592,613$	$\mathrm{~N} / \mathrm{A}$

		2013 Actual w/ LLES Multiplier	2013 Plan
2013 Actual	3,354	3,435	N/A
MWh	0.4	0.4	N/A
Mcf	116,929	123,693	N/A

Benefit-Cost Test	B/C Ratio
Utility Cost Test	1.52
Total Resource Cost Test	1.42
Participant Test	20.10
Rate Impact Measure	0.44

5.5 Home Energy Report Program

Program	Home Energy Report
Objective	The Home Energy Report (HER) program provided customers with personalized information on their energy use and customized energy-saving advice, thereby motivating them to measurably and verifiably use less energy and save money on their monthly bills. The HER Program also helped to increase customer participation in other EO programs, thereby leveraging the effectiveness of the reports.
Target Market	Residential customer segments were served by the HER program. The program was automatically delivered on an opt-out basis to 260,000 households and targeted a variety of customer segments. Participants also were provided access to a Web portal. All participants were given the opportunity to opt-out at any time through the duration of the program.
Program Duration	The program officially launched in 2013 and is an ongoing element of the portfolio.
Program	The HER Program is a proven energy efficiency program that leverages large-scale consumer engagement to drive measureable and sustainable energy savings.
Description	The 2013 HER Program provided residential customers with better energy information through personalized reports delivered by mail, email and an integrated Web portal to help them put their energy usage in context and make better energy-usage decisions. Behavioral science research has demonstrated that peer-based comparisons are highly motivating ways to present information. The HER Program leveraged a comparison group for each residence and compared it to other similarly sized and located households. This behavioral science complemented other residential energy efficiency approaches, and was a driving force behind consistent and reliable behavior-based energy efficiency.
Program Logic	The HER Program presented customers with the most relevant suggestions to deliver the greatest savings.
The HER Program was organized around two concepts. First, motivate consumers	
to change their behavior by putting their usage in context. Second, provide them	
with salient, personalized advice to capitalize on this motivation to use ess energy	
and save money. Customers received individually targeted savings tips based on	
their energy usage patterns, housing characteristics, and demographics.	

Eligible Measures, Efficiency
Requirements and
Incentives

Implementation

Strategy

Residential customers were provided a personalized energy report delivered by mail, email and an integrated Web portal to help them put their energy usage in context and make better energy usage decisions.

Deemed savings values were based on documented values from the Michigan Energy Measures Database (MEMD).

Consumers Energy initially launched the HER Program as a pilot in April 2011 with 50,000 test customers. After demonstrating success, the program was expanded in subsequent years to reach 260,000 customers.

Key elements of the implementation strategy included:

- Delivery of reports: Targeted households automatically received four to six home energy reports annually depending on program design. These reports provided periodic updates on the energy usage behavior of a given household, and offered tips for saving energy.
- Delivery of Web portal: All program participants had access to a Web portal. This site enabled participants to create a profile, perform an online audit, access energy savings tips, monitor usage over time, and compare usage to neighbors for benchmarking purposes.
- Ability to opt-out: All participants had a clear method for opting out of the program if they no longer wanted to receive the information. The opt-out rate for the HER Program was less than 1%.

The implementation contractor handled implementation-related administrative requirements, including the following:

- Data tracking and reporting
- Segmentation/list strategies
- Report creation and fulfillment
- Call Center services
- Customer satisfaction/Problem resolution

The 2013 HER Program was automatically delivered on an opt-out basis to 260,000 gas and electric customers.

The following evaluation activities were performed for the Home Energy Reports in 2013:

- Review of Deemed Savings Values: The evaluation team assessed the application of deemed savings values, including determination of the control group consumption, program attrition and per unit savings calculations for various program tracks.
- Database Review: The evaluation team reviewed the program tracking database to ensure accurate and comprehensive data collection.

Consumers Energy staff were responsible for general administrative oversight of the program portfolio, including the following:

- Program administration
- Recruitment, selection, and management of the Implementation Contractors
- Coordination of marketing strategy/public relations among programs and
market sectors
- Development and placement of marketing materials and advertising
- Coordination of all educational services
- Customer satisfaction
- Data warehousing
- Management of key performance metrics and reporting
- Goal achievement within investment

Customer Type	Number of Participants
Electric Only	171,314
Gas Only	0
Combination (electric \& gas)	102,544
Total	273,858

The Cadmus Certification Report shows program participation at 355,026 , which includes 81,168 customers who were part of the control group.

	2013 Actual	2013 Plan
Electric	$\$ 2,111,089$	$\mathrm{~N} / \mathrm{A}$
Gas	$\$ 527,772$	$\mathrm{~N} / \mathrm{A}$
Total	$\$ 2,638,861$	$\mathrm{~N} / \mathrm{A}$

Energy Savings

		2013 Actual w/ LLES Multiplier	2013 Plan
2013 Actual	28,410	28,410	N/A
MWh	-	-	N/A
Mcf	51,858	51,858	N/A

Benefit- Cost Test Results

Benefit-Cost Test	B/C Ratio
Utility Cost Test	0.78
Total Resource Cost Test	0.78
Participant Test	-
Rate Impact Measure	0.27

5.6 Home Performance with ENERGY STAR ${ }^{\circledR}$ Program

Program	Home Performance whth ENERGY STAR
Objective	Produce long-term electric and natural gas energy savings in the residential sector by helping customers analyze their energy use and recommending the installation of appropriate weatherization measures, heating and cooling systems, and other high-efficient equipment.
To help promote deep energy savings and increase the percentage of customers	
who implement improvements, the program targeted residential customers in	
single-family homes and duplexes with above average consumption and household	
income.	

The program was designed to overcome one of the key barriers in the residential existing homes market - lack of information about how homes use energy and actions that will save the most energy and money. The program provided an educational resource to consumers and made it as easy as possible for them to take action.

Option 1 provided simple tools and direct installation of measures that were available immediately to the mass market, tapping the current public interest in sustainability to capture immediate energy savings.

Option 2 developed a sustainable market-based infrastructure of experienced energy professionals who could assist with the major renovation work necessary to capture long-term savings in the existing homes market.

Market Barrier

- Lacked information about home energy use and which energy-saving actions to take first
- First cost concerns for customers
- Lack of experienced home energy analysts to address more complex home performance issues
- Hassle finding contractors and arranging work

Program Element

- A variety of energy analysis tools that helped prioritize recommendations
- Financial incentives and information on lifecycle savings
- Trained and mentored providers
- Provided a list of qualified contractors that meet program standards

Under option 1, that was phased out, the Home Performance Survey included a $\$ 50$ customer fee. The fee represented the value of the service to customers and helped screen those who would be unlikely to implement improvements. The comprehensive home performance assessment used a market-based fee structure and was reimbursed based on recommended measures installed.

In terms of cross-promotions within the portfolio, Home Energy Analysis field representatives provided customers with a $\$ 100$ off coupon good toward a comprehensive home assessment under the HPwES program.

Participants who met the guidelines for the Home Performance with ENERGY STAR ${ }^{\circledR}$ Program received financial incentives for measures that are listed in the next section.
Eligible Measures, Efficiency
Requirements and
I ncentives

Eligible Measure and Efficiency Requirements	Incentive Range per Unit Combination	Electric Only
	$\$ 100-\$ 400$	
Measure Installation	$\$ 200-\$ 700$	$\$ 2$

Bonus	Page 51 of 189	
Air Sealing (20\% to 50\% reduction)	$\$ 100-\$ 400$	$\$ 40-\$ 80$
Duct Sealing (15\% to 30\% reduction)	$\$ 50-\$ 100$	$\$ 15-\$ 35$
Duct Insulation and/or Replacement	$\$ 50-\$ 100$	$\$ 15$
Roof (Attic) Insulation	$\$ 250-\$ 300$	$\$ 70$
Above Grade Wall Insulation	$\$ 200$	$\$ 50$
Basement Wall Insulation	$\$ 100-\$ 300$	$\$ 70$
Crawlspace Insulation	$\$ 100-\$ 150$	N

Implementation Strategy

Key elements of the implementation strategy included:

- Application processing. The implementation contractor coordinated processing of all incentive applications, verification of eligibility, and prompt delivery of rebate checks to contractors/customers.
- Trade Ally recruitment, education and outreach. The implementation contractor utilized account managers to facilitate the recruitment of trade allies to participate in the program. The account managers maintained regular contact with participating trade allies to ensure that:
- Trade allies were informed about the program offering and incentive application process.
- Trade allies maintained an adequate supply of program marketing materials and application forms.
- Qualifying equipment was installed.
- Concerns and issues were addressed promptly.
- Trade allies provided exceptional customer service.
- Trade allies were trained on how to sell and market the whole house approach using building science to properly diagnose a home for energy efficient improvements.

Strategies to limit free ridership and promote spillover included:

- Charged a fee for Home Performance Surveys to represent the value of the service and targeted customers who wanted to take action but needed more information before they acted.
- Offered incentives at a sufficient level to motivate customers who would not otherwise implement improvements due to the first-cost barrier.
- Utilized Consumers Energy's customer billing information to identify highuse customers who were most likely to benefit from the program.

The following implementation-related administrative requirements were handled by our implementation contractor:

- Trade ally recruitment and training
- Walk-through analysis report
- Marketing strategy and materials
- Field services
- Trade ally education, training and outreach
- Rebate processing
- Assisting with developing network of Home Performance providers
- Data tracking and reporting
- Investment tracking and reporting
- Call Center services
- Public relations
- Customer satisfaction/Problem resolution

Key elements of the marketing strategy included:

- Utility newsletter bill inserts
- Program website
- Press releases in targeted communities
- Mass media advertising
- Assisting participating contractors with marketing strategies
- Promoting comprehensive assessments by offering $\$ 100$ coupons primarily through the Home Energy Analysis Program

The program primarily utilized mass media advertising to promote general awareness of the program and directed customers to contact the Call Center or visit the website for program information. Mass media advertising included print and online advertisements in nine newspapers located in areas with a high concentration of participating contractors. The program website and online bill analysis system also promoted the availability of the program to interested customers.

Major Milestone	Date
Phased out Option 1 Home Performance Survey Delivery	$6 / 13$
Over 2,100 HPwES jobs performed	$12 / 13$

EM\&V Strategy
The following evaluation activities were performed for the Home Performance with ENERGY STAR ${ }^{\circledR}$ program in 2013.

Materials Review: The evaluation team conducted a comprehensive review of program materials to ensure that all elements of program documentation necessary to support successful implementation of the program were present.

Contractor Interview: In depth interviews were conducted with the contactors who were most active in the program (those completing over 100 projects). These interviews covered a broad range of topics including: how contractors first learned about the program and became involved; program delivery methods by contractors; understanding program requirements and impact of program changes; and most effective methods for encouraging customers to complete comprehensive upgrades. The interviews also explored the level of support contractors received through the program, contractor satisfaction and levels, and willingness to continue participation.

Participant Online Surveys: Surveys with 2013 participants in the Home Performance Program were conducted. The participant surveys assessed satisfaction with key program elements including the comprehensive home assessment, services provided by the Home Performance contractor, and the energy efficiency improvements installed.

> Consumers Energy Administrative

Consumers Energy was responsible for general administrative oversight of the program portfolio. Key oversight functions included:

- Overall program administration

Requirements	- Recruitment, selection, and management of the implementatio - Coordination of marketing strategy/public relations among pr market sectors - Coordination of all educational services - Data warehousing - Management of key performance metrics and reporting - Goal achievement within investment			
ParticipationMeasure $\begin{array}{c}\text { Number of } \\ \text { Rebates }\end{array}$				
	Home Performance Survey			1,632
	Comprehensive Home Assessment			1,027
	Duct Insulation and/or Replacement			98
	Duct Sealing - 15\% to 30\% Reduction			259
	Infiltration Reduction-20\% to 50\%			1,464
	Air Source Heat Pump (Tier 1 \& 2)			8
	Split System Central A/C (Tier 1 \& 2)			146
	Natural Gas Boiler - 95\%			38
	Gas Furnace - 94\% to 98\% AFUE			272
	Operations \& Maintenance HVAC Tune-Up			588
	ECM Motor			206
	Super High-Efficiency Gas Water Heater			43
	Tankless Water Heater			7
	Roof (attic) Insulation			1,350
	Wall Insulation (Above grade)			292
	Basement Wall Insulation			71
	Floor Insulation			40
	Crawlspace Insulation			163
	Rim Joist Insulation			1,583
	Window Replacement (Square feet)			16,292
	ENERGY STAR ${ }^{\circledR}$ CFL bulb - Regular			4,775
	Low-Flow Faucet Aerators			3,639
	Low-Flow Showerheads			1,289
	Pipe Wrap (Linear feet)			2,478
	Direct Install Kits			1,615
I nvestment				
		2013 Actual	2013 Plan	
	Electric	\$855,858	\$5,446,437	
	Gas	\$2,490,192	\$6,008,366	
	Total	\$3,346,049	\$11,454,803	

	2013 Actual	2013 Actual w/ LLES Multiplier	2013 Plan
MWh	706	759	21,251
MW	0.2	0.2	2.6
Mcf	46,788	50,999	274,488

Benefit-Cost Test Results

Benefit-Cost Test	B/C Ratio
Utility Cost Test	1.04
Total Resource Cost Test	0.78
Participant Test	2.23
Rate Impact Measure	0.42

5.7 HVAC and Water Heating Program

Program	HVAC and Water Heating
Objective	Produce long-term electric and natural gas energy savings in the residential sector by promoting the purchase and installation of high-efficiency heating and cooling equipment as well as high-efficiency water heating equipment.
Target Market	Residential customers installing new central air conditioning units, heat pumps, natural gas furnaces and boilers, and/or water heating equipment. Products installed in single-family homes, including condominiums and townhouses, were individually owned and metered for natural gas and/or electric service.
Program Duration	The HVAC and Water Heating Program was an ongoing element of the portfolio.
Program Description	The HVAC and Water Heating Program affected the purchase and installation of high-efficiency heating, cooling, and water heating technologies through a combination of market push and pull strategies that stimulated demand while simultaneously increasing market provider investment in stocking and promoting high-efficiency products. The program promoted high-efficiency ENERGY STAR ${ }^{\circledR}$ central airconditioning (SEER 15 and greater), high-efficiency natural gas furnaces (95% AFUE and higher) and boilers (87% AFUE and higher), premium efficiency furnaces and heat pumps with high-efficiency motors (electrically commutated motors - ECMs), high-efficiency storage gas water heaters (0.67 EF or greater), tankless (instantaneous) natural gas water heaters (0.82 EF or greater), programmable thermostats, and diagnostic tune-ups.
Program Logic	The program stimulated demand by educating customers about the energy and money-saving benefits associated with efficient products and providing financial incentives to overcome the first cost barrier. The program stimulated market provider investment in stocking and promoting efficient products by offering HVAC contractors several effective services including training, educational materials, and marketing collateral. Further, the existence of rebates elevated efficiency to a competitive issue that naturally motivated market providers to stock and promote targeted products. Market Barrier - First cost concerns for customers - Consumer information - Competing motivations for contractors (additional profit on Program Element - Financial incentives and information on lifecycle savings - Education materials featuring energy and nonenergy benefits of premium high-efficiency equipment - Provided contractor training on value of program participation and value to customers from

premium products but concerns about being low-cost bidder)

- Urgency of replacement decision when equipment fails
purchasing high-efficiency products. Collateral materials, including sales brochures, were provided to participating contractors.
- Provided contractors with training to better inform consumers of choices and that high-efficiency technologies are stocked and available.

Furnace, central air-conditioning, and heat pump incentives were tiered to encourage installation of higher efficiencies.

Incentives were offered for the installation of equipment that utilized an ECM blower motor, including high-efficiency natural gas furnaces.
Eligible Measures, Efficiency Requirements \& Incentives

Eligible Measure and Efficiency Requirements	Incentive per Qualifying Unit
$\begin{aligned} & \text { Split System Central AC > SEER } \\ & 15.0-15.99 \end{aligned}$	\$150
Split System Central AC > SEER 16.0 or Higher	\$250
Tier 1: Ground Source Heat Pump > 17-18.99 EER	\$200
Tier 2: Ground Source Heat Pump > 19+ EER	\$300
Tier 1: Air Source Heat Pump > 15 - 15.99 SEER	\$150
Tier 2: Air Source Heat Pump > 16 SEER	\$250
Natural Gas Furnace 95\%-95.99\%	$\begin{aligned} & \text { \$400 Jan-Mar } \\ & \text { \$250 Apr-Aug } \\ & \text { \$200 Sep-Dec } \end{aligned}$
Natural Gas Furnace 96\%-96.99\% AFUE	$\begin{aligned} & \text { \$400 Jan-Mar } \\ & \text { \$300 Apr-Aug } \\ & \text { \$250 Sep-Dec } \end{aligned}$
Natural Gas Furnace 97\%-97.99\% AFUE	$\begin{aligned} & \text { \$400 Jan-Mar } \\ & \text { \$325 Apr-Aug } \\ & \text { \$300 Sep-Dec } \end{aligned}$
Natural Gas Furnace 98\% AFUE	\$400 Jan-Mar \$325 Apr-Aug $\$ 300$ Sep-Dec
ECM Blower Motor	$\begin{aligned} & \text { \$100 Jan-Mar } \\ & \text { \$75 Apr-Aug } \\ & \text { \$150 Sep-Dec } \\ & \hline \end{aligned}$
Furnace/Boiler/Central AC Tune-Up	\$50
Natural Gas Boiler $=>90 \%$ AFUE	\$1000 Jan-Mar
$\begin{aligned} & \text { Natural Gas Boiler= } 87 \%-91.99 \% \\ & \text { AFUE } \end{aligned}$	\$750 Apr-Dec
$\begin{aligned} & \text { Natural Gas Boiler }=92 \%-94.99 \% \\ & \text { AFUE } \end{aligned}$	\$900 Apr-Dec
Natural Gas Boiler =>95\% AFUE	\$1000 Apr-Dec

Implementation Strategy

Key elements of the implementation strategy included:

- Contractor recruitment, education and outreach. The implementation contractor utilized field staff to facilitate the recruitment and training of HVAC contractors to participate in the program. The field staff maintained regular contact with participating contractors to ensure that:
- Contractors were kept informed about the program offering and incentive application process
- Contractors had an adequate supply of program marketing materials
- Qualifying equipment was readily stocked
- Contractors' concerns and issues were addressed promptly
- Application processing. The implementation contractor coordinated processing of all rebate applications, verification of eligibility, and delivery of rebate checks to customers.

Strategies to limit free ridership and promote spillover included:

- Incentives limited to high-efficiency equipment
- Incentive levels tiered to encourage purchase of high-efficiency equipment that would not have happened without the rebate
- Incentive claims had to be submitted within 30 days of purchase

The following implementation-related administrative requirements were handled by our implementation contractor:

- Coordination with other utilities for combined gas/electric savings
- Contractor recruitment
- Marketing strategy and messaging
- Field services
- Rebate processing
- Data tracking and reporting
- Investment tracking and reporting
- Call Center services
- Public relations
- Customer satisfaction/Problem resolution

Key elements of the marketing strategy included:

- HVAC meetings to discuss the program and solicit contractor involvement
- Availability of forms, including incentive forms and other collateral materials to HVAC contractors
- Online accessibility of rebate applications and program information
- Listing of participating contractors on Consumers Energy's website
- Mass-media advertising

As the program has matured and the contractor network has grown, the
HVAC and Water Heating Program was primarily marketed through these
HVAC contractors, the most direct influencers of customer HVAC purchase

decisions. Contractors received educational materials to share with their customers through training meetings and in-person visits. This strategy proved successful in 2013 as over 350 participants took part in various training sessions, performed at locations that included: distributor sites, offsite locations, and contractor offices throughout the state.

The website contained all necessary information about the program, including incentives and downloadable rebate forms.

Mass media advertising that included print, radio, and television promoted general awareness of Consumers Energy's programs and directed customers to visit the website for more program information.

Major Milestone	Date
Implemented a newly improved field verification process	$7 / 13$
Over 350 HVAC contractors attended various program trainings	$12 / 13$
Rebate application flaw rates were reduced to less than 15\% of the total applications received	$12 / 13$
Year-end overall rebate cycle time was 25 days	$12 / 13$

A newly improved field verification process was developed and implemented in July 2013. From July to December, 140 home site visits were conducted and the field verifications resulted with a 100% pass rate.

In 2013, over 350 contractors participated in various training sessions both in person and via webinar access. Since inception of the program in 2009, a total of 1,450 sessions have been conducted. The 2013 training sessions included new contractor education, tune-up quality education and program orientation for new trade ally employees. An additional purpose of these sessions was to assist trade allies by arming them with information that will help to facilitate a great customer experience.

Through continuous process evaluation and improvements, the number of total flawed applications received decreased from 55\% in 2009 to less than 15% in 2013 . The notable benefit achieved from this reduction in program flaw rate led to the reduced rebate cycle time from more than 35 days to less than 25 days in 2013.

The following evaluation activities were performed for the 2013 HVAC and Water Heating program.

Participant Online Surveys: Surveys with 2013 participants in the HVAC and Water Heating Program were conducted throughout the year. The participant surveys assessed satisfaction with key program elements including rebate levels, the energy efficient equipment installed, the quality of work performed by contractors, and the program overall. Nearly 1,200 surveys were completed by program participants.

Consumers Energy
Administrative
Requirements

Consumers Energy staff were responsible for general administrative oversight of the program portfolio. Key oversight functions included:

- Overall program administration
- Management of the implementation contractor
- Coordination of marketing strategy/public relations among programs and market sectors
- Development and placement of marketing materials and advertising
- Coordination of all educational services
- Data warehousing
- Customer satisfaction
- Management of key performance metrics and reporting
- Goal achievement within investment

Measure Description	Number of Rebates
Split System Central AC > SEER 15.0	599
Split System Central AC > SEER 16.0	1,305
Tier 1: Ground source heat pump $>$ 17 EER*	4
Tier 2: Ground source heat pump $>$ 19 EER*	72
Tier 2: Air source heat pump >15 SEER*	16
Tier 3: Air source heat pump >16 SEER*	45
ECM blower motor	6,315
Natural gas boiler $\geq 87 \%$ AFUE	11
Natural gas boiler $>90 \%$ AFUE	116
Natural gas boiler $>92 \%$ AFUE	10
Natural gas boiler $>95 \%$ AFUE	107
Natural gas furnace 94% AFUE	2
Natural gas furnace 95% AFUE	6,173
Natural gas furnace 96% AFUE	8,407
Natural gas furnace 97% AFUE	1,728
Natural gas furnace 98% AFUE	140
Natural gas water heater ≥ 0.67 EF	124
Tankless gas water heater EF ≥ 0.82	136
Natural gas furnace/boiler diagnostic tune-ups	2,734
Air conditioning tune-up	674

Setback Thermostat	9,887
Total	38,605
*Replacement Only 61 of 189	

I nvestment

	2013 Actual	2013 Plan
Electric	$\$ 2,033,870$	$\$ 3,334,469$
Gas	$\$ 7,252,346$	$\$ 9,507,787$
Total	$\$ 9,286,216$	$\$ 12,842,256$

Energy Savings

	2013 Actual	2013 Actual w/ LLES Multiplier	2013 Plan
MWh	5,502	6,002	4842
MW	1.1	1.2	1.2
Mcf	410,922	444,641	423,405

Benefit-Cost Test Results

Benefit-Cost Test	B/C Ratio
Utility Cost Test	3.05
Total Resource Cost Test	1.43
Participant Test	2.73
Rate Impact Measure	0.56

5.8 I ncome Qualified Energy Assistance Program

Program Income Qualified Energy Assistance

Provide installation of energy efficiency measures and energy education at no cost to income qualified residential customers to assist in decreasing energy usage resulting in a reduction of utility costs. The program is offered to both single-family and multifamily customers within Consumers Energy's service territory. The program also coordinates and collaborates with local community action agencies (CAA's) and other nonprofit agencies to leverage existing state and federal funding for income qualified residents.

Residential customers with a household income that is at or below 200% of the federal poverty level.
Program
Duration
The Income Qualified (IQ) Energy Assistance Program is an ongoing element of the energy efficiency portfolio.
Program
Description
The Income Qualified Energy Assistance Program is comprised of several initiatives that deliver energy-efficiency products, services, and education at no cost to customers at or below 200% of the federal poverty level. The initiatives included outreach to both single- and multifamily customers with installations of energy efficient measures and energy education. In addition, program staff worked closely with Community Action Agencies (CAAs) and other nonprofit agencies to leverage existing state and federal funding to provide comprehensive weatherization assistance. The program's collaborative approach of engaging and cooperating with local agencies fostered greater public awareness toward adopting energy efficiency practices.

Eligible Measures, Efficiency
Requirements \&
Incentives

I mplementation Strategy

Market Barrier

- Limited state and federal funding to leverage comprehensive weatherization services
- Lack of energy efficiency awareness
- Ability to reach IQ target market customers and validate eligibility

Program Element

- Continued coordination with local CAAs and many nonprofit agencies to maximize the number of homes that can be weatherized.
- Utilized advertising opportunities in targeted communities. Provided marketing collateral and education to customers through the various program initiatives to reinforce behavioral changes.
- Worked with existing nonprofit agency contact/client lists and utilized Consumers Energy database that included income qualified customers for targeted outreach opportunities. Additional outreach efforts included community events in specific geographical locations while working with local media to develop awareness through advertising channels.

Equipment and installation costs for all eligible measures are provided at no cost to eligible customers. These installations were provided by field technicians employed by the implementation contractor, in addition to coordinated effort with local CAAs and other nonprofit agencies that provide comprehensive weatherization services.

Eligible measures include but are not limited to the following:

- Insulation (attic, wall, band joist)
- Blower door testing, pre- and post-test
- Air sealing
- Appliance/equipment replacements with high-efficiency (water heaters, refrigerators)
- Lighting (CFLs and LEDs)
- Setback thermostats
- Water-saving measures (low-flow showerheads, aerators, pipe wrap, etc.)
- Furnace/boiler replacements
- ECM motor replacements
- Furnace tune-ups

Key elements of the implementation strategy included:

- Coordination with CAAs and other nonprofit agencies including communitybased organizations.
o Summary - The exhaustion of American Reinvestment Recovery Act (ARRA) funds in 2012 deeply impacted CAA program participation due to funding reductions and respective staffing cuts, therefore, the program began outreach to other non-profit agencies to enlist further was very small in comparison to previous years.
- Recruitment and hiring of private-sector contractors. Subcontractors were used in 2013 for the IQ program.
o Summary - Two firms were hired to provide services for the installation of energy efficiency measures.
- Targeting income qualified single-family residents and owners of multi-family properties with low-income residents to provide turnkey direct-install services for individual residential living units.
o Summary - Several methods were used, such as apartment owner listings, CAA supplied information, subcontractor leads, and events which allowed specific targeting of owners of income qualified multifamily properties.
- New Programs. The Helping Neighbors initiative launched in 2011 as an innovative community-focused energy efficiency program. This concept continued in 2013 and was delivered by the IC's in-house field services team for single-family homes. In 2013, this initiative became a hybrid approach ranging from direct installation of low-cost measures to deeper savings with insulation installations and air-infiltration measures along with energy education.
o Summary - In 2013, this initiative reached 8,918 homes.
- Training. Program management continued meeting with CAAs and local nonprofit agencies to encourage participation and provide education on how the program could benefit their organization and the customer. In addition, separate training was developed for recipients of energy measures in the form of a web-based tool known as Every Day Actions Save Energy (EASE).
o Summary - Training was an ongoing part of the IQ Program for 2013. Program management provided Community Empowered Energy Efficiency (CE3) seminars to various participating multi-family properties and EASE training for single-family residents.

This program addressed a hard-to-reach sector, challenged by limited income and lack of funding available for investment in energy efficiency. Therefore, free ridership was not a concern.

The IC handled administrative requirements, including the following:

- Administrative coordination with local agencies
- Competitive bid process to engage additional local contractors
- Marketing strategy and materials
- Payment processing
- Data tracking and reporting
- Investment tracking and reporting
- Call Center services
- Managing public relations
- Customer satisfaction/Problem resolution

Marketing Strategy

In 2013, marketing efforts focused on several collaboratives to reach the income qualified customer segment. Key methods included:

- Collaboration with Saginaw Habitat for Humanity

- Participation with Saginaw Housing Commission summer event
- Attendance at Saginaw Council meetings
- Participation in Saginaw's Light Up the Night event
- Cooperative work with Bay City Electric Light \& Power IQ Program
- Attendance at several church summer events

Marketing and outreach efforts also attempted to engage customers during their daily routines, such as providing marketing materials on public transportation, in Consumers Energy bill payment centers, and participating in neighborhood events. The program used the following marketing pieces to engage customers and reinforce energy-saving messages:

- Informational brochures
- Bill inserts
- Posters
- Educational brochures
- Yard signs
- Press releases
- Door hangers
- Information for newsletters and articles
- Thank you postcard
- Advertising on city buses
- Local media coverage of installation work

Major Milestone	Date
Over 5,120 single family homes and 3,798 multifamily homes received assistance through the program	$12 / 13$

EM\&V Strategy
The 2013 evaluation of the Income Qualified portfolio included an assessment of the various program elements and the interaction of the various elements of the program including agency-coordinated activities and program elements delivered directly to customers.

Participant Surveys: Surveys were conducted with approximately 150 participants in the Helping Neighbors Program. The purpose of this study was to understand: how customers learned of the Income Qualified Energy Assistance Program's Helping Neighbors Single Family Initiative; how they typically learn about ways to reduce energy costs; their recall of any tips to save energy provided by the energy technician; what efforts the energy technician made to cross-promote other Consumers Energy programs and what affect that had on participants; and their overall satisfaction with Consumers Energy. In addition, the survey verified the installation of energy-saving measures by the program technician or installation of equipment that was left behind during the site visit.

Stakeholder Interviews: Interviews were conducted with program staff, including Consumers Energy program manager and implementation contractor staff. Interviews also were conducted with CAA staff that partner with Consumers Energy to deliver services to the income qualified population. The interviews were tailored to address topics specific to the stakeholder involvement in the programs (goals, barriers to delivery, program changes, tracking/ reporting issues, etc.).

Logic Model Development: The logic model documented key program objectives, inventoried program activities, and mapped the activities to the program objectives they supported.

Consumers Energy staff were responsible for general administrative oversight of the program, including the following:

- Overall program administration
- Management of the implementation contractor
- Coordination of marketing strategy/public relations among programs and market sectors
- Coordination among participating CAAs and other nonprofit agencies
- Coordination of all educational services
- Data warehousing
- Customer satisfaction
- Management of the evaluation contractor
- Managment of key performance metrics and reporting
- Goal achievement with investment

Participation

Measure	Number of Installed Measures
Lighting (CFL bulbs)	41,408
Faucet Aerator	13,216
Low-Flow Showerhead	6,700
Setback Thermostat	1,550
Refrigerator Replacement	263
Band Joist Insulation	$26,318 \mathrm{sq} . \mathrm{ft}$.
Wall Insulation	$178,926 \mathrm{sq} ft.$.
Attic Insulation	$1,367,147 \mathrm{sq} ft.$.
Air Sealing	$908,737 \mathrm{sq} . \mathrm{ft}$.
HVAC \& ECM Motor (Furnace Replacement)	375
Furnace Tune-Up	3,029
Pipe Wrap	$19,239 \mathrm{ft}$.

Investment

	2013 Actual	2013 Plan
Electric	$\$ 1,553,208$	$\$ 1,554,158$
Gas	$\$ 9,892,713$	$\$ 9,895,367$
Total	$\$ 11,445,921$	$\$ 11,449,525$

Energy Savings

		2013 Actual w/ LLES Multiplier	2013 Plan
MWh	2,033	2,075	1,540
MW	0.2	0.2	0.2
Mcf	84,676	89,201	64,366

Benefit-Cost Test
Results

Benefit-Cost Test	B/C Ratio
Utility Cost Test	0.40
Total Resource Cost Test	0.40
Participant Test	-
Rate Impact Measure	0.25

5.9 Insulation and Windows Program

Program	Insulation and Windows Program
Objective	Produce long-term electric and natural gas energy savings in the residential sector by promoting the purchase and installation of high-efficiency windows and doors as well as upgrades to home insulation.
Residential customers in single-family homes and duplexes in Consumers Energy's	
electric, gas and combination territories.	

- Finding contractors and arranging work remainder of the year.
installations
- Training and mentoring for providers
- Provided contractor training on value of program participation and value to customers from purchasing high-efficiency products, collateral materials including sales brochures were provided to participating contractors

Eligible Measures, Efficiency
Requirements \&
Incentives

Customers participating in the Insulation and Windows Program received financial incentives for implementing insulation and window measures that met program eligibility requirements. Beginning in the second quarter of the year, insulation incentive levels were reduced to help provide continuity of the program for the

Eligible Measure and Efficiency Requirement	Customer Type: Combination	Customer Type: Gas - Only	$\begin{gathered} \text { Customer } \\ \text { Type: } \\ \text { Electric - Only } \end{gathered}$
Roof (Attic) Insulation minimum 500 sq. ft. installed	$\begin{aligned} & \text { Jan-Mar } \$ 200 \\ & \text { Apr-Dec } \$ 125 \end{aligned}$	$\begin{aligned} & \text { Jan- Mar } \$ 200 \\ & \text { Apr-Dec } \$ 125 \end{aligned}$	$\begin{aligned} & \text { Jan-Dec } \\ & \$ 50 \end{aligned}$
Above Grade Wall Insulation - minimum 500 sq. ft. installed	$\begin{aligned} & \hline \text { Jan-Mar } \\ & \$ 150 \\ & \text { Apr-Dec } \$ 125 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Jan-Mar } \\ \text { \$150 } \\ \text { Apr-Dec } \$ 125 \\ \hline \end{array}$	$\begin{aligned} & \text { Jan-Dec } \\ & \$ 50 \end{aligned}$
Basement Wall Insulation - minimum 500 sq. ft. installed	$\begin{aligned} & \text { Jan-Mar } \$ 200 \\ & \text { Apr-Dec } \$ 50 \end{aligned}$	$\begin{aligned} & \text { Jan-Mar \$200 } \\ & \text { Apr-Dec } \$ 50 \end{aligned}$	Jan-Dec \$50
Crawlspace Insulation minimum 200 sq. ft. installed	$\begin{aligned} & \text { Jan-Mar } \$ 100 \\ & \text { Apr-Dec } \$ 50 \end{aligned}$	$\begin{aligned} & \text { Jan-Mar } \$ 100 \\ & \text { Apr-Dec } \$ 50 \end{aligned}$	Jan-Dec \$10
Rim Joist - must insulate all accessible rim joist areas	Jan-Dec \$50	Jan-Dec \$50	Jan-Dec \$20
Window Replacement -U-factor must be ≤ 0.30 or rated as ENERGY STAR ${ }^{\circledR}$ for Northern climate	\$15 per opening or \$1 per square foot		
Patio Door Replacement -U-factor must be ≤ 0.30 or rated as ENERGY STAR ${ }^{\text {® }}$	\$40 per opening or \$1 per square foot		

Implementation
Strategy

Key elements of the implementation strategy included:

- Application processing. The implementation contractor coordinated processing of all incentive applications, verification of eligibility, and prompt delivery of rebate checks to customers.
- Contractor participation, education and outreach. The implementation contractor utilized account managers to facilitate the participation of contractors in the program. The account managers maintained regular contact with participating trade allies to ensure that:
- Trade allies were informed about the program offering and incentive application process.
- Trade allies maintained an adequate supply of program marketing materials and application forms.
- Qualifying equipment was installed.
- Concerns and issues were addressed promptly.

Strategies to limit free ridership and promote spillover included:

- Incentives limited to high-efficiency measures
- Offering incentives at a sufficient level to motivate customers who would not otherwise implement improvements due to the first-cost barrier
- Incentive claims had to be submitted within 30 days of purchase

The following implementation-related administrative requirements were handled by the implementation contractor:

- Contractor participation and training
- Marketing strategy and materials
- Field services
- Outreach
- Rebate processing
- Data tracking and reporting
- Investment tracking and reporting
- Call Center services
- Public relations
- Customer satisfaction/problem resolution
- Quality Assurance

Key elements of the marketing strategy included:

- Utility newsletter bill inserts
- Program website
- Web banner/ads
- Assisting participating contractors and retailers with marketing strategies

Engage Contractors. Outreach and training were offered to contractors and retailers to motivate them to promote the program incentives to their customers. They were equipped with marketing and promotional materials (e.g., product sheets, rebate forms) and training on program terms and conditions. Outreach

Milestones
activities included:

- Mailing program materials
- Followup telephone calls
- Orientation meetings
- In-person and in-store visits by account managers
- Email newsletters

Provide Complete Website Presence. The program was outlined in detail on the Consumers Energy website. Customers and contractors were able to review qualifying measures and download incentive applications and important program documents

Major Milestone	Date
A total of 743 contractors submitted at least one rebate application and of these, $327(44 \%)$ submitted more than 5 applications.	$12 / 13$

The following evaluation activities were performed for the Insulation and Windows (INWIN) Program in 2013.

Focus Groups: Focus group discussions were held in two locations (Lansing and Troy) with INWIN participants. The group discussions were structured to: assess the level of program awareness and understanding; explore motivations and perceived barriers to participation; consider how the path of participation was determined; and gauge program satisfaction.

Participant Telephone Surveys: A total of 144 telephone surveys with program participants were conducted. The objectives of the survey were to:

- Assess the level of customer awareness of the INWIN rebates and program participation options
- Explore customers' motivations and perceived barriers to participation, including reasons for choosing the contractor-install or do-it-yourself (DIY) option
- Evaluate the participation process, including the ease of the application process and satisfaction with program rebates
- Assess customers' experiences with contractors and the effectiveness of contractors promoting the program
- Recruit households for site visits

Site Visits: Site visits were conducted to verify installed amounts of insulation and windows measures, and R-values of INWIN Program insulation measures and determine appropriate installation rates for reporting savings. Site visits were conducted in a total of 28 homes, including 23 homes with insulation measures, 15 homes with windows installations, and two homes with both insulation and window measures. The evaluation team technicians visually inspected and physically measured installations of attics, rim joists, and crawlspace insulation and windows. For wall and basement wall insulation, which precluded direct access to the insulation, field technicians used infrared imaging to verify insulation installations.

Flawed Application Review: The evaluation team conducted a review of submitted applications that were incomplete or contained errors that delayed processing. Missing or erroneous information was categorized to determine areas of primary reasons for application rejection or delays in processing and to identify mechanisms to reduce flaw rates.

Participant Online Surveys: Surveys with 2013 participants in the Home Energy Analysis Program were conducted throughout the year. The participant surveys assessed satisfaction with key program elements including ease of application, rebate level, energy-savings improvements made, interaction with the contractors, and the program overall. Over 1,000 surveys were completed.

Consumers Energy was responsible for general administrative oversight of the program portfolio. Key oversight functions included:

- Overall program administration
- Recruitment, selection, and management of the implementation contractor
- Coordination of marketing strategy/public relations among programs and market sectors
- Coordination of all educational services
- Customer satisfaction
- Data warehousing
- Management of key performance metrics and reporting
- Goal achievement within investment

Measure	Number of Rebates
Roof (Attic) Insulation	4,389
Above Grade Wall Insulation	1,192
Basement Wall Insulation	207
Crawlspace Insulation	260
Rim Joist	948
Window Replacement	5,563
Patio Door Replacement	1,706

Investment

	2013 Actual	2013 Plan
Electric	$\$ 678,638$	$\mathrm{~N} / \mathrm{A}$
Gas	$\$ 2,325,038$	$\mathrm{~N} / \mathrm{A}$
Total	$\$ 3,003,677$	$\mathrm{~N} / \mathrm{A}$

Energy Savings

		2013 Actual w/ LLES Multiplier	2013 Plan
MWh	660	726	N/A
MW	0.4	0.4	N/A
Mcf	65,421	71,963	N/A

Benefit-Cost Test Results

Benefit-Cost Test	B/C Ratio
Utility Cost Test	1.83
Total Resource Cost Test	0.36
Participant Test	0.67
Rate Impact Measure	0.51

5.10 Residential Multifamily Program

Program	Residential Multifamily
Objective	The primary goal of this program was to produce immediate electric and natural gas energy savings in multifamily buildings through the direct installation of energy-saving measures in individual living units and common areas. A second program objective was to achieve additional energy savings through the promotion of high-efficiency equipment for prescriptive, custom, and comprehensive retrofit projects.
Target Market	All property owners of multifamily buildings, including apartments, condominiums, dorms, and assisted living, were eligible to participate. In 2013, the Multifamily Program offered direct installation and prescriptive, custom, and comprehensive measures to both residential and commercial customers. Targeted, proactive outreach efforts were utilized to influence the multifamily market sector.
Program	This program has been an ongoing element of the Company's portfolio since 2009.
Duration	The Multifamily Program was designed to offer property owners a turnkey service to help residents reduce energy use in their living units through the direct installation of various energy saving devices. The direct install service was provided at no cost to property owners and tenants. In addition to the products installed, educational materials were left behind in the individual units that explained the energy and money-saving benefits associated with the installed energy efficient measures.
Description	The program also informed property owners of the benefits of upgrading and maintaining the operational efficiency of existing HVAC equipment. Furnace tune-ups, completed by a certified HVAC technician, were offered to properties at no cost to the owners or tenants. Program field staff proactively trained and equipped a network of trade allies to perform the work and communicate the benefits of equipment maintenance to the customer. The trade allies served as the primary means of delivering the message and benefits of furnace tune-ups to the end-use customer. A total of 7,307 furnace tune-ups were completed in 2013 as a result of the residential Multifamily Program.
For properties that were interested in reducing a significant portion of their energy	

use, the Multifamily Program offered the Comprehensive Building Initiative. This pilot was targeted at properties that were undergoing multiple retrofits which saved at least 10% of their annual energy use.

The Multifamily Program encounters market barriers from two groups; the property owner and the tenant. The following common barriers are described below, along with program strategies that were employed to address them:

Market Barrier

For residents:

- Hassle of researching how to reduce their energy bills
- Hesitancy to invest in products that may stay with the unit when they leave
- Lack of information about potential energy savings
- Concern regarding installation technicians entering the apartment

For property owners:

- Hassle of making arrangements to install measures
- Lack of awareness regarding energy and nonenergy benefits
- Emphasis on first-cost rather than lifecycle cost
- Hesitancy to invest in products that are unfamiliar

Program Element

- Turnkey service; work was performed for them
- Materials and installation were provided free to the resident
- Leave-behind educational materials for residents
- A member of the apartment community staff was present at all times to escort the installation technicians
- Simple turnkey service
- Marketing materials, case studies, website, and "good will" benefit of offering free measures to their residents
- Financial incentives, lifecycle/payback information, and proactive outreach meetings with decision makers for budget expenditures
- Products left behind for the owner to install and test

Direct Install of In-Unit Measures. Property owners were offered a free direct install service for reducing in-unit energy use.

Prescriptive and Custom Measures. Common energy-saving measures for multifamily complexes were added to an application with the incentive amounts based on deemed energy savings from the Michigan Energy Measures Database (MEMD). This portion of the Multifamily Program was added to address deeper energy-saving opportunities than were possible through direct install measures.

Comprehensive Whole Building Initiative. Properties were given extra incentives when their overall energy use was reduced by at least 10%. The program team used energy modeling to predict energy reduction based on measures installed. By working closely with property managers, the Multifamily

Program staff created an energy model of the building. Based on the energy savings information provided by the model, the customer then created a plan to remodel their building. The predicted energy savings from the retrofits determined the level at which the measure incentives would be increased. The table below illustrates the tiered incentive amounts at various energy-saving levels.

Comprehensive Program Incentive Structure		
Energy Savings Tier	Incentive per kWh Saved	Incentive per Mcf Saved
Tier $1-10 \%+$	$\$ 0.09$	$\$ 9.00$
Tier $2-20 \%+$	$\$ 0.12$	$\$ 10.00$
Tier 3-30\%+	$\$ 0.14$	$\$ 11.00$

Deemed savings values were based on the MEMD
The Multifamily Program offered the following measures as part of the Direct Install portion of the program. The products were installed at no cost to the property owner or residents.

Direct Install Measure	Efficiency Requirements
CFL Lamp	9.5 watt
LED Lamp	9 watt
CFL Candelabra	3 watt
LED Candelabra	1.2 watt
LED Exit Sign	1.5 gpm
Low-Flow Showerhead	1.0 gpm
Bathroom Faucet Aerator	1.5 gpm
Kitchen Faucet Aerators	R-4
DHW Pipe Wrap	

The Multifamily Program offered the following measures as part of the Prescriptive portion of the program. Property owners and managers were eligible to receive incentives for the retrofit improvements listed below.

Multifamily Prescriptive Measures		
Prescriptive Measures - Common Area	Prescriptive Incentive Amount	
CFL $\leq 115 \mathrm{~W}$ or Specialty	$\$ 1-\$ 8$	Lamp
Compact Fluorescent Fixture	$\$ 25$	Fixture
LED Lamp Replacing 50W -100W	$\$ 20-\$ 25$	Lamp

	Incandescent		
	LED PAR Flood Lamp	\$20	Lamp
	LED MR16 Lamp	\$5	Lamp
	LED Candelabra Lamp 3W-5W	\$10-\$15	Lamp
	CFL Candelabra Lamp 5W-13W	\$8-\$10	Lamp
	LED Fixture Replacing Incandescent	\$25	Lamp
	HP T8 Lamp Replacing T12	\$3	Lamp
	HP T8 Lamp Replacing T12HO	\$10	Lamp
	1-4 Lamp HP T8 Replacing T12	\$15-\$40	Lamp
	1-4 Lamp RW HP T8 Replacing T12	\$20-\$50	Lamp
	4 ft . Lamp Removal w/ HP/RW T8 Retrofit	\$5	Lamp
	8 ft . Lamp Removal w/ HP or RW T8 Retrofit	\$10	Lamp
	LED, T-1, or Electroluminescent Exit Signs	\$12.50	Fixture
	Exterior HID to CFL $\leq 400 \mathrm{~W} \$ 45 /$ Fixture	\$45-\$120	Fixture
	Exterior HID to T5/T8 Linear Fluorescent	\$0.50	Watt Reduced
	Exterior HID to LED/Induction $<400 \mathrm{~W}$	\$45-\$180	Fixture
	Vending Equipment Controller	\$50	Unit
	Occupancy Sensor for Interior Lights	\$40-\$100	Fixture
	Occupancy Sensor for Exterior Fixtures	\$0.20	Watt
	Space Heating Boiler Tune-Up	\$0.25	MBH
	DHW Boiler Tune-Up	\$0.25	MBH
	Furnace Tune-Up 40 MBH - 120 MBH	\$40-\$60	Tune-Up
	Furnace Tune-Up $>120 \mathrm{MBH}$	\$0.50	MBH
	Chiller Tune-Up	\$15	Ton
	High-Efficiency Space Heating Boiler $\geq 90 \%$	\$3-\$5	MBH
	Furnace Replacement $\geq 92 \%$	\$80-\$150	Furnace
	Infrared Heater Replacing Standard Unit Heater	\$6	MBH
	Boiler Water Reset Control	\$0.35	MBH
	Indirect Water Heater with Efficiency of $\geq 84 \%$	\$1-\$2.50	MBH
	Instant Hot Water Heater $\geq 82 \%$	\$175	MBH
	Tank Style Water Heater EF ≥ 0.80	\$200	MBH
	Variable Frequency Drive on HVAC Fans	\$60	HP
	Variable Frequency Drive on HVAC Pumping	\$100	HP

	Pipe Wrap	\$1.50-\$6.00	Foot
	Leaking Steam Trap Repair or Replacement	\$100	Trap
	Programmable Thermostat	\$10	Unit
	Air Conditioner - <5.4 Tons, 1 ph - 14 SEER	\$6	Ton
	Air Conditioner - <5.4 Tons, 3 ph - 11.6 SEER	\$6	Ton
	Air Conditioner - <20 Tons - 11 SEER	\$8-\$15	Ton
	Air Conditioner - <63.3 Tons - 10 SEER	\$15	Ton
	Pool Water Heater $\geq 84 \%$	\$2	MBH
	Pool Cover	\$0.50	Sq. Ft.
	Prescriptive Measures - In Unit	Prescriptive Amount	centive
	CFL $\leq 115 \mathrm{~W}$ or Specialty	\$1-\$4	Lamp
	Compact Fluorescent Fixture	\$10	Fixture
	LED Fixture	\$10	Fixture
	LED Replacing 40W-100W Incandescent	\$4-\$8	Lamp
	LED PAR Flood Lamp	\$10	Lamp
	Low-Flow Bath Aerator $\leq 1.75 \mathrm{GPM}$	\$2	Aerator
	Low-Flow Kitchen Sprayer Aerator $\leq 1.75 \mathrm{GPM}$	\$3	Aerator
	Low-Flow Showerhead ≤ 1.75 GPM	\$15-\$30	Showerhead
	Tankless Gas Water Heater	\$50	Unit
	Pipe Wrap - Gas Domestic Hot Water	\$0.75	Foot
	Space Heating Furnace Replacement $\geq 92 \%$	\$80	Furnace
	Furnace Replacement $\geq 95 \%$	\$125-\$150	Furnace
	Furnace Tune-Up $\geq 40 \mathrm{MBH}$	\$40-\$80	Tune-Up
	Package Terminal Heat Pump - 9.1 EER	\$50	Unit
	Room Air Conditioner CEE Tier 2	\$20	Unit
	Programmable Thermostat	\$10	Unit
	Prescriptive Measures - Building Envelope	Prescriptive Amount	ncentive
	ENERGY STAR ${ }^{\circledR}$ Door	\$10	Door
	Door Weather Stripping	\$1.75	Door
	ENERGY STAR ${ }^{\circledR}$ Window	\$100	$100 \mathrm{Sq} . \mathrm{Ft}$.
	Airtight Can Light	\$5	Fixture
	Duct Sealing	\$6	1,000 Sq. Ft.

| Duct Insulation | $\$ 10$ | $1,000 \mathrm{Sq} . \mathrm{Ft}$. |
| :--- | :---: | :---: | :--- |
| Wall Insulation | $\$ 40$ | $1,000 \mathrm{Sq} . \mathrm{Ft}$. |
| Roof Insulation | $\$ 20$ | $1,000 \mathrm{Sq} . \mathrm{Ft}$. |
| Reduce Air Infiltration by 30% | $\$ 5-\$ 25$ | $1,000 \mathrm{Sq} . \mathrm{Ft}$. |

I mplementation Strategy

Key elements of the implementation strategy included:

- Targeted Outreach to Property Owners. Program representatives concentrated on building relationships with property management companies, owners, associations and their members to recruit participation in the program. The program team assisted customers as necessary to coordinate direct installations and complete rebate application requirements. In addition, property owners were reached through direct mail, participation in association events, one-on-one meetings with program staff, and other channels. On several occasions, the Multifamily Program outreach team utilized Resident Education events to reach the individual residents before installation occurred. The outreach team provided dinner and educated the residents on the benefits of the direct install products. The residents were shown samples of the showerheads, aerators, and light bulbs to get a preview of what would be installed in their apartment units. These education events helped the direct install technicians achieve a higher installation rate because the residents were educated on the program and more receptive to the installed measures.
- Targeted Outreach to HVAC Trade Allies. Program representatives informed and recruited participation from trade allies for the Furnace TuneUp Program. This program was offered at no cost to the owner or tenant. Outreach included orientation meetings and training of trade allies to perform and communicate HVAC tune-up benefits. Program representatives also worked directly with property owners to schedule and coordinate the furnace tune-up and other direct installation measures for individual living units. Due to the incentives available for this measure, several trade allies were able to hire additional staff to support the furnace tune-up portion of their business.
- Direct Installs.
o Standard Direct Install: Program representatives identified interested property owners and scheduled appointments for the free installation of energy-saving devices in the individual living units and common areas. In 2013, three new direct install offerings were added to the Multifamily Program: LED 60 -watt equivalent replacement bulbs, LED/CFL candelabra bulbs, and LED exit signs. The installation crews were trained on the technical and educational benefits of all of the energy-saving devices installed. In addition, educational materials describing the work performed and energy-saving benefits of the installed items were left in each of the living units. The Multifamily Program contributed to market transformation by installing 28,680 screw-in LED bulbs in 2013.
o Pipe Wrap: Property owners also were offered pipe wrap insulation on unwrapped domestic hot water piping in both common areas and in-unit areas. The insulating pipe wrap prevented heat loss through the piping in unconditioned spaces.
o Furnace Tune-Ups: Additionally, the Multifamily Program incorporated furnace tune-ups into the Direct Install Program

offering. Trade allies were given the opportunity to offer free furnace tune-ups to qualifying properties and received an incentive amount of $\$ 50$ per tune-up completed. The Multifamily Program incentivized over 7,500 furnace tune-ups in 2013.
- Prescriptive and Custom Programs. Going beyond the direct installation of low-cost measures and to help building owners continue to reduce their energy use and costs, program representatives conducted site assessments to help target common high-efficiency retrofit opportunities. Opportunities for energy efficiency improvements would then be presented to the building owner in an effort to encourage participation in the prescriptive and custom portion of the program. In 2013, more than 197 projects received incentives totaling more than $\$ 502,000$.
- Comprehensive Whole Building Program. The Comprehensive Program was developed to encourage and address large improvement projects that reduced a significant percentage of the property's overall energy use. Qualifying projects needed to include measures from at least two energy-saving measure categories and show a reduction in the overall energy use of the building of at least 10%. The Multifamily Program team used building energy modeling to provide a customized estimate of the yearly energy savings expected after the recommended retrofits were complete. Incentives were then awarded based on the level and potential of energy savings. Higher incentives were provided based on energy-saving tiers of $10-19 \%, 19-29 \%$, and $30 \%+$.
- Collaboration Efforts. Beginning in September 2011, Consumers Energy and DTE began coordinating multifamily direct install projects in single-fuel service territories. This collaborative effort continued in 2013 and resulted in a total of 11,772 direct install units at 113 properties that had both Consumers Energy and DTE as their utility provider.
- Program Operations. The following implementation-related administrative requirement were handled by the implementation contractor:
o Marketing and educational materials
o Field services including direct install of products and QA/QC inspections
o Product ordering and inventory
o Data tracking and reporting
o Investment tracking and reporting
o Prescriptive and custom application processing
o Call Center services
o Trade ally and customer outreach/training
o Customer satisfaction/Problem resolution
o Engineering support and energy modeling
A highly targeted marketing strategy was employed in 2013. Recruitment efforts targeted property management companies in an effort to secure agreements to address multiple properties through a single point of contact before targeting owners and managers of individual properties.

A targeted marketing strategy with property owners and management companies increased awareness of the Consumers Energy Multifamily Program offerings. The targeted marketing approach focused on specific measures and specific target markets. Based on these targets, direct mail campaigns were created, program

collateral was designed, and recognition of program participants was generated.
Marketing and outreach strategies included:
o In-person visits by program representatives
o Walk-through energy assessments of properties to encourage participation in the direct install, prescriptive and custom measures
o Targeted advertising in trade organization and association publications
o Outreach to property management associations to recruit assistance in distributing information about the program through existing channels
o Direct mailings promoting the program offerings and benefits
o Utilizing our trade ally network to promote and distribute information about the program
o Trade ally recognition awards
o Redesigned Multifamily Program Catalog
As market penetration of direct install measures increases, program staff has identified additional energy-saving opportunities to meet program goals. In 2013, there was a greater focus on prescriptive and custom measures, going beyond direct install and introducing a more targeted marketing approach.

The 2013 Program Catalog was expanded to create a more complete overview of all the program offerings. Included in the 2013 catalog were descriptions of all direct install product offerings, prescriptive and custom measures, efficiency requirements, and all of the necessary forms and worksheets necessary to submit rebate applications.

Major Milestone	Date
Launched redesigned Multifamily Program catalog	$3 / 13$
Increased market transformation by switching from direct install CFLs in individual units to direct install LEDs	$3 / 13$
Launched direct install furnace tune-ups initiative	$4 / 13$

EM\&V Strategy
The following evaluation activities were performed for the Multifamily Direct Install Program in 2013.

Evaluability Assessment: As the program focused on increased common area savings opportunities, including comprehensive, multi-measure efficiency upgrades and the utilization of a building energy simulation model, an evaluability assessment was conducted. The assessment included a review of: data collection protocols; development of model inputs; model algorithms; calibration approaches; and assumption sensitivity. Guidelines for evaluable and accurate modeling were developed.

Benchmarking and Best Practices Study: The Multifamily program was benchmarked against 16 other utility programs that were of similar size or geography; identified as exemplary programs (e.g., designated by the American

Council for an Energy Efficient Economy); offered similar measures (including both direct install measures and common area measures). The benchmarking sought to compare programs in terms of the magnitude of savings, the comprehensiveness and diversity of measures offered through the program, and cost-effectiveness. In addition, the analysis identified best practices for effectively addressing barriers faced by this hard-to-reach market segment in order to achieve comprehensive energy savings.

Consumers Energy staff were responsible for general administrative oversight of the program portfolio including:

- Management of the implementation contractor
- Coordination of marketing strategy/public relations among programs and market sectors
- Coordination of all educational services
- Customer satisfaction
- Data warehousing
- Management of the evaluation contractor
- Management of key performance metrics and reporting
- Goal achievement within investment

Due to a greater focus on LED lighting and Pipe Wrap, Consumers Energy experienced excellent participation in the direct install portion of the program in 2013. Below are the total quantities of products installed by the Multifamily Program technicians in 2013.

Direct Install Product Count	
In-Unit Direct Install Measure	Number of Installed Measures
CFLs	134,207
LEDs	28,679
Low-Flow Showerheads	14,859
Faucet Aerators	28,573
Pipe Wrap (ft.) Common Area	164,222
Pipe Wrap (ft.) In-Unit	39,866

- Prescriptive and Custom Projects: 197 projects received incentives through the multifamily prescriptive and custom application.
- Furnace Tune-Up: Completed 7,307 tune-ups.
- Comprehensive Retrofits: Five comprehensive projects were completed.

	2013 Actual	2013 Plan
Electric	$\$ 3,679,529$	$\$ 3,858,598$
Gas	$\$ 2,093,274$	$\$ 2,250,111$
Total	$\$ 5,772,803$	$\$ 6,108,708$

	2013 Actual	2013 Actual w/ LLES Multiplier	2013 Plan
MWh	7,626	7,955	5,758
MW	0.9	1.0	0.5
Mcf	184,682	199,006	272,215

Benefit-Cost Test	B/C Ratio
Utility Cost Test	2.41
Total Resource Cost Test	2.41
Participant Test	-
Rate Impact Measure	0.49

5.11 New Home Construction Program

Program	New Home Construction
Objective	Produce long-term electric and natural gas energy savings in the residential sector by transforming the construction of single-family homes and duplexes that meet the ENERGY STAR ${ }^{\circledR}$ Version 3.0 standards.
Target Market	The 2013 Residential New Home Construction Program focused on home builders and used various methods to encourage adoption of the ENERGY STAR ${ }^{\circledR} 3.0$ standards.
Program Duration	The New Home Construction Program was launched January 1, 2012, and is an ongoing element of the energy efficiency programs portfolio.
Program Description	The New Home Construction Program produced long-term electric and natural gas savings by encouraging the construction of single-family homes and duplexes that are certified as meeting ENERGY STAR ${ }^{\circledR}$ Version 3.0 standards. The program identified and recruited builders to build homes to exceed baseline building codes for energy efficiency. The goal was to have builders construct a home to ENERGY STAR ${ }^{\circledR} 3.0$ requirements and achieve certification by an independent Home Energy Rating System (HERS). The ENERGY STAR ${ }^{\circledR} 3.0$ certification is a whole-house envelope approach versus only installing highefficiency HVAC equipment options. Builders participating in the program gained access to cash-back incentives that covered approximately 40% of the cost to upgrade and certify each home (percentage based on builder-supplied information with the related rebated amount). The amount of the specific incentive was based on the type of energy service provided by Consumers Energy. Participating builders received education on building practices designed to achieve the ENERGY STAR ${ }^{\circledR}$ standards. Builders were also educated on how to sell the value of energy efficient homes to their customers.

Eligible
Measures,
Efficiency
Requirements \&
Incentives

Implementation
Strategy

The primary barriers to increased market penetration of ENERGY STAR ${ }^{\circledR}$ homes in the new construction market included:

Market Barrier

- Higher initial cost to meet the ENERGY STAR ${ }^{\circledR} 3.0$ standards.
- Lack of awareness among homeowners regarding both the energy and nonenergy benefits and rebates provided by Consumers Energy
- Lack of awareness among builders/HVAC/homeowners regarding the technology and building practices that result in a more efficient home

Program Element

- Financial incentives, information on lifecycle savings and tax incentives
- Educational material and builder training was provided including follow-up letter and appreciation gift with acknowledgement of Consumers Energy's program
- Educational materials and builder training, including requirement of the HVAC installer certification to meet ENERGY STAR ${ }^{\circledR} 3.0$ standard

The program offered financial incentives that varied based on Consumers Energy service area classification and the achievement of the ENERGY STAR ${ }^{\circledR}$ 3.0 certification.

ENERGY STAR ${ }^{\circledR}$ 3.0 Incentives

Energy Type	Heating Type	Cooling Type	Rebate Amount
Combination Gas and Electric	Gas Furnace or Boiler	Central A/C	$\$ 1,500$
Combination Gas and Electric	Gas Furnace or Boiler	No Central A/C	$\$ 1,350$
Gas Only	Gas Furnace or Boiler	N/A	$\$ 1,200$
Electric Only	Air Source Heat Pump or Ground Source Heat Pump	Central A/C	$\$ 1,500$
Electric Only	Non-Electric Heating (i.e. Gas Furnace or Boiler)	Central A/C	$\$ 300$

Key elements of the implementation strategy included:

- Recruitment/training team of Home Energy ${ }^{\circledR}$ Raters. Identified existing resources with appropriate training and experience.
- Outreach to targeted builders. Utilized experienced field representatives to meet with builders, promote the benefits of ENERGY STAR ${ }^{\circledR}$ homes, and generate interest in the program. Builders were recruited through

various channels including builder associations, realtors, trades, raters and direct outreach to targeted home builders
- Conducted builder training on marketing ENERGY STAR ${ }^{\circledR}$ homes. Participating builder training efforts were focused first on the benefits associated with ENERGY STAR ${ }^{\circledR}$ from the customers' perspective including improved efficiency, comfort, safety, and durability. Builders were also educated regarding the opportunity to improve their business by differentiating themselves using the nationally recognized ENERGY STAR ${ }^{\circledR}$ brand.
- Conducted builder training on the ENERGY STAR ${ }^{\circledR}$ performance standard. The second phase of the training process focused on the ENERGY STAR ${ }^{\circledR} 3.0$ standard and building practices needed to meet the requirements.
- Coached and mentored participating builders and raters. Once the initial training was completed, the program provided technical assistance and market recognition to participating builders, their trade partners, and raters on an ongoing basis.

Strategies to limit free ridership and promote spillover included:

- To minimize free ridership, the program continued to target builders not currently meeting the ENERGY STAR ${ }^{\circledR} 3.0$ standard. Many builders were meeting the previous level of ENERGY STAR ${ }^{\circledR} 2.5$ standard. However, they moved away from ENERGY STAR ${ }^{\circledR}$ when the 3.0 standard replaced 2.5 due to higher requirements. These were the builders the outreach team first focused on to bring back to the ENERGY STAR ${ }^{\circledR}$ program.
Secondary targets included builders who currently met the ENERGY STAR ${ }^{\circledR}$ standard, but only on a small percentage of homes.
Implementation-related administrative requirements included the following:
- Management of subcontractors
- Investment tracking
- Call Center services
- Administer customer service standards
- Data tracking systems
- On-site verification of incentive claims
- Public relations
- Customer satisfaction/Problem resolution
- Supporting evaluation activities

The program was marketed to select builders primarily through direct business-to-business contacts via program field staff. Opportunities were identified to present the program at builder, realtor, rater and other trade association meetings and place information in association newsletters. Customers were marketed via home shows, parades of homes, and other events focused on new home building.

The following evaluation activities were conducted to assess the implementation of the New Home Construction Program in 2013:

Program Manager Telephone Interviews: As part of a benchmarking effort, interviews were conducted with managers of other residential new construction programs. The programs were selected based on success, maturity, and

	Home Energy Rating Reviews: Home Energy Raters (HERS) software (a residential energy analysis software that is commonly model the performance of residential buildings) to determine if h ENERGY STAR ${ }^{\circledR} 3.0$ standards. A sample of 35 REM/Rate file reviewed to ensure consistency of modeling practices among the and to verify modeled energy savings.				
Consumers Energy Administrative Requirement	Consumers Energy staff was responsible for general administrativ the program portfolio, including the following: - Program administration - Recruitment, selection, and management of the contractor - Coordination of marketing strategy/public relations a and market sectors - Development and placement of marketing materials a - Coordination of all educational services - Customer satisfaction - Data warehousing - Management of key performance metrics and reportin - Goal achievement within investment				
Participation	Custo	mer Service Typ Track	Program		
	Electric-	only/ENERGY ST	$\mathrm{AR}^{\circledR} 3.0$		
	Gas-only	/ENERGY STA	${ }^{\text {® }} 3.0$		
	Combin	ation/ENERGY ST	$\mathrm{AR}^{\circledR} 3.0$		
	Total				
Investment					
		2013 Actual	2013 Pl		
	Electric	\$208,928			
	Gas	\$515,788			
	Total	\$724,716			

Energy Savings

		2013 Actual w/ LLES Multiplier	2013 Plan
MWh	152	167	101
MW	0.0	0.0	1.2
Mcf	12,986	14,277	6,375

Benefit-Cost Test Results

Benefit-Cost Test	B/C Ratio
Utility Cost Test	1.56
Total Resource Cost Test	1.13
Participant Test	2.63
Rate Impact Measure	0.50

5.12 THI NK! ENERGY ${ }^{\circledR}$ Program

Program	THINKI ENERGY ${ }^{\text {® }}$
Objective	The THINK! ENERGY ${ }^{\circledR}$ program was designed to influence students and their families to take actions that would reduce their home energy use and increase efficiency.
Target Market	Grade levels 4-6 in elementary schools throughout the Consumers Energy service area were targeted by the THINK! ENERGY ${ }^{\circledR}$ Take Action programs in combination and single-fuel service territories. The base program was run in the combination service territory and a collaborative program with DTE Energy was conducted in the spring. A second collaboration with the Lansing Board of Water \& Light was conducted in fall. In addition, two new initiatives were launched. The first, titled, Innovation targeted 900 students in grades 9-12 in the fall of 2013. The other, was called Community in Action, targeted adults, such as school faculty and parents.
Program Duration	THINK! ENERGY ${ }^{\circledR}$ Take Action was launched in 2010 and is an ongoing element of the program portfolio. The Innovation and Community Action components of the program were launched in 2013.
Program Description	Providing energy education to students was a good way to influence families' energy behaviors. The program targeted students in grades 4-6, providing education and a take-home kit that raised awareness about how individual actions and low-cost measures can provide reductions in electricity, natural gas, and water consumption. The Take Action kit included: - Three CFLs - Low-flow showerhead - Kitchen aerator - Bathroom aerator - Shower timer - Flow test bag - Light switch stickers - LED night light - Student Guide The Innovation program worked in a similar manner to Take Action, providing an introductory presentation and take-home kit, but also included a social media component. The program targeted high school students. The Innovation kit included: - Three CFLs - Low-flow showerhead - Bathroom aerator - Shower timer - Flow test bag - Smart power strip

The implementation contractor presented the program concept to the Michigan Department of Education, and again secured their enthusiastic endorsement for the program and utility collaborative efforts.

Eligible
Measures,
Efficiency
Requirements \&
Incentives

I mplementation Strategy

The following strategies were employed to address current market barriers:

Market Barrier

- Low levels of energy efficiency literacy in the schools
- Families too busy to learn about and/or undertake simple low-cost efficiency measures in the home

Program Element

- Energy education materials provided by the implementation contractor
- Free energy-saving kits and motivated students to help families install the measures

All educational materials and take-home efficiency kits were offered free of charge to the schools and their students. Teachers were provided a mini-grant of $\$ 25$ to $\$ 100$ for returning program data. Teachers in the base program who returned data in program years 2011-2013 were given a TrickleStar energy meter as a thank you gift and incentive to sign up again in 2014.

Measure	Eligibility	Incentive per Unit
CFLs (3 per kit)	ENERGY STAR ${ }^{\circledR}$	$\$ 2.60$
LED Night Light	$\$ 3.50$	
Low-Flow Showerhead	1.5 gallons per minute	$\$ 5.50$
Low-Flow Bath Faucet Aerator	1.5 gallons per minute	$\$ 1.90$
Low-Flow Kitchen Faucet Aerator	1.5 gallons per minute	$\$ 3.20$

Consumers Energy managed implementation-related administrative requirements, including the following:

- Program administration
- School recruitment
- The work of the energy education contractor
- Data tracking and reporting
- Investment tracking and reporting
- Public relations
- Customer satisfaction/Problem resolution

Marketing
Strategy

The program was marketed through direct mail letters and emails sent to school districts within the Company's service territory.

A $\$ 100$ classroom mini-grant was offered to participating schools for each classroom that turned in 80% of the home reports included in students' take-home kits. Lesser

- Management of key performance metrics and reporting
- Goal achievement within investment

The collaboration with the Lansing Board of Water \& Light included 1,334 students and 57 teachers. The collaboration with DTE Energy included 6,576 students and 306 teachers. The totals listed below include all participants in both the base and collaborative THINK! ENERGY ${ }^{\circledR}$ Take Action programs.

Group	Kits Distributed with Electric Measures	Kits Distributed with Gas Measures
Base Program	19,875	19,875
LBWL Collaboration	0	1,391
DTE Energy Collaboration	3,397	3,485
Total	23,272	24,752

Investment

	2013 Actual	2013 Plan
Electric	$\$ 601,997$	$\$ 601,484$
Gas	$\$ 973,912$	$\$ 974,425$
Total	$\$ 1,575,909$	$\$ 1,575,909$

Energy Savings

	2013 Actual	2013 Actual w/ LLES Multiplier	2013 Plan
MWh	2,641	2,685	1,846
MW	0.3	0.3	0.2
Mcf	64,948	71,443	31,762

Benefit-Cost Test Results

Benefit-Cost Test	B/C Ratio
Utility Cost Test	2.98
Total Resource Cost Test	2.98
Participant Test	12.02
Rate Impact Measure	0.50

5.13 Residential Pilot Programs

Residential Pilot Programs

To identify and learn more about new energy efficient technologies and program strategies with potential to capture additional electric and natural gas energy savings.

Dependent on specific technology/program.

In 2013, Consumers Energy focused on the development of pilot programs that had the potential to capture significant energy savings. In addition, Consumers Energy tested a program enhancement for its Income Qualified Program.

Consumers Energy set aside a portion of the residential budget to pursue new initiatives and technology approaches that could capture additional energy savings within the residential sector. The Company worked with its implementation contractors to validate emerging strategies and applications that would support broader and more effective delivery of energy efficiency services to customers.

Following are the emerging opportunities that were tested in 2013.

- Multi-Measure Engagement (Energy Advisor)

There is significant research into the barriers that keep customers from achieving deep energy savings in their homes. Many customers will take one or two actions and assume they have done all they can do. Furthermore, the savings related to doing one or two things may be hard to discern, and customers fail to see the value in doing more. This pilot provided customers with an online service to help them understand the savings potential they have and motivated them to pursue additional opportunities. Key components of the service were:

- A survey to determine which behavioral segment customers fit best and a basic assessment of their home
- Email and website message testing for effective communication to behavioral segments
- The ability to ask efficiency/programmatic pertinent questions through the "Ask an Advisor" function (response time within 24 hours with a custom tailored response)
- A list of at least five recommendations to improve a home's efficiency.
- Enhanced rebates for completing multiple measures that create deep savings, which included a time-based multiple measure incentive for two or more confirmed measures, and another incentive awarded after five completed and confirmed measures
The pilot was launched in the $4^{\text {th }}$ quarter of 2013, and will continue through 2014
- Smart (Learning) Thermostats

The thermostat technology available today offers an opportunity to engage customers with units that address the performance gap left by inadequate and underutilized programmable thermostats. There is also significant numbers of customers who still use traditional nonprogrammable units. The incremental savings over traditional and underutilized programmable thermostats is potentially significant, and may include long-term behavioral savings and

demand response potential. The Smart Thermostats Pilot completed its design and planning phase in 2013.

In 2014, the Smart Thermostat Pilot will offer smart thermostats to customers that further empower them to manage energy consumption. Three thermostat products have been selected based on their features, functions, and varying ease of use. The plan is to equally distribute the products in four Michigan areas including Jackson, Lansing, Kalamazoo, and Muskegon. The majority of candidates will be selected from past Home Energy Analysis participants. Some customers will be sent a thermostat and all associated installation materials. Other installations will be performed by contractors selected from the Consumers Energy network of trade allies.

In 2014, we will attempt to learn what product features appeal the most to different types of customers based on the characteristics of their homes and technical ability, and potential energy savings. Moreover, demand response event opportunities will be communicated to the Muskegon treatment group to identify effective demand response messaging and customer engagement with thermostats in that context.

- Smart Energy Challenge

The Smart Energy Challenge was designed to encourage community groups to recruit Consumers Energy customers to participate in a 45-minute inhome energy consultation designed to address energy education, savings, comfort, and behavior change. It was deployed in Muskegon in 2013. These inhome conversations were led by a contracted energy expert. Customers were able to capture the benefits of energy efficiency information and measures that were directly installed during the visit. They also had the opportunity to help their affiliated community group by earning rewards for their group. The reward was provided to each community group that attained a specified participation goal. An important goal of this program was to evaluate the effectiveness of a community-based approach to marketing and achieving energy efficiency. This program introduced and evaluated a variety of nontraditional, community marketing and promotional techniques. Many of these techniques were successful and have provided a viable model to build upon for a second Smart Energy Challenge Pilot deployment 2014.

- Virtual Smart Energy Challenge

The Consumers Energy Virtual Smart Energy Challenge Pilot (VSEC) was based on the community-based outreach of the Smart Energy Challenge Pilot. The VSEC was implemented using a multi-pronged approach including a number of community-based marketing concepts in an effort to test the model's virality, impacts of local organizations, effectiveness of credits toward community organization rewards, grassroots impacts, gamification, persistence of energy savings, and cost-effectiveness. Core components of the program included a uniquely branded VSEC website, a customer journey designed to lead customers through energy efficiency, on-the-ground community-based social marketing and events, nonprofit organization engagement, and social and local media.

Customers were able to experience the benefits of energy efficiency information, while helping their affiliated community organization. Based on customer VSEC website engagement and event participation, community organizations

were able to achieve rewards. Progress toward organization goals were communicated by the pilot team and on the website to encourage participation. This pilot introduced and evaluated a variety of nontraditional, community marketing and promotional techniques that will be tested in a second deployment of the pilot in 2014.

- Demonstration Project (MEEp)

Preliminary design and user interface mockups of the Mobile Energy Efficiency Pilot (MEEp) were developed in 2013. MEEp is a mobile application and volunteer management system that will enhance outreach event logistics. The app will be used at outreach events in 2014 as a means to guide customers to energy efficiency programs and rebates that are available in their ZIP Code. Customers will enter their ZIP Code and be led through a series of prompts. The app will provide information regarding incentive programs and subsequently send customers an email detailing appropriate energy efficiency program participation. Pilot development will continue into 2014 with pilot deployment anticipated in mid-year.

- Made in Michigan

Made in Michigan helped support Michigan's economy and provided customers with incremental incentives on energy efficiency home improvement projects. The program promoted the use of Michigan manufacturers' products (containing materials that are at least 50% Michigan made) and offered additional rebates for the installation of energy efficient products manufactured in Michigan. The program was coupled with the Consumers Energy Home Performance with ENERGY STAR ${ }^{\mathbb{B}}$ Program in 2013, with plans to expand the pilot to other program offerings in 2014.

- Agriculture

Residential pilot funds were used to support the Business Agricultural Pilot. The funds provided incentives for measures that were installed by residential rate agricultural customers related to their agricultural operation. The measures installed were typically business portfolio measures that are not included in the residential portfolio. These customers also had access to receive incentives for a Tier II United States Department of Agriculture (USDA) Audit that was performed by Michigan State University (MSU) certified agricultural auditors. The pilot ended in 2013 and will be reintroduced as a Specialty Program under the Comprehensive Business Solutions Program in 2014.

- Habitat for Humanity - Phase Two

Building on learnings from 2012, Consumers Energy conducted a second phase collaborative that included additional local Habitat for Humanity affiliates. The pilot targeted a modified prescriptive weatherization approach for 29 legacy homes that were constructed prior to 1990 in Saginaw and Oakland counties. The pilot also pursued a strategy to target homes located in Habitat for Humanity-designated neighborhood revitalization areas.

This second phase of the Habitat pilot achieved 1,441 Mcf in gross gas savings while providing practical experience on which to base future customer prescriptive weatherization solutions. A significant pilot finding was related to customer energy education. Customer energy education was deliberately

Consumers

Energy
Administrative
Requirements
implemented post-weatherization via a web-based tool called Everyday Actions Save Energy (EASE). The tool's output is a Personal Energy Profile that provides the customer a series of tailored and prioritized energy conservation opportunities. Follow-up customer satisfaction phone surveying conducted two weeks after the administration of the EASE tool documented that customers were still maintaining several pledged conservation recommendations after completing their EASE training.

Although the pilot was completed in 2013, the collaboration established with Habitat for Humanity during the pilot will continue as an element of the Income Qualified Energy Assistance Program.

- Secondary Education (Youth Energy Advisor)

In September 2013, EcoWorks (formerly WARM Training Center) collaborated to research, design, and publish a concept study for a high school focused energy efficiency program. The joint research goal was to identify the needs confronting youth in the city of Flint and evaluate if a youth-oriented pilot initiative represented a suitable pilot opportunity for Consumers Energy. EcoWorks recommended a youth energy advisor pilot that merges an in-school apprenticeship program with a summer employment opportunity. This optimal program design would promote energy efficiency behaviors in and out of school, while establishing a new community resource to install energy saving products for utility customers in the greatest need. In addition, the pilot would mentor youth to become proficient in the administration of Everyday Actions Save Energy (EASE) to promote long-term behavior modification for area residents. It also would provide them with summer employment doing neighborhood energy efficiency assessments and outreach. This nontraditional approach to community engagement encourages community residents to appreciate their youth in a new capacity. Based on the concepts study and recommendations from EcoWorks, a pilot will begin deployment in early 2014.

The following evaluation activities were performed for pilot programs in 2013:

- Program Staff and Implementation Contractor Interviews: For various pilot efforts, the evaluation team conducted interviews with key staff to determine pilot objectives, key program activities, and metrics for determining pilot success.
- Data Collection and Availability Review: Early in the initiation of pilot efforts, database framework and structures were reviewed to ensure that the necessary information was available to inform pilot metrics.

Consumers Energy staff was responsible for general administrative oversight of the pilots, including the following:

- Overall management of new product development process and identifying initiatives
- Management of the implementation contractor
- Coordination of marketing strategy among pilots and market sectors
- Data warehousing
- Management of the evaluation contractor
- Goal achievement within investment

Consumers Energy staff was responsible for general administrative oversight of the pilots, including the following:

- Overall management of new product development process and identified initiatives
- Management of the implementation contractor
- Coordination of marketing strategy among pilots and market sectors
- Data warehousing
- Management of the evaluation contractor
- Goal achievement within investment

Investment

	2013 Actual	2013 Plan
Electric	$\$ 1,398,767$	$\$ 1,445,342$
Gas	$\$ 1,642,140$	$\$ 1,698,486$
Total	$\$ 3,040,908$	$\$ 3,143,829$

Energy Savings
Total deemed energy savings for all residential customer pilots is shown in Table 4-5 on page 13.

6
6.1 Comprehensive Business Program
6.1.1 Comprehensive - Prescriptive Program

| Program | Prescriptive Program |
| :--- | :--- | :--- |
| Objective | The goal of this program was to generate energy savings for all business customers
 through promotion of high-efficiency electric and natural gas equipment. There were
 three primary objectives:
 -
 To increase the market share of commercial-grade high-efficiency technologies
 sold through market channels. |
| - To increase the installation rate of high-efficiency technologies in business | |
| facilities by businesses that would not have done so in the absence of the | |
| program. | |
| To improve operating energy efficiency of existing long-life equipment to ensure | |
| peak operating efficiency for business customers. | |

Additionally, vendors who serviced and maintained existing high energy use
equipment, such as HVAC technologies, were tapped to secure energy savings
of operational equipment not ready for retrofit or replacement. These services
were offered in the market channel that the respective equipment would be
delivered to.
The program significantly increased demand by educating business customers
about the energy and money saving benefits associated with the energy
efficient products and equipping trade allies to communicate those benefits
directly to their customers. To address the first-cost barrier for customers, the
program utilized financial incentives (i.e., cash-back, mail-in rebates) typically
averaging 20\% to 70\% of the incremental cost of purchasing qualifying
technologies.
The program stimulated trade ally investment in stocking and promoting
efficient products through a targeted outreach effort. The program team
employed field sales representatives to proactively train and equip trade allies
to convey the energy and money saving benefits to customers and
communicate equipment eligibility requirements. Further the existence of
cash-back incentives elevated efficiency to a competitive issue that naturally
motivated trade allies to stock and promote targeted products.

Eligible Measures,
Efficiency
Requirements, Energy Savings

The program targeted measures where the unit energy savings could be reliably predicted and, therefore, standard per-measure savings (deemed savings) and incentive levels were established. This simplified the application process and reduced administrative costs.

Description	Incentive /Unit
Window Reduction	$\$ 0.50$
Window Reduction (Gas)	$\$ 0.50$
Strip Curtains (Cooler 40F)	$\$ 3$
Strip Curtains (Freezer OF)	$\$ 6$
Process Steam Pipe Insulation - Conditioned (Combo)	$\$ 2$
Boiler Modulating Burner Control 10 to 1 or 5 to 1 turn-down (retrofit)	$\$ 2,500$
Boiler Reset Control	$\$ 400$
High Efficiency Boiler with AFUE >= 86\% and < 90\%	$\$ 2$
High Efficiency Boiler with AFUE >= 90\%	$\$ 4$
Boiler Oxygen Trim Control	$\$ 1$

Boiler Tune-up Level $1(>=110$ and $500 \mathrm{kbtu} / \mathrm{h})$	$\$ 150$

Boiler Tune-up Level $2(>=500$ and $<1200 \mathrm{kbtu} / \mathrm{h})$	$\$ 250$
Boiler Tune-up Level 3 ($>=1200 \mathrm{kbtu} / \mathrm{h}$)	$\$ 350$

High Efficiency Process Boiler Replacement (Water)	$\$ 2$
Process Boilers Tune-up >= $1200 \mathrm{kbtu} / \mathrm{h}$	$\$ 500$

Process Boiler Tune-up Level 5 (>=500 and <1200 kbtu/h)

Process Boiler Tune-up Level 4 ($>=300$ and $<500 \mathrm{MBH}$)	$\$ 150$
Process Steam Pipe Insulation - Unconditioned	$\$ 3$

Process Steam Pipe Insulation - Conditioned (Gas)	$\$ 2$
Optimized Boiler Plant Sequencing	$\$ 0.50$

Process Steam Pipe Condensate Insulation - Conditioned	$\$ 1$
Proces Steam Pipe Cond	

High Efficiency Process Boiler Replacement (Steam)	$\$ 2$
\$in	

Linkageless Boiler Controls	$\$ 1$
Modulating Burner Control (GO)	$\$ 2.5$

Water Reset Control Retrofit (GO)	$\$ 2$

Boiler Reset Control	$\$ 2$
Optimized Boiler Plant Sequencing (Process)	$\$ 0.50$

Modulating Burner Control (Process)	$\$ 1$
Boiler Oxygen Trim Control (Process)	$\$ 1$

Linkageless Boiler Control (Process)	\$1
Lew Flow Shower	

Heat Pump Domestic Water Heater - Tank Style (>= 50 Gallons;
EF >= 2.0) \$750

Heat Pump Domestic Water Heater (<= $50 \mathrm{MBH} ; \mathrm{COP}>=3.0$)
\$1,000

	Heat Pump Domestic Water Heater (> 100 MBH and <= 300 MBH; COP >= 3.0)	\$6,000
	Heat Pump Domestic Water Heater (> 50 MBH and <= 100 MBH ; COP >=3.0)	\$2,000
	Electric Domestic Hot Water - Unconditioned Space (140F)	\$2
	Electric Domestic Hot Water - Unconditioned Space (120F)	\$1
	Electric Domestic Hot Water - Conditioned Space (140F)	\$1
	Electric Domestic Hot Water - Conditioned Space (120F)	\$0.50
	Pipe Wrap - Domestic Hot Water - conditioned space (120F)	\$0.50
	Natural Gas Domestic Hot Water - Conditioned Space (140F) (GO)	\$1
	Pipe Wrap - Hydronic Space Heating	\$3.50
	Gas Water Heater > 80 gal	\$225
	Gas Water Heater <= 80 gal	\$220
	Gas tankless water heater	\$250
	Pre Rinse Sprayers - < 1.6 gpm Gas HW	\$30
	Low Flow Shower Heads <1.5 gpm	\$15
	Pipe Wrap - Domestic Hot Water - unconditioned space (140F)	\$2
	Pipe Wrap - Domestic Hot Water - conditioned space (140F)	\$1
	Pipe Wrap - Steam Space Heating	\$6
	High Eff Domestic Water Heater (84\% to 89\%)	\$4
	High Eff Domestic Water Heater (90\%)	\$6
	Domestic Water Heater Tune-Up (199-499 MBH)	\$100
	Domestic Water Heater Tune-Up (500-1,199 MBH)	\$250
	Domestic Water Heater Tune-Up (>= 1200 MBH)	\$350
	High-Efficiency Domestic Boiler (84\% to 89\%)	\$4
	High-Efficiency Domestic Boiler (90\%)	\$6
	Pipe Wrap - Domestic Hot Water - unconditioned space (120F)	\$1
	Gas Water Heater <= 80 gal	\$85
	Natural Gas Domestic Hot Water - Conditioned Space (120F) (GO)	\$0.50
	CFL Screw in (30 watts or less)	\$2
	CFL Speciality (down-light, 3-way, dimmable)	\$8
	Compact Fluorescents: Screw-in, 31-115 W	\$5
	Compact Fluorescents: Fixture	\$22
	Air-cooled Chiller - $1.04 \mathrm{~kW} /$ ton IPLV	\$30
	Water Cooled Chiller - Screw, Scroll, or Helical-Rotary - 150-300 Tons	\$30
	Water Cooled Chiller - Screw, Scroll, or Helical-Rotary - > 300 Tons	\$30
	Water Cooled Chiller - Reciprocating < 75 Tons	\$30
	Water Cooled Chillers- Scroll or Helical-Rotary <75 tons, IPLV = 0.57	\$30

	Water Cooled Chillers- Scroll or Helical-Rotary > 75tons and <= 150tons, IPLV = 0.55	\$30
	Water Cooled Chillers- Centrifugal <300 tons, IPLV $=0.54$	\$30
	Water Cooled Chillers- Centrifugal >300 tons and <= 600 tons, IPLV = 0.49	\$30
	Water-Cooled Chillers- Centrifrugal >600 tons, IPLV $=0.49$	\$30
	Water-Cooled Chillers- Reciprocating >75 tons and $<=150$ tons IPLV = 0.55	\$30
	Water-Cooled Chillers- Reciprocating >150 tons and <=300 tons, IPLV $=0.52$	\$30
	Water-Cooled Chillers >300 tons, IPLV = 0.49	\$30
	Air and Water-Cooled Chiller Tune-up	\$350
	Electric Dryer, Electric Water Heat	\$50
	High Efficiency Clothes Washer (Gas Water Heat, Electric Dryer)	\$50
	High Efficiency Clothes Washer (Gas Water Heat, Gas Dryer)	\$50
	Gas Dryer, Electric Water Heat - Combination Customer	\$50
	VSD Air Compressor	\$100
	Refrigerated Cycling Thermal Mass Air Dryer	\$1
	Added Compressed Air Storage Tanks	\$1.50
	Low-Pressure Drop Air Filter	\$0.80
	Zero Loss Condensate Drain	\$50
	Compressed Air Energy Audit	\$0
	Air Compressor Outdoor Air Intake	\$4
	Compressed Air Pressure Flow Controller	\$10
	Correct Sizing Compressed Air System	\$50
	Refrigerated Cycling - Digital Scroll	\$1.50
	Refrigerated Cycling - Variable Speed	\$2
	Compressed Air Engineered Nozzle (1,000 hours)	\$75
	Air Compressor Waste Heat Recovery	\$35
	Demand Control Ventilation - Combination Customers	\$0.04
	Demand Control Ventilation - Electric Customers	\$0.04
	Demand Control Ventilation	\$0.02
	EMS - Combination Customers	\$0.40
	EMS (Electric Cooling)- Electric Customers	\$0.13
	EMS (Gas Heating)- Gas Customers	\$0.27
	Enthalpy Wheels ERUs	\$0.75
	Fixed-Plate Air to Air ERUs	\$0.50
	Process Heating Ventilation Reduction	\$1.50
	Laboratory Fume-Hood Ventillation	\$2
	Boiler Stack Economizer (80F) - Process	\$1.20
	Laboratory Fume-Hood Ventillation Reduction (EO)	\$2
	Boiler Stack Economizer (80F)	\$0.80
	Boiler Stack Economizer (120F)	\$1.20

	Boiler Stack Economizer (200F)
Boiler Stack Economizer (200F) - Process	$\$ 1.50$
	Boiler Stack Economizer (120F) - Process
	Process Heating Ventillation Reduction (GO)
Laboratory Fume-Hood Ventillation Reduction (GO)	$\$ 1.50$
	Enthalpy Wheel Energy Recovery Unit (GO)
	LED, T-1, or Electroluminescent Exit Signs
Infrared Heaters - Combination Customers	$\$ 1.50$
Programmable Thermostat - Electric Customer	$\$ 2$
	High Efficiency Furnace/Rooftop, <= 200 kBtuh
High Efficiency Furnace/Rooftop, > 200 kBtuh	$\$ 0.75$
	Infrared Heaters - Gas Customer Only

	Occupancy Sensor for Toilet Room Exhaust Retrofit (GO)	\$50
	Critical Zone Supply Air Reset Control (GO)	\$20
	Ground Source Heat Pump EER $=17$ replacing a GSHP	\$30
	Heat Pumps $<=65,000$ Btuh (5.4 tons)	\$30
	Heat Pumps $>65,000$ Btuh (5.4 tons) and $<=120,000$ Btuh (10 tons)	\$40
	Heat Pumps > 120,000 Btuh (10 tons) and $<=240,000$ Btuh (20 tons)	\$40
	Heat Pumps > 240,000 Btuh (20 tons) and $<=760,000$ Btuh 63 tons)	\$30
	Heat Pumps >760,000 Btuh (63 tons)	\$30
	Destratification Fans	\$0.20
	Energy Efficient Ice Machines less than 500 lbs	\$200
	Energy Efficient Ice Machines 500-1000 lbs	\$400
	Energy Efficient Ice Machines 1000-1500 lbs	\$700
	Reach-In Refrigerated Case Door; Medium Temp - Combination Customers	\$45
	Reach-In Refrigerated Case Door; Low Temp - Combination Customer	\$100
	Temperature and Optical Sensor on Exhaust - Combo	\$0.50
	Combo Dishwasher (Low Temp; Door)	\$225
	Combo Dishwasher (Low Temp; Under Counter)	\$200
	Combo Dishwasher (Low Temp; Multi Tank)	\$400
	Combo Dishwasher (High Temp; Under Counter)	\$100
	Combo Dishwasher (High Temp; Single Tank)	\$350
	Combo Dishwasher (High Temp; Multi Tank)	\$450
	Combo Dishwasher (High Temp; Door)	\$250
	Combo Dishwasher (Low Temp; Single Tank)	\$250
	Pre Rinse Sprayers - < 1.6 gpm - Electric Customer Elec HW	\$30
	Night Covers	\$6
	AntiSweat Heater Controls	\$80
	LED Lighting for Refrigeration Cases	\$10
	Walk-in EC Motor replacing SP Motor	\$70
	Walk-in EC Motor replacing PSC Motor	\$70
	Case EC Motor	\$50
	LED Lighting Occupancy Sensor for Refridgeration Cases	\$15
	A/C Reduction From Lighting Reduction (-20F to 0F)	\$0.18
	A/C Reduction From Lighting Reduction (0F to 20F)	\$0.13
	A/C Reduction From Lighting Reduction (20F to 40F)	\$0.08
	Evaporator Fan Control (non EC motor)	\$40
	Evaporator Fan Control (EC motor)	\$20
	Reach-In Refrigerated Case Door; Medium Temp - Electric Customers	\$60
	Electric Dishwasher (High Temp; Under Counter)	\$100

	Reach-In Refrigerated Case Door; Low Temp - Electric Customers	\$120
	Night Covers (Combo)	\$6
	EnergyStar Steam Cookers - 3 Pan; Electric	\$1,000
	Electric Dishwasher (High Temp; Door)	\$400
	Electric Dishwasher (Low Temp; Multi Tank)	\$600
	Electric Dishwasher (High Temp; Multi Tank)	\$750
	Electric Dishwasher (Low Temp; Single Tank)	\$250
	Electric Dishwasher (High Temp; Single Tank)	\$500
	Electric Dishwasher (Low Temp; Under Counter)	\$250
	Electric Dishwasher (Low Temp; Door)	\$300
	EnergyStar Steam Cookers - 6 Pan; Electric	\$1,750
	EnergyStar Steam Cookers - 4 Pan; Electric	\$1200
	Evaporator Fan Control (PSC motor)	\$60
	EnergyStar Steam Cookers - 5 Pan; Electric	\$1,500
	Evaporator Fan Control (SP motor)	\$60
	Floating Suction Pressure Control	\$80
	Walk-in EC Motor replacing non-EC Motor	\$70
	Commercial Conveyor Oven (<=25" Conveyor Width)	\$400
	Commercial Conveyer Oven (>25" Conveyor Width)	\$500
	Flexible Batch Broilers	\$550
	Temperature and Optical Sensor on Exhaust - Gas	\$0.50
	Gas Dishwasher (Low Temp; Door)	\$125
	Gas Dishwasher (Low Temp; Under Counter)	\$100
	Gas Dishwasher (Low Temp; Multi Tank)	\$200
	Gas Dishwasher (High Temp; Under Counter)	\$50
	Gas Dishwasher (High Temp; Multi Tank)	\$300
	Gas Dishwasher (High Temp; Door)	\$100
	EnergyStar Steam Cookers - 6 Pan; Gas	\$1,750
	EnergyStar Steam Cookers - 5 Pan; Gas	\$1,750
	Gas Dishwasher (High Temp; Single Tank)	\$250
	Gas Dishwasher (Low Temp; Single Tank)	\$150
	Fixed-Plate Energy Recovery Unit (GO)	\$0.50
	LED Replacing Incandescent Candelabra and Globe	\$5
	LED Replacing Incandescent BR-Series	\$15
	4-ft T12 to LED Tube Lights	\$5
	LED or Induction fixture replacing \&\#8804;175W HID (Exterior)	\$45
	LED or Induction fixture replacing 176W to 250W HID (Exterior)	\$65
	LED or Induction fixture replacing 251W to 400W HID (Exterior)	\$120
	LED or Induction fixture replacing \&\#8804;175W HID (Garage)	\$100
	LED or Induction fixture replacing 176W to 250W HID (Garage)	\$150
	LED or Induction fixture replacing 251W to 400W HID (Garage)	\$180
	LED Downlight Fixture Replacing Incandescent Lights	\$22

	LED Lamps replacing incandescent lights	\$10
	LED Replacing A19	\$15
	LED MR16 Replacing Halogen MR16	\$7
	LED Par Replacing Halogen Par	\$15
	Lamp Removal: Remove 2-foot T12 fluorescent lamp (with T8 ballast retrofit)	\$4
	Lamp Removal: Remove 3-foot T12 fluorescent lamp (with T8 ballast retrofit)	\$4
	Lamp Removal: Remove 4-foot T12 fluorescent lamp (with T8 ballast retrofit)	\$5
	Lamp Removal: Remove 8-foot T12 fluorescent lamp (with T8 ballast retrofit)	\$10
	Lighting Occupancy Sensors	\$0.08
	Central Lighting Control	\$0.06
	Switching Controls for Multilevel Lighting	\$0.06
	Daylight Sensor controls	\$0.09
	Controls: Exterior Lighting BiLevel Control w Override, 150 to 1000 HID	\$100
	Exterior Multi-Step Dimming Occ Sensor	\$0.09
	Parking Garage Multi-Step Dimming Occ Sensor	\$0.09
	Probe Start to Pulse Start Lighting(Lamp and Ballast Retrofit)	\$0.30
	Interior LED/Induction Lighting	\$0.35
	Probe Start to Pulse Start Lighting	\$0.10
	CFL Replacing MH	\$0.15
	Exterior Linear Fluorescent Lighting Retrofit	\$0.35
	Parking Garage LED/Induction Lighting Retrofit	\$0.60
	Neon to LED Sign Lighting Retrofit (Continuous Operation)	\$0.50
	Interior LED Lighting Retrofit	\$0.40
	Exterior LED/Induction Lighting Retrofit	\$0.40
	Neon to LED Sign Lighting Retrofit (Commercial Hours)	\$0.25
	Beverage Vending Machine Controller	\$65
	Guestroom Energy Management Control (electric heat)	\$80
	Snack Vending Machine Miser	\$40
	Drinking Water Cooling Miser	\$50
	Roof Insulation - Attic Roof (Combo)	\$0.30
	Roof Insulation - Flat Roof (Combo)	\$0.40
	BOC (Combo Customer)	\$900
	Wall Insulation - Combination Customer	\$1
	Compressed Air Engineered Nozzle	\$100
	Intelligent Surge Protector	\$14
	Barrel Wraps - Injection Molding and Extruders	\$2
	Network Power Management Software	\$12

	Lighting Power Density	\$0.35
	UPS - Multiple Normal Mode - VFI/VFD ($\mathrm{P}>1.5 \mathrm{~kW}$ and $\mathrm{P}<=10$ kW)	\$6.50
	UPS - Multiple Normal Mode - VFI/VFD ($\mathrm{P}>10 \mathrm{~kW}$)	\$7.50
	UPS - Multiple Normal Mode - VI/VFD ($\mathrm{P}>1.5 \mathrm{~kW}$ and $\mathrm{P}<=10$ kW)	\$5.50
	UPS - Multiple Normal Mode - VI/VFD ($\mathrm{P}>10 \mathrm{~kW}$)	\$4
	UPS - Single Normal Mode - VFD ($\mathrm{P}<=1.5 \mathrm{~kW}$)	\$4.50
	UPS - Single Normal Mode - VFD ($P>1.5 \mathrm{~kW}$ and $\mathrm{P}<=10 \mathrm{~kW}$)	\$4.50
	UPS - Single Normal Mode - VFD ($\mathrm{P}>10 \mathrm{~kW}$)	\$3
	UPS - Single Normal Mode - VFI ($\mathrm{P}<=1.5 \mathrm{~kW}$)	\$12.50
	UPS - Single Normal Mode - VFI ($\mathrm{P}>1.5 \mathrm{~kW}$ and $\mathrm{P}<=10 \mathrm{~kW}$)	\$5
	UPS - Single Normal Mode - VFI ($\mathrm{P}>10 \mathrm{~kW}$)	\$7
	UPS - Single Normal Mode - VI ($\mathrm{P}<=1.5 \mathrm{~kW}$)	\$7.25
	UPS - Single Normal Mode - VI ($\mathrm{P}>1.5 \mathrm{~kW}$ and $\mathrm{P}<=10 \mathrm{~kW})$	\$4.75
	UPS - Single Normal Mode - VI (P > 10 kW)	\$5
	Battery Charger - Continuous	\$350
	Battery Charger-1 Shift/Day	\$125
	Battery Charger - 2 Shift/Day	\$250
	NEMA Premium Transformers - 3 Phase - 30 kVA	\$120
	Lighting Power Density (Exterior)	\$0.40
	NEMA Premium Transformers - Single Phase - 75 kVA	\$225
	NEMA Premium Transformers - Single Phase - 50 kVA	\$150
	NEMA Premium Transformers - Single Phase - 37.5 kVa	\$150
	NEMA Premium Transformers - Single Phase - 333 kVA	\$670
	NEMA Premium Transformers - Single Phase - 260 kVA	\$500
	NEMA Premium Transformers - Single Phase - 25 kVA	\$100
	NEMA Premium Transformers - Single Phase - 167 kVA	\$340
	NEMA Premium Transformers - Single Phase - 15 kVA	\$60
	NEMA Premium Transformers - Single Phase - 100 kVA	\$300
	NEMA Premium Transformers - 3 Phase - 750 kVA	\$750
	NEMA Premium Transformers - 3 Phase - 75 kVA	\$220
	NEMA Premium Transformers - 3 Phase - 500 kVA	\$550
	NEMA Premium Transformers - 3 Phase - 300 kVA	\$500
	Lighting Power Density (Parking Garage)	\$0.60
	NEMA Premium Transformers - 3 Phase - 225 kVA	\$450
	NEMA Premium Transformers - 3 Phase - 150 kVA	\$300
	NEMA Premium Transformers - 3 Phase - 15 kVA	\$60
	NEMA Premium Transformers - 3 Phase - 112.5 kVA	\$240
	NEMA Premium Transformers - 3 Phase - 1000 kVA	\$1,000
	NEMA Premium Transformers - 3 Phase - 45 kVA	\$135
	Ozone Generation System	\$40
	Truck Loading Dock Seals	\$350

	Truck Loading Dock Leveler Ramp Seals	\$175
	Greenhouse Heat Curtains	\$0.25
	Greenhouse Infrared Film	\$0.10
	Wall Insulation - Gas Customer	\$1
	Roof Insulation - Flat Roof	\$0.40
	Roof Insulation - Attic Roof	\$0.30
	Destratification Fans (GO)	\$0.20
	Room Air Conditioner - ENERGY-STAR	\$30
	Package Terminal AC - AC >=10\% EER higher than IECC 2006 standard	\$30
	Package Terminal AC-Heat Pump >=10\% EER higher than IECC 2006 standard	\$30
	Ductless Heat Pump	\$30
	Ductless Air Conditioning	\$30
	Leaking Steam Trap Repair or Replacement -- Special Incentive	\$140
	High Efficiency Pool Heater .84+ EF	\$3
	Pool Covers	\$0.50
	8-foot T12 to Two (2) 4-ft HP/RW T8	\$5
	T12 to Standard T8: 2-foot lamp and ballast upgrade	\$3
	T12 to Standard T8: 3-foot lamp and ballast upgrade	\$3
	T12 to Standard T8: 4-foot lamp and ballast upgrade	\$4
	T12 to Standard T8: 8-foot lamp and ballast upgrade	\$5
	8-FT T12 to 2 4-FT T8 (with ballast)	\$5
	8-FT T12HO to 24 -FT T8HP	\$10
	New T8/T5 Fixture (Includes HID to Fluorescent conversions)	\$0.30
	LED Traffic Signal	\$25
	LED Pedestrian Signal	\$25
	Occ Sensor For Toilet Rm Exhaust	\$50
	AC < 65,000 Btuh (5.4 tons)	\$30
	AC > 240,000 Btuh (20 tons) \& <= 760,000 Btuh (63.3 tons)	\$30
	AC > 760,000 Btuh (63.3 tons)	\$30
	AC Units $>65,000$ Btuh (5.4 tons) and $<=120,000$ Btuh (10 tons)	\$40
	AC Units > 120,000 Btuh (10 tons) and <= 240,000 Btuh (20 tons)	\$40
	Constant Volume AHU to Hydronic Heat Pump Loop (Combo)	\$0.70
	Constant Volume AHU to VAV with Hydronic Reheat (Combo)	\$0.90
	Constant Volume AHU to VAV AHU (Combo)	\$0.40
	Constant Volume Hot-Deck/Cold Deck AHU to VAV AHU (Combo)	\$0.30
	VFD for Process Pumping, <= 50 HP	\$60
	VFD/HVAC Fans and Pumps < 100HP - Electric Customers	\$60
	VFD/HVAC Fans and Pumps >= 100HP - Electric Customers	\$40
	VFD/Chiller Motors - Electric Customers	\$40
	Constant Volume AHU to VAV AHU (Electric)	\$0.27

 Strategy

Constant Volume Hot-Deck/Cold Deck AHU to VAV AHU (Electric)	$\$ 0.20$
VFD/HVAC Fans and Pumps >= 100HP - Electric Customers	$\$ 40$
EC Motors	$\$ 70$
VFD on Process Fans (< 50 HP)	$\$ 50$
Constant Volume AHU to Hydronic Heat Pump Loop (Electric)	$\$ 0.45$
Constant Volume AHU to VAV with Hydronic Reheat (Electric)	$\$ 0.45$
VFD on HVAC Fans (< 100 HP)	$\$ 60$
VFD on HVAC Fans (100HP - 250HP)	$\$ 40$
VFD on HVAC Pumps (< 100 HP)	$\$ 60$
VFD on HVAC Pumps (100HP - 250HP)	$\$ 40$
Constant Volume AHU to Hydronic Heat Pump Loop (Gas)	$\$ 0.25$
Constant Volume AHU to VAV with Hydronic Reheat (Gas)	$\$ 0.45$
Constant Volume AHU to VAV AHU (Gas)	$\$ 0.13$
Constant Volume Hot-Deck/Cold Deck AHU to VAV AHU (Gas)	$\$ 0.10$

Key elements of the implementation strategy included:
Outreach to Trade Allies. Field representatives informed and recruited participation by trade allies. Outreach focused more on bolstering relationships with existing and new trade allies alike in 2013, as well as developing new contractors into high-performance contributors to the program. Additionally, the team worked to engage the state's major electrical distributors to drive the program through their contractors. The group of trade ally energy advisors conducted more than 1,800 visits with roughly 600 different contractors throughout the 2013 program year.

Outreach to Targeted Customers. Consumers Energy corporate account managers (CAMs) and program outreach personnel focused on providing highquality service to high-profile end users, primarily the larger energy users across the service territory. This strategy included several market-segmented initiatives to address customers by similar operational profiles, including schools, industrial, and healthcare. The program team and CAMs assisted business customers in determining whether the prescriptive incentives, custom approach, or a combination of both programs would be most appropriate for their operations. The program team also assisted customers, as necessary, to complete rebate application requirements.

Program Operations. The implementation contractor handled programspecific administrative requirements including the following:

- Marketing strategy and materials (joint coordination with Consumers Energy)
- Trade ally outreach, recruitment and training
- Trade ally relations and problem resolution
- Product eligibility knowledge and communication
- Utility reporting (progress to goals, customer issues/resolution, trade ally outreach, issues, etc.)
- Data warehousing and tracking

- Processing prescriptive applications
- Customer relations (inquiries, complaint resolution, etc.)

Engage Trade Allies. Outreach and training were offered to a targeted group of trade allies who had business motivations for promoting prescriptive incentives to their customers. They were equipped with marketing and promotional materials (e.g., measure fact sheets, case studies) and training on program terms and conditions. Marketing activities included:

- Training and open house events
- Email newsletters
- Bonus program for trade allies
- Promotional materials

Directly Market to Targeted Customers. Marketing strategy was primarily focused on positively impacting customer awareness of the energy efficiency programs. Therefore the marketing team launched numerous high-visibility campaigns with a vibrant media presence to deliver effective messaging to all customers in Consumers Energy's service territory.

The following sections outline the campaigns that were implemented throughout the year and contributed to this success. These marketing activities included:

- Radio ads
- Targeted advertising in trade and business publications
- Web banner ads targeted in Consumers Energy's service territory
- Aggressive marketing outreach to trade and business associations to recruit their assistance in distributing information about programs through existing communication channels
- Billboard advertising throughout Consumers Energy's service territory
- Service vehicles with program information
- Stadium Advertising Campaign

Provide Complete Website Presence. The program was outlined in detail on the Consumers Energy website. Customers and trade allies were able to review qualifying measures and download incentive applications and important program documents. Customers could also view a list of trade allies by territory served.

Major Milestone	Date
Formal 2013 program launched to trade allies	$11 / 2012$
Began accepting 2013 applications	$12 / 2012$
2013 Program closed	$11 / 2013$
All final applications approved for payment	$12 / 2013$

EM\&V Strategy

Consumers

Energy
Administrative Requirements

The following evaluation activities were performed for the 2013 Comprehensive Business Solutions Program. Evaluations for the Comprehensive Business Solutions and Custom Business Solutions Programs have been combined so the summary below includes both programs.

Trade Ally Interviews: The evaluation team conducted two web surveys with 79 trade allies involved with the Business Solutions Program. The objectives of the surveys were to determine satisfaction with 2012 program operations, document experiences with program participation, and collect regular feedback on program developments.

Customer Surveys: Between September and November 2013, the evaluation team completed telephone surveys with 150 participants who completed energy efficiency projects through the Business Solutions Program between the dates of October 1, 2012, and June 30, 2013. Data were collected from 137 customers with prescriptive measures and 13 customers' with custom projects. The objectives of the surveys were to estimate net-to-gross ratios and assess participant satisfaction with program participation.

Customer Web Surveys: In 2013, the evaluation team completed Web surveys with 36 participants of the Business Solutions Program. The objectives of the surveys were to explore customers' awareness of and satisfaction with energy efficiency programs and Consumers Energy.

On-Site Surveys: From November 2013 through February 2014, the evaluation team conducted on-site surveys with 152 participants from the 2013 Business Solutions Program (132 Prescriptive and 20 Custom participants), including a sub-sample of phone survey participants. The objectives of the surveys were to verify accuracy of self-reported data (including telephone survey respondents' reported spillover savings), confirm measure installation and operation, and collect metered usage and/or facility data for further assessment of equipment performance.

Consumers Energy staff were responsible for general administrative oversight of the program portfolio, including:

- Management of the implementation contractor
- Coordination of marketing strategy/public relations among programs and market sectors
- Development and placement of marketing materials and advertising
- Coordination of all educational services
- Data warehousing
- Management of the evaluation contractor
- Goal achievement within investment
- Coordination with other programs

Participation

Measure Category	Number of Installed Projects
Building Envelope	82
Boilers and Boiler Controls	608
C\&I Water Heating	134
CFL	114
Chiller	112
Compressed Air	148
Custom	83
DCV and Economizers	112
Energy Management Systems	18
Energy Recovery	140
Exit Signs	359
Furnaces and Heaters	3
Heat Pump	1
Heating	605
HP or RW Fluorescent	118
HVAC Controls	14
Ice Machines	623
Kitchen and Refrigeration	134
Lamp Removal	841
LED or Induction Fixtures	351
Lighting Controls	1006
Lighting Retrofit Fixtures	10
Occupancy Sensors and Controls	114
Other	17
Room AC/PTAC	31
Steam Traps	7
Swimming Pool	270
T8 Fluorescent	706
T8/T5 Fixture	119
Unitary/Split HVAC	596
Variable Frequency Drives	
Whole Building	

Investment

	2013 Actual	2013 Plan
Electric	$\$ 21,534,553$	$\$ 23,695,126$
Gas	$\$ 8,630,429$	$\$ 8,960,995$
Total	$\$ 30,164,982$	$\$ 32,656,120$

Includes total investment from Custom Business Solutions Program.

		2013 Actual w/ LLES Multiplier	2013 Plan
MWh	154,270	166,076	210,142
MW	23.9	25.6	37.6
Mcf	702,517	749,590	728,132

Includes total energy savings from Custom Business Solutions Program.

Benefit-Cost Test	B/C Ratio
Utility Cost Test	4.29
Total Resource Cost Test	1.54
Participant Test	3.62
Rate Impact Measure	0.49

Benefit-Cost test results include Custom Business Solutions Program.

6.1.2 Comprehensive - Custom Program

Program	Custom Business Solutions
Objective	Influence business customers to select and install high-efficiency measures, such as process improvements or projects involving multiple technologies, which are not addressed through the Prescriptive Business Solutions Program when considering equipment retrofits or other energy-saving improvements.
Target Market	Emphasis was placed on targeting large customers (electric demand >300kW or gas usage >10,000 Mcf) whose operations could most benefit from a custom approach to installing measures not covered by the Comprehensive Prescriptive Business Solutions Program incentives. In 2013, large manufacturing, hospitals, the food industry and municipalities were targeted. The program also focused on new technologies.
Program	The Custom Business Solutions Program is an ongoing element of the portfolio.
Duration	The program helped customers and trade allies identify complex energy-savings projects, analyze the economics of each project, and complete the incentive application. The program affected the purchase and installation of efficient technologies or implementation of process improvements. It achieved this by working directly with key end-use customers and trade allies.
Description	The program team, including the implementation contractor, worked with customers and trade allies on prospective projects to help complete custom engineering calculations that assessed the energy-savings potential, payback horizon, project eligibility (see measure characterization below), and incentive amounts. If projects qualified, customers were issued an approval letter accepting the project and asking the customer to complete the application form. Upon receipt of the application by Consumers Energy, the customer was provided 90 days to complete the project to qualify for reimbursement. If special circumstances and project lead times affected the ability to complete a project within the time frame, extensions were granted.
As needed, expanded technical support was offered to help customers evaluate	

comprehensive energy efficiency opportunities and increase participation. Such services included:

- Walk-through energy assessments to help identify energy-saving measures
- Assistance in specifying projects

Large business customers typically have more complex mechanical equipment supporting facility operations and manufacturing processes. As a result, many barriers prevent projects from being implemented. The program was designed to help motivate and assist customers in taking the necessary steps from conceptual project to completed project.

Following is a list of the primary barriers in this market and the program elements that addressed them:

Market Barrier

- Risk aversion to new designs and technologies
- Higher first-cost
- Lack of awareness regarding energy and nonenergy benefits
- Corporate purchasing policies that emphasize first-cost rather than lifecycle cost
- Lack of resources to conduct initial feasibility analysis to identify energy-saving projects
- Not enough time to complete the custom application

Program Element

- Availability of case studies and access to demonstration sites
- Financial incentives to drive down payback and cover incremental costs
- Website, case studies and other collateral materials
- Direct marketing to customers
- Lifecycle/payback info
- Targeted audit co-pay incentive
- Implementation contractor energy advisors working one-on-one with decision makers in targeted sectors
- Walk-through audits were made available
- Provided assistance with application development and energy savings calculations when necessary

Incentive

Strategy

The program used the following criteria for offering financial incentives:

- Award incentives based on per-kWh and/or per Mcf energy savings for installed measures not covered in the Prescriptive Business Solutions Program.
- The incentive amount was calculated case by case for qualifying equipment or processes. The following criteria were used to determine incentive amounts:

Electric incentive:	$\$ 0.08 / \mathrm{kWh}$
Natural gas incentive:	$\$ 8.00 / \mathrm{Mcf}$

Implementation
Strategy

Maximum project incentive:	$\$ 300,000 /$ year
Maximum customer incentive:	$\$ 750,000 /$ year
Minimum project payback:	1.0 year
Maximum project payback:	8.0 years
Maximum \% of total project cost:	50%

Maximum custom project incentive limited to $\$ 100,000$ for large gas transport customers using $>100,000$ Mcf/year

The program team worked closely with prospective customers to determine if projects qualified for incentives and assisted them in completing an incentive application.

The program was designed to address any cost-effective electric or natural gas saving measures not available through the Comprehensive Business Solutions Program. Often these projects were more complex and addressed a system or process requiring unique technologies. Savings and incentives were determined when the project was specified. All technologies were subject to eligibility and verification of energy savings.

By design, the Custom Business Solutions Program had the ability to control participation levels, program investment levels, and achievement of project goals. Program investment was managed by accepting applications on a firstcome, first-served basis. Key elements of the implementation strategy included:

- Outreach to Targeted Customers. In coordination with the CAMs, the program team targeted high-energy use customers that had not yet implemented existing energy efficiency recommendations. The CAMs identified key personnel with a vested interest in energy reduction strategies and recruited their participation. Such personnel included energy managers, energy teams, facility managers, financial and operations managers, chief engineers and facility/property managers, maintenance supervisors, and building operators.
- Outreach to Key Influencers. Presentations and seminars with appropriate trade associations (ASHRAE, American Public Works Association, East Michigan Association of Energy Engineers etc.).
- Outreach to Trade Allies. Promotion of the custom option to key trade allies to solicit their support by providing referrals for potential custom incentive projects.
- Technical Assistance. The program team assisted customers and trade allies with engineering support to identify and analyze the cost-effectiveness of energy-saving opportunities. This involved high-level walk-through audits to identify and understand the potential impacts of proposed improvements. The program team worked with the customer and trade ally to complete custom engineering calculations that assessed the energy savings potential, payback horizon, project eligibility, and incentive amount. If the project was eligible, the program team assisted the customer and trade ally in completing a Custom Business Solutions application. To ensure equitable program

access, it was the customer's responsibility to provide all required data and calculations. Some customers elected to do this work themselves or hired and paid for technical assistance to complete the custom project application requirements.
- Quality Assurance. Incentive applications were subject to a quality assurance review by program technical staff to ensure accuracy of savings estimates and incentive calculations.
- Verification. The program team provided on-site pre- or post- installation verification for all completed custom projects over $\$ 5,000$, and also confirmed proper installation and conformance with measure specifications when deemed necessary.
- Measurement and Verification. The program team provided a method to perform a more rigorous $\mathrm{QA} / \mathrm{QC}$ process for custom projects. Projects from a custom program have higher risks of inaccuracies due to project size and nonstandard design. Projects that did not have reliable information to accurately assess savings were required to undergo monitoring both before and after implementation to determine savings.

To minimize free ridership, the program was designed to motivate trade allies and customers to: (1) pursue projects they would otherwise not have implemented; (2) pursue projects sooner than they otherwise would have; and (3) implement equipment/measures at a higher efficiency level than they otherwise would have.

All program-specific administrative requirements were handled by the program team including:

- Trade ally outreach, recruitment and training
- Quality assurance of project/technology eligibility
- Co-development of marketing strategy and messaging
- Incentive claim processing
- Data tracking and reporting
- Investment tracking and reporting
- Managing public relations in coordination with Consumers Energy
- Customer satisfaction/Problem resolution

The program team also supported the implementation of the program by providing the following services:

- Outreach to customers that have assigned CAMs
- Technical assistance to end-use customers (e.g., audits, specifying projects, savings calculations)
- Administrative assistance to end-use customers in completing incentive applications
- Assistance to customers in preparing a mutually acceptable Measurement \& Verification Plan for selected projects

The marketing strategy for the Custom Business Solutions Program involved a direct networking approach using CAMs and trade allies. Marketing via direct mail to trade allies, local economic development organizations, and other

business associations was included in the effort. The program affected the purchase and installation of efficient technologies or implementation of process improvements by working directly with key end-use customers to encourage their participation and trade allies to refer projects, identify potential projects, analyze the economics of each project, and complete an incentive application.

The program team identified successful projects and innovative technologies that were highlighted in 2013 as case studies to promote energy efficiency and increase the participation and market adoption of key technologies.
In addition to networking activities, the program was promoted through advertising in targeted media including trade and business journals, press releases, and media outreach. Offering Web access to tools and best practices also was an effective way to prompt customers to action.

Major Milestone	Date
Formal 2013 program launch to Trade Allies	$11 / 2012$
Began accepting 2013 applications	$12 / 2012$
2013 Program closed	$11 / 2013$
All final applications approved for payment	$12 / 2013$

EM\&V Strategy
Evaluations for the Comprehensive Business Solutions and Custom Business Solutions programs have been combined. 2013 evaluation activities for the Custom Business Solutions Program are summarized in the Comprehensive Business Solutions Program section.
Consumers
Energy
Administrative
Require

Participation
Consumers Energy staff were responsible for general administrative oversight of the program portfolio, including:

- Solicitation, selection, and management of the implementation contractor
- Coordination of marketing strategy/public relations among programs and market sectors
- Direct customer outreach to larger customers
- Development and placement of marketing materials and advertising
- Coordination of all educational services
- Data warehousing
- Solicitation, selection, and management of the evaluation contractor
- Goal achievement within investment

	Projects Implemented
Electric	41
Gas	17

This program provided incentives for a wide range of customized energy savings measures for a wide variety of industries. These included the following: improvements in production processes, improved compressed air system efficiency, insulated fertilizer dryers, reduced energy consumption in waste treatment aeration systems, improved cure oven efficiency, increased thermal oxidizer efficiency, reduced pump energy to supply city water and helped companies use less energy in heat treat furnaces. The Custom Business Solutions Program provided funding that helped customers implement energysaving projects that required a unique solution not found in our other programs.

Combined with Prescriptive Business Solutions Program and included in that section.

6.1.3 Comprehensive - Specialty: New Construction Program

Program	New Construction Program
Objective	The objective of this program was to work through the design community to influence business owners to capture immediate and long-term energy efficiency opportunities that were available during the design and construction phases of new buildings, additions, and/or renovations in the nonresidential market. To secure the opportunities, it was necessary to overcome multiple barriers that included resistance in the design community to adopt new practices, reluctance by owners to accept increased first-cost for efficient options, removing energy efficiency measures through value engineering processes to reduce costs, and the tendency to design individual systems for worst-case conditions rather than the efficiency of an integrated system over the range of expected operating conditions.
Target Market	Any size commercial, industrial, government (local, state, and federal) or institutional new construction project in the planning or early design stage was considered, provided the design team and owner were willing to pursue an integrated design strategy and improve multiple building systems. In order to be eligible for participation in the major renovation program, the project had to either involve a change in the type of business operated at a facility or affect at least two of the three following building systems: building envelope, HVAC system or lighting system.
Program Duration	The incentive element for designers and owners was implemented in 2010 and continued through 2013. This program primarily offered technical assistance during the first year with incentives added in the second through fourth year to determine customer/designer interest levels. This pilot was transitioned to operate under the auspices of the Comprehensive Business Solutions Program in 2013 as a Specialty Program.
Program Description	This program captures energy efficiency opportunities through comprehensive efforts to influence building design and construction practices. The program worked with design professionals and construction contractors to influence prospective building owners and developers to construct high-performance buildings that provided improved energy efficiency, systems performance and comfort. Energy-savings targets were achieved by stimulating incremental improvements of efficiency in lighting, HVAC, and other building systems. The program seeks to capture synergistic energy savings by encouraging the design and construction of buildings as integrated systems. A variety of different standards for new commercial construction are used, including U.S. Green Buildings Council, ASHRAE, and LEED. An important focus was moving the knowledge gained by designers and architects through program participation into their standard construction practices. The program was designed to integrate educational activities into implementation while achieving energy savings from

active construction projects.
Program resources to achieve energy saving were applied through four primary offerings to participants (design team members, contractors, owners and developers):

- Targeted Education, Information, and Outreach on integrated design practices and benefits were provided directly to participants through the program and to the broader market by coordinating with professional groups, Program staff time and resources were focused on information dissemination and teach/learn-by-example during projects with program participants. To encourage market transformation while recruiting program participants, the program team coordinated with outside efforts including U.S. Green Buildings Council, American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE), American Institute of Architects, and others. The credibility and relationships built through the involvement from outside efforts helped the program recruit construction projects that were early in the design process, when opportunities to integrate energy-saving measures into the project were greatest.
- The program offered technical assistance services to provided capabilities that were not yet fully adopted in the market. Services included facilitation in the design process, reviewing plans and construction bid documents, assisting with design selections, building energy modeling analyzing energy savings, and verifying installation and operation of measures.
- The program offered financial design incentives to teams to help offset the costs of developing designs that provided as-built performance that was more energy efficient than standard practice. Payments to primary design teams were made at the completion of construction once program payment criteria were met.
- The program offered financial measure incentives to owners and developers that helped reduce cost barriers to adopting electric/natural gas energysaving measures that had not yet been accepted as standard practice for construction. Payments were made after verification that measures were installed and fully operating or capable of full operation in the case of seasonal uses.

Technical assistance, design incentives, and measure incentives were offered in varying degrees on individual projects to balance the program resources with the potential for saving energy and changing behavior. The program channeled projects through one of the following approaches:

- Comprehensive "Whole-Building" Approach offered the highest level of technical assistance and financial incentives for custom design solutions. This approach allowed the design team the greatest flexibility to meet energy performance goals by adopting integrated design solutions analyzed through whole-building energy simulations. This approach was chosen when project size, schedule, complexity, and interest level justified a high level of program resources to achieve the full benefits of integrated building design.
- Prescriptive Approach provided a menu of financial incentives patterned after the list of incentives provided by the Comprehensive Business Solutions Program. This was for projects that were optimizing only select systems in a new building or major renovation rather than the "Whole

Market Barrier

- Risk aversion for new designs and technologies
- Higher first-cost
- Lack of awareness regarding energy and nonenergy benefits
- Lack of resources to conduct initial feasibility analysis to identify energy-saving design options

Program Element

- Availability of case studies
- Financial incentives to help offset incremental costs
- Website, case studies, and other collateral materials
- Technical assistance provided through program
- Financial incentives to help offset the cost of energy simulations and design studies

Financial incentives for the Comprehensive Approach were tiered and corresponded to the percent of energy savings over the baseline standard. The design team and measure incentive levels were designed to cover 15% to 50% of the incremental cost. Incentives were set relative to a baseline for cost and energy performance to reflect Michigan practices. The default baseline was current code, researched standard practice determined through EM\&V or legally required design specifications. Under the Prescriptive Approach, measures installed were eligible for incentives at the same baseline levels as those measures listed in the Comprehensive Business Solutions Program. Pre-approval was required for all incentives.

Of the pool of financial incentive dollars available for a project, the program directed up to approximately 30% to design team incentives and 70% to efficiency measure incentives.

The baseline assumptions were evaluated at the end of 2010 and revised to meet the updated Michigan Energy Code (ASHRAE 90.1-2007) that took effect in

Eligible
Measures,
Efficiency
Requirements \&
Incentives
I mplementation
Strategy

Marketing Strategy

Milestones

March 2011. Incentives were adjusted as needed in response to market acceptance, evaluation feedback, changing baseline practices, and state energy code upgrades. The 2012 and 2013 program years also adhered to the ASHRAE 90.1-2007 standard.

Cost-effective natural gas and electric efficiency measures that improved upon the program's baseline were eligible for consideration in the program. Fuel switching (electric to alternative fuel) measures, hybrid fuel, and grid connected renewable energy systems were not eligible for incentives.

The program team provided staff to conduct program management, tracking, marketing, and implementation. The program team provided technical assistance services to participants, assisted participants with program requirements, conducted technical assistance and simulation services, performed quality control duties, and inspected measure installations.

The key element for the success in the program was securing the involvement of the professional design community early in the design process of construction projects. Project recruitment was a byproduct of the educational effort on sustainable design targeting the design community. Projects sought were early in the design phase where program intervention can produce significant natural gas or electric savings. Marketing employed "lunch and learn" presentations, individual contact, and outreach through professional organizations to engage design professionals as well as coordination with locally active education efforts. The design community was a key resource in reaching building owners and developers, and the program team will continue to actively assist the design community in educating owners on the benefits of high-performance buildings.

Major Milestone	Date
2013 New Construction Specialty Program year launched	$12 / 12$
Specialty achieved 100\% of program goals	$11 / 13$
2013 New Construction Specialty Program year ended	$12 / 13$

EM\&V Strategy
Consumers
Energy
Administrative
Requirements

Participation

No evaluation activity was performed in 2013.

Consumers Energy was responsible for oversight of the implementation contractor, managing the tracking system, and providing funds for administration, marketing, implementation, incentive check disbursement, and overall program goal achievement. The implementation contractor's responsibilities included ongoing program design, marketing materials, program marketing and implementation, project management and QA/QC, customer and contractor dispute resolution, tracking and reporting, site verification of installed measures, incentive amount approval, and program goal achievement.

The efforts of the program staff resulted in 260 new applications in 2013, a significant increase from 99 applications the previous year. Of the processed
new construction applications, 108 projects were paid, including five Whole Building Design and 103 New Construction - Major Renovation projects.

The table below provides an overview of the distribution of incentives and energy savings by project type.

Project Type	Incentive	MWh Savings	Mcf Savings
New Construction - Major Renovation 2013	$\$ 910,372.61$	6,771	24,915
Whole-Building Design - Design Team 2013	$\$ 88,272.86$	-	-
Whole-Building Design - Owner 2013	$\$ 176,545.71$	774	9,856
Total	$\$ 1,175,191.18$	7,545	34,771

Total investment and deemed energy savings are included in the Comprehensive Business Programs values.

6.1.4 Comprehensive - Specialty: Building Operator Certification Program

Program	Buflding Operator Certification (BOC)
Objective	The objective of this program was to introduce building operations and maintenance personnel to training and techniques that would assist them in implementing energy efficiency measures in their facilities.
Building operations and maintenance personnel working in large	
commercial, institutional, or industrial buildings.	

Implementation

 StrategyFollowing is a list of the primary barriers in this market and the program elements that addressed them:

Market Barrier

- Finding time for training/staffing restrictions
- Cost of training
- Management approval

Program Element

- Scheduling classes with enough advance notice to allow customers to plan
- Financial incentives to offset training costs
- Presentation that includes case studies to show business value

Customers were offered the opportunity to send up to five individuals to the class. Participants who completed the course work and passed the examinations were provided tuition reimbursement of $\$ 600$ for natural gas or electric account holders or $\$ 900$ for combined natural gas and electric account holders. Customers were responsible for travel expenses to and from the classes.

The Specialty Program was geared toward training interested individuals in attaining a Building Operator Certification. Any energy savings as a result of projects implemented by the participants and submitted for an incentive were claimed as part of the Prescriptive Business Solutions Program. In the 2013 program year, BOC energy savings were recognized for the first time through the Michigan Energy Measures Database (MEMD) for each certified BOC participant in Michigan. The program to claimed savings based on the following:

- Annual electrical energy savings per participant was $23,534.5$ $\mathrm{kWh} / \mathrm{year}$, with an assumed average per-participant square footage of 194,500.
- Annual natural gas savings per participant is $152.3-\mathrm{Mcf} / \mathrm{year}$, with an assumed average per-participant square footage of 194,500.

The program was administered by the Midwest Energy Efficiency Alliance (MEEA) which conducted the classes and participant certification.

One course was held every two to three weeks and was structured to allow for lecture, work in small groups, completion of tests and assignments, and performance of work at one's own facility. In addition to attending classes and passing all tests and quizzes, students completed a series of assignments specific to their facility. Projects included facility benchmarking using ENERGY STAR ${ }^{\circledR}$ Portfolio Manager and a lighting survey. Participants who passed an exam at the end of each course and completed all coursework were eligible for certification. Level I

certification must be renewed each year by completing at least five hours of additional training. This training can be acquired through continued employment in the field of building operations, membership in relevant professional associations, enrollment in other courses on building operations and maintenance, or the completion of an energy efficiency project at one's facility among other actions.

Consumers Energy and MEEA implemented the BOC Program in partnership since the 2010 program inception. Initially, the Consumers Energy team administered the BOC Program through 2012 and was responsible for coordinating the training series schedule, securing classrooms, and generally managing program delivery. MEEA is the regional coordinator for the program and provided online registration for students, oversaw the instructor recruitment process, and provided education materials for distribution to instructors and students. The structure of the program implementation changed in 2013 when partnering utilities joined Consumers Energy as program sponsors. MEEA has since taken on the responsibility of program administrator and manages the program. Program sponsors are responsible for program recruitment and the issuance of tuition rebates to graduates.
Marketing Strategy

Milestones
Consumers Energy corporate account managers were utilized to identify prospective large customers that qualified for the program and helped recruit their participation

Major Milestone	Date
Launched BOC Program	$1 / 13$
First Level 1 instruction series began	$3 / 13$
First Level 1 instruction series completed	$6 / 13$
Second Level 1 instruction series began	$8 / 13$
Second Level 1 instruction series completed	$11 / 13$
Final tuition reimbursement paid	$12 / 13$

EM\&V Strategy
No formal evaluation activity was performed during 2013. The evaluation team intends to conduct a study during the 2014 program year.

Consumers

Energy
Administrative
Requirements

Consumers Energy staff were responsible for oversight of the implementation contractor and providing funds for administration, marketing, and implementation. The implementation contractor's responsibilities included ongoing program design, marketing materials, program marketing and implementation, project management and QA/QC, customer and contractor dispute resolution, tracking and reporting, issuing tuition rebates, and program goal achievement.

Participation

	Participants	Certified
First Level 1	18	18
Second Level 1	13	13

I nvestment \&
Energy Savings
Total investment and deemed energy savings are included in the Comprehensive Business Programs values.

6.1.5 Comprehensive - Specialty: Compressed Air Program

Program	Compressed Afr
Objective	The objective of this program was to implement compressed air system audits at a number of facilities in order to determine the potential savings that would result from the implementation of the measures identified in the audits.
Target Market	Manufacturing sites that have central compressed air systems of at least 50 but not more than 1,600 combined horsepower.
Program	This pilot was an element of the program portfolio that was assessed for program performance in the Michigan market in 2009. It continued with a second phase in 2010, utilizing the knowledge learned in the first phase and with reduced incentives for audits. A third phase with restructured incentives was offered in 2011. In 2012, prescriptive incentives were incorporated into the Prescriptive Business Solutions Program application, for both the compressed air audit as well as improvement measures. During 2013, this program was conducted as an initiative and will continue as such under the Comprehensive Business Solutions Program.
Program	All air compressors run efficiently when running at full load; however, the work schedule of the facility dictates the run time and loading of the
compressor. Manufacturing requirements do not always necessitate running	
at full load, while running at intermittent and/or partial load significantly	
increases the cost of operation.	

costs

- Audit reports and other collateral materials
- Technical assistance provided through the program

Incentive
 Strategy

Eligible

Measures, Efficiency Requirements, Energy Savings, \& Incentives

Implementation Strategy

- Lack of awareness regarding energy and nonenergy benefits.
- Lack of resources to conduct initial feasibility analysis to identify energy-saving design options

In 2013, custom Compressed Air projects were still available, however, the following prescriptive measures also were offered to customers through the Prescriptive Business Solutions Program:

Measure	Incentive	Unit
Compressed Air Energy Audit	$\$ 15.00$	HP
VSD Air Compressor (50 to 300 HP)	$\$ 100.00$	HP
Refrigerated Cycling Thermal Mass Air	$\$ 1.50$	SCFM
Added Compressed Air Storage Tanks	$\$ 1.50$	Gallon
Low-Pressure Drop Air Filter	$\$ 0.80$	SCFM
Zero Loss Condensate Drain	$\$ 50.00$	Drain
Compressed Air Engineered Nozzle	$\$ 100.00$	Nozzle
Air Compressor Waste Heat Recovery	$\$ 35.00$	HP

Cost-effective electric efficiency measures that showed improvement above the program's baseline were eligible for consideration in the program. Fuel switching (electric to alternative fuel) measures, hybrid fuel, and grid connected renewable energy systems were not eligible for incentives.

The program team utilized trade allies to perform the audits. The program was open to all qualified trade allies who could fulfill the requirements of the program including those who had participated in the program previously.

Detailed Audit

The goal of this specialty program was to make sure that compressed air was being used as inexpensively as possible. It was possible that the compressors were not being run as a system to enable lower costs.

Customers wishing to pursue the compressed air audit incentive were able to select a contractor from our list of trade allies to perform the work. The following activities were conducted by the trade ally during the audit:

- Determined the average hours of operation
- Flow diagram with description of flow path and pressures
- Brief description of the facility's air utilization by process
- Description of system storage capacity and demand/flow controllers
- A detailed description of each air compressor, which included: full-load kW , full-load cfm, full-load rated pressure, control mechanism, machine status (i.e., either lead or lag), manufacturer and model number

Marketing
Strategy

EM\&V Strategy

Consumers
Energy
Administrative
Requirements

Participation

- On-site data collection of the individual compressed air equipment. Data was logged for a minimum of seven days, and the parameters measured included: power (in kW), pressure and cfm where possible
- Major compressed air leak detection survey, including identification, tagging and quantification of air leaks
- Detailed potential energy/cost savings calculations based on measurements (both from leaks and compressed air system)
- Approximate cost to improve system operation
- Identified the existing and proposed system efficiency in units of cfm/ HP
- Written report and presentation of audit findings and recommendations
- Detailed description of the technology proposed to the customer

Following the completion of the detailed audit, the trade ally prepared an indepth analysis of the customer facility and the compressed air system. The report presentation was conducted in person and the findings and energy efficiency proposals shared with the customer.

The final report detailed all of the findings and suggested a design and schedule of improvements for the compressed air system to offer the highest return for the customer's time and money.

Consumers Energy corporate account managers and compressed air trade allies identified prospective large customers that qualified for the program. In addition, the trade allies who performed the audits were encouraged to promote the program to their clients who met the minimum requirements.

No formal evaluation activity was performed during 2012 or 2013; however, the evaluation team intends to conduct a study during the 2014 program year.

Consumers Energy staff were responsible for oversight of the implementation contractor and providing funds for administration, marketing, and implementation. The implementation contractor's responsibilities included ongoing program design, marketing materials, program marketing and implementation, project management and QA/QC, customer and trade ally dispute resolution, tracking and reporting, site verification of installed measures, and program goal achievement.

The table below provides an overview of the distribution of incentives and energy savings by project type included within the Comprehensive Business Program.

Measure Type	Paid Measure Count	kWh/ Mcf Savings	Incentives Paid
Compressed Air Energy Audit	35	$2,781,721$	$\$ 158,502$
VSD Air Compressor	22	$2,849,500$	$\$ 205,000$
Refrigerated Cycling Thermal Mass Air	11	41,323	$\$ 6,300$
Storage Tank	0	0	0
Compressed Air Waste Heat Recovery	3	742	$\$ 6,475$
Compressed Air Custom Projects	11	$3,172,303$	$\$ 247,328$
Other (Drains, Low-Pressure Filter, etc.)	19	89,363	$\$ 4,790$

Compressed Air New Construction	7	249,123	$\$ 19,200$
Total	108	$9,184,075$	$\$ 647,505$

Total investment and deemed energy savings are included in the Comprehensive Business Programs values.

6.1.6 Comprehensive - Specialty: Smart Buildings (EBCx) Program

Program
 Objective
 Target Market

Smart Buildings (EBCx) Program

Program
Duration
The objective of the Smart Buildings (EBCx) Program was to assist business customers with existing building commissioning activities to reduce energy consumption.

Basic requirements for building eligibility were as follows:

- Facilities had 100,000 square feet or more of conditioned area
- Facilities had a building automation system with direct digital controls
- Preferred facilities had central heating and cooling plants
- Facilities had a dedicated facility staff

The Smart Buildings Program was an element of the 2009 program portfolio that was assessed for program performance in the Michigan market. It continued in 2010 with those customers from the first phase of the pilot determined to be good candidates for more in-depth retro-commissioning studies. 2011 was the last year it operated under the pilot phase. In 2012, the program was incorporated into the Comprehensive Business Solutions Program and continued to be offered as a Specialty Program in 2013.

Program

Description

The Smart Buildings Program offers a retro-commissioning audit and consulting service to customers with energy management systems in need of improvement. The program structure allows the Comprehensive Business Solutions Program a method to achieve energy savings related to low-cost/nocost building system optimization measures previously not available to be incentivized as capital measures. The Smart Building Program operated as part of the Comprehensive Business Solutions Program in 2013, with savings recognized by the program and cost sharing incentives for the assessments paid from the program. A qualified group of third-party assessors have been trained and operated independently to provide the customer an engineering evaluation, ENERGY STAR ${ }^{\circledR}$ ranking, and recognition and quantification of the facility improvement measures. The assessors also have been a great source of customer recruitment for the program.

The 2013 Smart Buildings Program was designed to utilize operations and maintenance ($\mathrm{O} \& M$) reviews in combination with enhanced energy audits that draw upon existing building commissioning techniques to help Consumers Energy customers optimize the energy efficiency of their existing facilities. An independent evaluation by reputable engineering assessors allows Consumers Energy customers the opportunity to identify and prioritize energy-saving measures without additional resources and with minimal investment. The focus of the Smart Building Program is optimizing the existing HVAC systems, including the Building Automation System (BAS) and individual heating, cooling and ventilation components, to meet their Current Facilities

Requirements (CFR). The O\&M reviews are particularly effective at identifying no- or low-cost opportunities with short paybacks and prioritizing future improvements. Historically and nationally these types of programs have provided 5% to 15% energy savings annually. The Smart Buildings Pilot delivered similar results.

The additional measures detailed in these studies provide deeper savings and qualify for Custom or Prescriptive incentives. The Smart Buildings Program also promotes the ENERGY STAR ${ }^{\circledR}$ Portfolio Manager benchmarking tool for energy management.

Following is a list of the primary barriers in this market and the program elements that addressed them:

Market Barrier

- Risk aversion for new designs and technologies
- Higher first-cost
- Lack of awareness regarding energy and non-energy benefits.
- Lack of resources to conduct initial feasibility analysis to identify energy-saving design options

Program Element

- Availability of case studies
- Financial incentives to help offset incremental costs
- Collateral materials
- Technical assistance provided through the program

I ncentive
Strategy

Eligible

Measures,
Efficiency
Requirements,
Energy Savings
\& I ncentives

Implementation

Strategy

Marketing

Strategy

This program was operated by the implementation contractor who provided qualified technical personnel to perform the preliminary screening (first phase), followed by the utilization of engineers specializing in building commissioning services to implement the second and final phase, as required.

A key element for success in this program was utilizing the Consumers Energy corporate account managers to identify qualified participants. This was due to the limited nature of the program and the desire to market it specifically to larger customers who met the criteria of the pilot.

EM\&V Strategy

Consumers
Energy
Administrative
Requirements

Participation

Investment \&
Energy Savings

No evaluation activity took place in 2013.
Consumers Energy was responsible for oversight of the implementation contractor, and providing funds for administration, marketing, and implementation. The implementation contractor's responsibilities included ongoing program design, marketing materials, program marketing and implementation, project management and QA/QC, customer and contractor dispute resolution, tracking and reporting, site verification of installed measures, and program goal achievement.

Of nine sites enrolled in the program in 2013, five sites completed the assessment and implementation. The remaining four completed assessments and will complete implementation in 2014.

Total investment and deemed energy savings are included in the Comprehensive Business Programs values.

6.2 Small Business Direct I nstall Program

Program	Small Business Direct Install
Objective	Provide direct install energy efficiency services to small businesses and not-forprofit customers typically considered "hard to reach" and who have limited resources to participate in standard business programs.
Target Market	Small business customers with an average 12 -month individual facility electricity usage of less than $400,000 \mathrm{kWh}$ and $6,000 \mathrm{Mcf}$ were eligible to participate in the program. Eligible participants were owner-occupied or tenant facilities with owner permission. This included small retail businesses such as convenience and grocery stores, small offices, service stations, restaurants, hotels/motels, nonprofit organizations, and small manufacturers.
Program Duration	The Small Business Direct Install Program is an ongoing element of the program portfolio, but was designed as a "lever" to be scaled back or ramped up depending on overall portfolio performance.
Program Description	This program consisted of several components each targeting small, non-residential customers underserved by other energy efficiency programs. These small customers typically lack the technical and financial resources necessary to participate in other efficiency programs. Often they are sole proprietorships where the owner or manager sees little value in committing time and effort to reducing energy usage. Market providers of energy efficiency products and services seldom target these small customers due to higher costs relative to larger customers. To overcome these barriers, several special initiatives were offered in 2013 to reach sub-segments of this market: The Small Business Solutions Core program was designed to promote energysaving opportunities to small businesses through the installation of common lighting and refrigeration measures. Program-approved trade allies provided efficiency audits, customer education, and the installation of cost-effective measures on a turnkey basis. Much like other similar programs, lighting retrofits yielded the highest energy savings. Delivery of program services was designed by the implementation contractor, who provided web-based proposal generation software with uniform pricing for established services. At no charge, customers received an energy audit that resulted in a standardized report detailing costs and potential savings from recommended measures. Customers were entitled to choose all, some, or none of the eligible recommended measures and schedule installation services with a program-approved trade ally. Program-approved trade allies were required to meet the following criteria: - Complete and sign the "Trade Ally Application \& Agreement" document - Be an established trade ally with references, required licenses, and insurance - Offer program warranties - Complete work in a timely fashion

- Dispose/recycle old equipment even if customers requested to keep it
- Explain the scope of retrofit work and customer co-pay requirements

The program-approved trade allies were responsible for auditing the site, proposing energy efficiency measures, specifying equipment, performing the installations, and providing required warrantees. The program team was responsible for conducting inspections to verify pre- and post-installation conditions and equipment, disbursing incentives, and overall program oversight. The program team also provided the trade allies with program information and an Internet based tool to enter, track, and receive approval and payment for projects.
Incentives were paid up to 100% of the installation costs, up to a $\$ 7,500$ maximum incentive per premise. Energy bill reductions coupled with the measure incentives yielded an average payback of just less than one year.

The Thermostat Initiative targeted small businesses specifically to install thermostats and other low cost measures in combination service areas. The installation was performed by the implementation contractor. The team performing the installations was given a schedule and route, installing thermostats at scheduled locations. They then canvassed the area to find additional interested, qualifying customers.

The Hospitality Initiative was designed to introduce energy efficiency to the hospitality segment. This initiative was modeled after the thermostat initiative but provided LEDs to hotels, motels and restaurants. The restaurant sector was mainly an LED effort to invoke market transformation.

The Nonprofit Initiative was a new offering in 2013, which was launched to help nonprofit customers save money by installing electric energy-saving measures. These measures included: LEDs, pre-rinse sprayers, faucet aerators, kitchen faucet swivel aerators, programmable thermostats, vending misers and a small demonstration of linear fluorescent to LED retrofits. The nonprofit sector was identified using applicable SIC codes and was not limited to the small business usage caps.

The program team also implemented a CFL Drop Initiative, in which boxes of CFLs were delivered by the implementation contractors directly to small businesses located in electric and combination territories.

A CFL Buy-Down Initiative also was offered in which Consumers Energy discounted the cost of CFL bulbs at common retail locations to encourage small business customers to purchase energy efficient lighting for their establishments.

Following is a list of the primary barriers in this market and the program elements used to address them:

Market Barrier

- Lack of funds and cash flow to invest in energy efficiency improvements
- Lack of time to pursue energy analysis

Program Element

- Incentives that cover up to 100% of total measure cost
- Free energy audit followed by direct installation of measures

- Lack of awareness regarding energy and nonenergy benefits
- Risk aversion to new technologies
- Proactive solicitation of customers
- Direct installation of measures thermostats, LEDs, faucet aerators, and vending misers. customer approval to install measures. initiatives.
- Educational materials and testimonials
- Financial incentives to mitigate risk

Strategies for increasing attribution through reduced free ridership included:

- Targeting small business customers not targeted by other programs and who seldom pursue improvements on their own initiative
- Incentive amounts sufficiently meaningful to influence purchase decisions

To encourage participation in the program, incentives for measures were set at up to 100% of the installed measure cost. Customers who participated in the Small Business Solutions Core Program were also subject to a cap of $\$ 7,500$ incentive per customer. This incentive cap coupled with an average incentive $\$ 0.17 / \mathrm{kWh}$ resulted in just under a one-year payback. Customers subject to the $\$ 7,500$ cap were able to invest in additional projects through the Comprehensive Business Solutions Program's prescriptive incentives. Customers who participated in one of the other initiatives received direct installation of measures at no charge to the customer.

For the Small Business Solutions Core Program, lighting measures delivered the majority of the energy savings as they are a universal technology at small nonresidential facilities with high hours of operation. Typical lighting measures included conversion of incandescent and standard T12 fluorescent to T8 or T5 fluorescent lighting, compact fluorescent lighting, high-bay fluorescent lighting, occupancy sensors, LED and induction fixtures, and LED exit sign retrofit kits. The lighting measures were responsible for 77% of the program savings with the balance attributed to refrigeration measures such as anti-sweat heater controls and ECM motors. The other direct install initiatives offered other low-cost measures including

The program team was responsible for updates to program design and program procedures, and improvements to the audit tool that produced the custom report recommendation. Both program-approved trade allies and program staff were responsible for soliciting participants, conducting the no-cost audit, and obtaining

A network of electrical and refrigeration trade allies delivered a large portion of the direct installation program services. Program-approved trade allies were responsible for installing energy-saving measures as well as removing existing products for disposal and recycling. Direct installation trade allies could provide ongoing maintenance services, lamp and ballast replacement, and installation of nonreimbursed equipment through separate arrangements with the customer.

The program team provided ongoing training to program-approved trade allies to ensure they fully understood the program so they could successfully solicit participation. Program staff also conducted door-to-door canvassing to find additional interested, qualifying customers to participate in the other direct install

Major Milestone	Date
Small Business Direct Install Programs open for participation	$1 / 13$
CFL Drop Initiative started	$3 / 13$
Core Small Business Program waitlisted	$9 / 13$
Core Small Business Program re-opened with additional funding	$10 / 13$
Payment of final projects in core program	$12 / 13$
Hospitality installation complete	$12 / 13$
Thermostat installations completed	$12 / 13$
Nonprofit installations completed	$12 / 13$

The following evaluation activities were performed for the 2013 Small Business Direct Install program.

Program Staff Interviews: In-depth telephone interviews were conducted with three program staff members (the Consumers Energy program manager, who manages the Small Business Program, as well as the implementation coordinators for two programs). The objectives of these interviews were to better understand program operations and future plans to help develop evaluation priorities.

Direct Install Trade Ally Surveys: The evaluation team fielded two online Web surveys with 28 trade allies involved with the Direct Install Program. The objectives of the surveys were to determine satisfaction with 2013 program operations, document experiences with programs, and collect regular feedback on program developments.

Small Business Customer Web Surveys: In 2013, the evaluation team completed Web surveys with 115 participants from the 2013 Small Business Program. This effort included 40 participants in the Direct Install Program, 79 participants in the Programmable Thermostat Initiative, and four participants in the Hospitality Initiative. The objectives of these surveys were to explore customers' awareness of and satisfaction with energy efficiency programs and Consumers Energy.

Consumers

Energy
Administrative
Requirements

Consumers Energy staff were responsible for general administrative oversight of the program, including:

- Management of the implementation contractor
- Coordination of marketing strategy/public relations
- Development and placement of marketing materials and advertising
- Coordination of all educational services
- Data warehousing
- Management of the evaluation contractor

Benefit-Cost Test	B/C Ratio
Utility Cost Test	2.94
Total Resource Cost Test	2.94
Participant Test	-
Rate Impact Measure	0.44

6.3 Business Multifamily Program

| Program | Business Multifamily Program |
| :--- | :--- | :--- |
| Objective | The primary goal of this program was to produce immediate electric and natural gas
 energy savings in multifamily buildings through the direct installation of energy-
 saving measures in the individual living units and common areas. A second
 program objective was to achieve additional energy savings through the promotion
 of high-efficiency equipment for prescriptive, custom, and comprehensive retrofit
 projects. |
| Target Market | All property owners of multifamily buildings, including apartments, condominiums,
 dorms, and assisted living, were eligible to participate. In 2013, the Multifamily
 Program offered direct installation and prescriptive, custom, and comprehensive
 measures to both residential and commercial customers. Targeted, proactive
 outreach efforts were utilized to influence the multifamily market sector. |
| Program | The commercial segment of the Multifamily Program has been an ongoing element
 of the Company's portfolio since 2012. |
| Duration | The Multifamily Program was designed to offer property owners a turnkey service
 for helping residents reduce energy use in their living units through the direct
 installation of various energy-saving devices. The direct install service was
 provided at no cost to the property owners and the tenants. In addition to the
 products installed, educational materials were left behind in the individual units that
 explained the energy and money-saving benefits associated with the energy efficient
 measures. |
| Program | The Multifamily Program was designed to also offer incentives to property owners
 who purchased specific high-efficiency measures to retrofit individual units and
 common areas within the property. In 2013, 105 prescriptive and custom rebate
 applications were submitted by customers and trade allies for projects they
 completed in a building that had Consumers Energy commercial electric and/or gas
 rate code. |
| For properties that were interested in reducing a significant portion of their energy | |
| use, the Multifamily Program offered the Comprehensive Whole Building Initiative. | |
| This initiative targeted properties that were undergoing multiple retrofits that, when | |
| combined, saved at least 10\% of their annual energy use. | |

Program Logic

The Multifamily Program encounters market barriers from two groups: the property owner and the tenant. The following common barriers are described below, along with program strategies that were employed to address them:

Market Barrier

For residents:

- Hassle of researching how to reduce their energy bills
- Hesitancy to invest in products that may stay with the unit when they leave
- Lack of information about potential energy savings
- Concern regarding installation technicians entering the apartment

For property owners:

- Hassle of making arrangements to install measures
- Lack of awareness regarding energy and nonenergy benefits
- Emphasis on first-cost rather than lifecycle cost
- Hesitancy to invest in products that are unfamiliar

Program Element

- Turnkey service; work was performed for them
- Materials and installation were provided free to the resident
- Leave-behind educational materials for residents
- A member of the apartment community staff was present at all times to escort the installation technicians
- Simple turnkey service
- Marketing materials, case studies, website, and "goodwill" benefit of offering free measures to their residents
- Financial incentives, lifecycle/payback information, and proactive outreach meetings with decision makers for budget expenditures
- Products were left behind for the owner to install and test

Incentive
Strategy

Direct Install of In-unit Measures. Property owners were offered a free direct install service for reducing in-unit energy use.

Prescriptive and Custom Measures. Common energy-saving measures for multifamily complexes were added to an application with the incentive amounts based on deemed energy savings from the Michigan Energy Measures Database (MEMD). This portion of the Multifamily Program was added to address deeper energy-saving opportunities than were possible through direct install measures.

Comprehensive Whole Building Initiative. Properties were given extra incentives when their overall energy use was reduced by at least 10%. The program team used energy modeling to predict energy reduction based on measures installed. By working closely with property managers, the Multifamily Program staff created an energy model of the building. Based on the energy savings information provided by the model, the customer then created a plan to remodel their building. The predicted energy savings from the retrofits determined the level at which the measure incentives would be increased. The table below illustrates the tiered incentive amounts at various energy-savings levels.

Comprehensive Program Incentive Structure		
Energy Savings Tier	Incentive per kWh saved	Incentive per Mcf Saved
Tier 1-10\%+	$\$ 0.09$	$\$ 9.00$
Tier $2-20 \%+$	$\$ 0.12$	$\$ 10.00$
Tier 3-30\%+	$\$ 0.14$	$\$ 11.00$

Deemed savings values were based on the MEMD.
The Multifamily Program offered the following measures as part of the Direct Install portion of the program. The products were installed at no cost to the property owner or residents.

Direct Install Measure	Efficiency Requirements
CFL Lamp	ENERGY STAR ${ }^{\circledR}$
LED Lamp	9.5 watt
CFL Candelabra	9 watt
LED Candelabra	3 watt
LED Exit Sign	1.2 watt
Low-Flow Showerhead	1.5 gpm
Bathroom Faucet Aerator	1.0 gpm
Kitchen Faucet Aerators	1.5 gpm
DHW Pipe Wrap	$\mathrm{R}-4$

The Multifamily Program offered the following measures as part of the Prescriptive portion of the program. Property owners and managers were eligible to receive incentives for the retrofit improvements listed below.

Multifamily Prescriptive Measures		
Prescriptive Measures - Common Area	Prescriptive Incentive Amount	
CFL 5115 W or Specialty	$\$ 1-\$ 8$	Lamp
Compact Fluorescent Fixture	$\$ 25$	Fixture
LED Lamp Replacing 50W-100W Incandescent	$\$ 20-\$ 25$	Lamp
LED PAR Flood Lamp	$\$ 20$	Lamp
LED MR16 Lamp	$\$ 5$	Lamp
LED Candelabra Lamp 3W-5W	$\$ 10-\$ 15$	Lamp
CFL Candelabra Lamp 5W-13W	$\$ 8-\$ 10$	Lamp
LED Fixture Replacing Incandescent	$\$ 25$	Lamp

HP T8 Lamp replacing T12	\$3	Lamp
HP T8 Lamp replacing T12HO	\$10	Lamp
1-4 Lamp HP T8 replacing T12	\$15-\$40	Lamp
1-4 Lamp RW HP T8 replacing T12	\$20-\$50	Lamp
4 Ft. Lamp Removal w/ HP/RW T8	\$5	Lamp
8ft Lamp Removal w/ HP or RW T8 retrofit	\$10	Lamp
LED, T-1, or Electroluminescent Exit Signs	\$12.50	Fixture
Exterior HID to CFL $\leq 400 \mathrm{~W} \$ 45$ / Fixture	\$45-\$120	Fixture
Exterior HID to T5/T8 Linear Fluorescent	\$0.50	Watt Reduced
Exterior HID to LED/Induction $<400 \mathrm{~W}$	\$45-\$180	Fixture
Vending Equipment Controller	\$50	Unit
Occupancy Sensor for Interior Lights	\$40-\$100	Fixture
Occupancy Sensor for Exterior Fixtures	\$0.20	Watt
Space Heating Boiler Tune-Up	\$0.25	MBH
DHW Boiler Tune-Up	\$0.25	MBH
Furnace Tune-Up 40-120 MBH	\$40-\$60	Tune-Up
Furnace Tune-Up > 120 MBH	\$0.50	MBH
Chiller Tune-Up	\$15	Ton
High-Efficiency Space Heating Boiler $\geq 90 \%$	\$3-\$5	MBH
Furnace Replacement $\geq 92 \%$	\$80-\$150	Furnace
Infrared Heater Replacing Standard Unit Heater	\$6	MBH
Boiler Water Reset Control	\$0.35	MBH
Indirect Water Heater with Efficiency of $\geq 84 \%$	\$1-\$2.50	MBH
Instant Hot Water Heater $\geq 82 \%$ Efficient	\$175	MBH
Tank Style Water Heater EF ≥ 0.80	\$200	MBH
Variable Frequency Drive on HVAC Fans	\$60	HP
Variable Frequency Drive on HVAC Pumping	\$100	HP
Pipe Wrap	\$1.50-\$6	Foot
Leaking Steam Trap Repair or Replacement	\$100	Trap
Programmable Thermostat	\$10	Unit
Air Conditioner - <5.4 Tons, 1 ph - 14 SEER	\$6	Ton
Air Conditioner - <5.4 Tons, 3 ph - 11.6 SEER	\$6	Ton
Air Conditioner - <20 Tons - 11 SEER	\$8-\$15	Ton
Air Conditioner - <63.3 Tons - 10 SEER	\$15	Ton

	Pool Water Heater $\geq 84 \%$ Efficent	\$2	MBH
	Pool Cover	\$0.50	Sq. Ft.
	Prescriptive Measures - In Unit	Prescri	ve Incentive ount
	CFL $\leq 115 \mathrm{~W}$ or Specialty	\$1-\$4	Lamp
	Compact Fluorescent Fixture	\$10	Fixture
	LED Fixture	\$10	Fixture
	LED replacing 40W-100W Incandescent	\$4-\$8	Lamp
	LED PAR Flood Lamp	\$10	Lamp
	Low-Flow Bath Aerator $\leq 1.75 \mathrm{GPM}$	\$2	Aerator
	Low-Flow Kitchen Sprayer Aerator $\leq 1.75 \mathrm{GPM}$	\$3	Aerator
	Low-Flow Showerhead ≤ 1.75 GPM	\$15-\$30	Showerhead
	Tank-less Gas Water Heater	\$50	Unit
	Pipe Wrap - Gas Domestic Hot Water	\$0.75	Foot
	Space Heating Furnace Replacement $\geq 92 \%$	\$80	Furnace
	Furnace Replacement $\geq 95 \%$	\$125-\$150	Furnace
	Furnace Tune-up $\geq 40 \mathrm{MBH}$	\$40-\$80	Tune-Up
	Package Terminal Heat Pump - 9.1 EER	\$50	Unit
	Room Air Conditioner CEE Tier 2	\$20	Unit
	Programmable Thermostat	\$10	Unit
	Prescriptive Measures - Building Envelope	Prescri	ve Incentive ount
	ENERGY STAR ${ }^{\circledR}$ Door	\$10	Door
	Door Weather Stripping	\$1.75	Door
	ENERGY STAR ${ }^{\circledR}$ Window	\$100	100 Sq . Ft.
	Airtight Can Light	\$5	Fixture
	Duct Sealing	\$6	1,000 Sq. Ft.
	Duct Insulation	\$10	$1,000 \mathrm{Sq} . \mathrm{Ft}$.
	Wall Insulation	\$40	$1,000 \mathrm{Sq}$. Ft.
	Roof Insulation	\$20	$1,000 \mathrm{Sq} . \mathrm{Ft}$.
	Reduce Air Infiltration by 30\%	\$5-\$25	1,000 Sq. Ft.

I mplementation Strategy

Key elements of the implementation strategy included:

- Targeted Outreach to Property Owners. Program representatives concentrated on building relationships with property management companies, owners, associations and their members to recruit participation in the program. The program team assisted customers as necessary to coordinate direct installations and complete rebate application requirements. In addition, property owners

were reached through direct mail, participation in association events, one-onone meetings with program staff, and other channels.

On several occasions, the Multifamily Program outreach team utilized Resident Education events to reach the individual residents before installation occurred. The outreach team provided dinner and educated the residents on the benefits of the direct install products. The residents were shown samples of the showerheads, aerators, and light bulbs to get a preview of what would be installed in their apartment units. These education events helped the direct install technicians achieve a higher installation rate because the residents were educated on the program and more receptive to the energy efficiency products.

- Targeted Outreach to HVAC Trade Allies. Program representatives informed and recruited participation from trade allies for a Furnace Tune-Up Program. This program was offered at low or no cost to the owner or tenant. Outreach included orientation meetings and training of trade allies to perform and communicate HVAC tune-up benefits. Program representatives also worked directly with property owners to schedule and coordinate the furnace tune-up and other direct installation measures for individual living units. Due to the incentives available for this measure, several trade allies were able to hire additional staff to support the furnace tune-up portion of their business.
- Direct Installs.
o Standard Direct Install: Program representatives identified interested property owners and scheduled appointments for the free installation of energy-saving devices in the individual living units and common areas. In 2013, three new direct install offerings were added to the Multifamily Program: LED 60-watt equivalent replacement bulbs, LED/CFL candelabra bulbs, and LED exit signs. The installation crews were trained on the technical and educational benefits of all of the energy-saving devices installed. In addition, educational materials describing the work performed and promoting the energy-saving benefits of the installed items were left in each of the living units. The Multifamily Program contributed to market transformation by installing 28,680 screw-in LED bulbs in 2013.
o Pipe Wrap: Property owners also were offered pipe wrap insulation on unwrapped domestic hot water piping in both common areas and in-unit areas. The insulating pipe wrap prevented heat loss through the piping in unconditioned spaces. The program was able to install up to 500 linear feet of pipe wrap for every domestic water heater. In 2013, the Multifamily Program installed 12,018 linear feet of pipe wrap.
- Prescriptive and Custom Programs. Going beyond the direct installation of low-cost measures and to help building owners continue to reduce their energy use and costs, program representatives conducted site assessments to help target common high-efficiency retrofit opportunities. Opportunities for energy efficiency improvements would then be presented to the building owner in an effort to encourage participation in the prescriptive and custom portion of the program. In 2013, more than 105 projects received nearly $\$ 300,000$.
- Comprehensive Whole Building Program. The Comprehensive Whole Building Program was developed to encourage and address large improvement projects that reduced a significant percentage of the property's overall energy use. Qualifying projects needed to include measures from at least two energysaving measure categories and show a reduction in the overall energy use of the building of at least 10%. The Multifamily Program team used building energy

A highly targeted marketing strategy was employed in 2013. Recruitment efforts targeted property management companies in an effort to secure agreements to address multiple properties through a single point of contact before targeting owners and managers of individual properties.

A targeted marketing strategy with property owners and management companies increased awareness of the Consumers Energy Multifamily Program offerings. The targeted marketing approach focused on specific measures and specific target markets. Based on these targets, direct mail campaigns were created, program collateral was designed, and recognition of program participants was generated.

Marketing and outreach strategies included:
o In-person visits by program representatives
o Walk-through energy assessments of properties to encourage participation in the direct install, prescriptive and custom measures
0 Targeted advertising in trade organization and association publications
o Outreach to property management associations to recruit assistance in distributing information about the program through existing channels
0 Direct mailings promoting the program offerings and benefits
o Utilizing our trade ally network to promote and distribute information about the program
o Trade ally recognition awards
o Redesigned Multifamily Program Catalog
As market penetration of direct install measures increases, program staff has identified additional energy saving opportunities to meet program goals. In 2013, there was a greater focus on prescriptive and custom measures, going beyond direct install and introducing a more targeted marketing approach.

Milestones

The 2013 Program Catalog was expanded to create a more complete overview of all the program offerings. Included in the 2013 catalog were descriptions of all direct install product offerings, prescriptive and custom measures, efficiency requirements, and all of the necessary forms and worksheets necessary to submit rebate applications.

Major Milestone	Date
Launched redesigned Multifamily Program Catalog	$3 / 13$
Increased market transformation by switching from direct install CFLs in individual units to direct install LEDs	$3 / 13$
Launched Direct Install Furnace Tune-Up Initiative	$4 / 13$

EM\&V Strategy

The following evaluation activities were performed for the Multifamily Direct Install Program in 2013.

Evaluability Assessment: As the program focused on increased common area savings opportunities, including comprehensive, multi-measure efficiency upgrades and the utilization of a building energy simulation model, an evaluability assessment was conducted. The assessment included a review of: data collection protocols; development of model inputs; model algorithms; calibration approaches; and assumption sensitivity. Guidelines for evaluable and accurate modeling were developed.

Benchmarking and Best Practices Study: The Multifamily program was benchmarked against 16 other utility programs that were of similar size or geography; identified as exemplary programs, (e.g., designated by the American Council for an Energy Efficient Economy); offered similar measures (including both direct install measures and common area measures). The benchmarking sought to compare programs in terms of the magnitude of savings, the comprehensiveness and diversity of measures offered through the program, and cost-effectiveness. In addition, the analysis identified best practices for effectively addressing barriers faced by this hard-to-reach market segment in order to achieve comprehensive energy savings.

Consumers

Energy
Administrative
Requirements
Consumers Energy staff were responsible for general administrative oversight of the program portfolio including:

- Management of the implementation contractor
- Coordination of marketing strategy/public relations among programs and market sectors
- Coordination of all educational services
- Data warehousing
- Management of key performance metrics and reporting
- Goal achievement within investment

Participation
Thanks to a greater focus on LED and Pipe Wrap, the Consumers Energy
Multifamily Program experienced excellent participation in the direct install portion
of the program in 2013. Below are the total quantities of products installed by the Business Multifamily Program technicians in 2013.

Business Direct Install Product Count	
In-Unit Direct Install Measure	Number of Installed Measures in 2013
CFLs	13,738
LED Candelabra Bulbs	2,727
Low-Flow Showerhead	3,053
Faucet Aerator	6,107
Pipe Wrap (ft.) Common Area	12,018

- Prescriptive and Custom Projects: 105 projects received incentives through the multifamily prescriptive and custom application.
- Comprehensive Whole Building Retrofits: In 2013, five comprehensive projects were completed.

	2013 Actual	2013 Plan
Electric	$\$ 391,573$	$\mathrm{~N} / \mathrm{A}$
Gas	$\$ 295,176$	$\mathrm{~N} / \mathrm{A}$
Total	$\$ 686,749$	$\mathrm{~N} / \mathrm{A}$

Energy Savings

		2013 Actual w/ LLES Multiplier	2013 Plan
MWh	4,317	4,576	N/A
MW	0.4	0.4	N/A
Mcf	28,218	30,823	N/A

Benefit-Cost Test Results

Benefit-Cost Test	B/C Ratio
Utility Cost Test	4.92
Total Resource Cost Test	4.92
Participant Test	-
Rate Impact Measure	0.50

6.4 Business Pilot Programs

6.4.1 Business Pilots - Multiple Measure Bonus

$\left.\begin{array}{|ll}\text { Program } & \begin{array}{l}\text { Business Photis - Multiple Measure Bonus }\end{array} \\ \hline \text { Objective } & \begin{array}{l}\text { The objective of this pilot was to implement a bonus incentive strategy to } \\ \text { motivate customers to pursue deeper energy savings by implementing multiple } \\ \text { measures at the same time. }\end{array} \\ \hline \text { Target Market } & \begin{array}{l}\text { Commercial and/or industrial natural gas and/or electric customers pursuing } \\ \text { multiple measures within the Consumers Energy Business Solutions Programs. }\end{array} \\ \hline \text { Program } & \begin{array}{l}\text { This pilot was an element of the program portfolio that was introduced for } \\ \text { program performance in the Michigan market mid-year 2012. It continued as a } \\ \text { pilot program in 2013. }\end{array} \\ \text { Duration } & \begin{array}{l}\text { Customers pursuing the bonus incorporate two or more categories of energy } \\ \text { saving measures into one project. By doing so, the customer will create a more } \\ \text { significant reduction in energy usage than those only pursuing energy savings } \\ \text { from a single measure with a quick return on investment. The intent of this } \\ \text { program was to evaluate the impact a bonus incentive had on influencing } \\ \text { customers to install multiple measures and technologies, ultimately pursuing a } \\ \text { "deep-dive" energy efficiency project. }\end{array} \\ \text { Description } \\ \text { If the customer meets the program requirements, they may be eligible to receive } \\ \text { a 15\% bonus incentive of the total, paid application incentive amount of their } \\ \text { Business Solutions program application. For the application to qualify the } \\ \text { customer had to meet the customer eligibility requirements, and submit the } \\ \text { applicable Business Solutions Program application: } \\ \text { - The measure category submitted with the highest incentive was used to } \\ \text { measure incentive eligibility. If the sum of all additional measure }\end{array}\right]$

Following is a list of the primary barriers in this market and the program elements that addressed them:

Market Barrier

- Persuading customers to pursue multiple measures, which can potentially involve more of an up-front financial commitment
- Marketing the message to the end user
- Find the trade allies who can perform turn-key projects with multiple measures

Program Element

- Incentive levels that will make it possible for customers to pursue more measures
- Using combination of outreach staff and mass marketing
- Driving awareness through performance contractors

Incentive

Strategy

Eligible

Measures,
Efficiency
Requirements,
Energy Savings
\& I ncentives
I mplementation Strategy

Marketing Strategy

- Commercial Kitchen \& Refrigeration
- Building Envelope
- Custom

The program team provided staff to conduct program management, tracking, marketing, and implementation. A heavy focus on outreach and marketing were a key factor for the success of this program.

Marketing was accomplished using mass marketing techniques as well as individual outreach by program staff. Marketing campaigns to both end users and trade allies, including direct mail postcards, digital Internet banner advertisements, and articles in an electronic newsletter were used to drive customer participation.

The Consumers Energy Business Solutions outreach staff also promoted the program to all business customers, trade allies and Consumers Energy corporate account managers.

Milestones

EM\&V Strategy

Major Milestone	Date
Launched Multiple Measure Program	$12 / 12 / 12$
Paid final 2013 projects	$12 / 13 / 13$

The following evaluation activities were performed for the 2013 Multiple Measures Pilot Program:

Trade Ally Surveys: The evaluation team surveyed 83 trade allies as part of the Trade Ally Engagement Panel study. As part of this panel, the evaluation team asked trade allies how they referred jobs to complementary firms and their interest in a trade ally incentive for completing multiple measure projects.

Customer Surveys: The evaluation team surveyed 95 Business Solutions participants regarding the Multiple Measures pilot. The objectives of this portion of the survey were to assess customer awareness of the Multiple Measure pilot, explore customers' reasons for not installing multiple measures, identify the best methods to market the program to customers, and examine if the bonus incentive influenced the customer's decision to install multiple measures.
Participation
In 2013, a total of 115 projects were paid resulting in $\$ 173,323$ in bonus incentives to customers.

Primary Fuel Type	Secondary Fuel Type	Number of Projects	Bonus Incentive
Electric	Electric	73	$\$ 66,476$
Electric	Gas	9	$\$ 6,978$
Gas	Electric	18	$\$ 16,734$
Gas	Gas	15	$\$ 87,135$
	115	$\$ 173,323$	

Total investment and deemed energy savings for all business customer pilots are shown in Tables 4-4 and 4-5 on pages 13 and 14.

6.4.2 Business Pilots - Buy Michigan

Program	Buy Michigan Pllot Program
Objective	The Buy Michigan Pilot Program was designed to study the effects of creating a bonus for participants in the Consumers Energy Business Solutions Business Program that installed an energy efficient product manufactured in Michigan.
Target Market	Commercial and/or industrial natural gas and/or electric customers purchasing a Michigan manufactured product and submitting a Consumers Energy Business Solutions program application.
Program Duration	This pilot was introduced in the Michigan market during the $4^{\text {th }}$ quarter of 2012, and continued through the end of 2013.
Program Description	The customer submits a Business Solutions Program application and an affidavit from the manufacturer that complies with the following condition: - At least 50% of the cost to manufacture and assemble this product (exclusive of packaging) is performed in the state of Michigan. Upon approval of the application and affidavit, the customer qualified for a 15% bonus of the total incentive of the measure that is Michigan made. The bonus is intended to drive customer's participation in the Consumers Energy Business Solutions programs to purchase their equipment and/or materials locally, ultimately attracting and expanding business opportunities in the state of Michigan. In order to qualify the customer must meet the customer eligibility requirements, and submit a Business Solutions program application that includes a copy of the manufacturer affidavit and specification sheets for the qualifying products.
Program Logic	Following is a list of the primary barriers in this market and the program elements that addressed them: Market Barrier - Persuading customers to pursue the bonus, which can potentially involve more of an up-front time commitment to seek out qualifying products and manufacturers - Marketing the message to the end user - Find the manufacturers that Program Element - Indication on the trade ally list which manufacturers qualify - Using combination of outreach staff and mass marketing - Driving awareness through

produce products that meet our specifications and are made in Michigan
manufacturers and supply chains

Customers whose projects met the program requirements received a bonus incentive of an additional 15% of the normal measure incentive paid under the Consumers Energy Business Solutions Program.

Cost-effective natural gas and electrical efficiency measures that improve upon the program's baseline were eligible for consideration in the program. Fuel switching (electric to alternative fuel) measures, hybrid fuel, and grid connected renewable energy systems were not eligible for incentives through this program.

The program team provided staff to conduct program management, tracking, marketing, and implementation. A heavy focus on outreach and marketing was a key factor for the success of this program.

Marketing was accomplished using mass marketing techniques as well as individual outreach by program staff.

Marketing campaigns to both end users and trade allies included direct mail postcards, digital Internet banner advertisements, and articles in an electronic newsletter to drive customer participation.

The Consumers Energy Business Solutions outreach staff also promoted the program to all business customers, trade allies and corporate account managers. Marketing campaigns to both end users and trade allies including direct mail postcards, digital Internet banner advertisements, and articles in an electronic newsletter used to drive customer participation.

Major Milestone	Date
Launched Buy Michigan Bonus Program	$12 / 12$
Paid final 2013 projects	$12 / 13$

The following evaluation activities were performed for the 2013 Pilot Buy Michigan Program.

Customer Surveys: The evaluation team conducted online surveys with 367 commercial and industrial customers regarding the Buy Michigan Pilot Program as part of the Customer Engagement Panel. The objectives of this survey included assessing awareness of the pilot program, identifying sources used by customers for finding Michigan-made products, and estimating customers' willingness to pay a premium for local energy efficient equipment.

Best Practice Review: The evaluation team conducted a best practice
review of similar programs implemented across the nation. The objective of this research was to identify any successful approaches used elsewhere to provide short-term feedback to program staff regarding program design.

Consumers Energy staff were responsible for oversight of the implementation contractor and providing funds for administration, marketing, and implementation. The implementation contractor's responsibilities included ongoing program design, marketing materials, program marketing and implementation, project management and $\mathrm{QA} / \mathrm{QC}$, customer and contractor dispute resolution, tracking and reporting, site verification of installed measures, and program goal achievement.

In 2013, a total of 16 manufacturers registered with the program and 8 were active participants (*).

- Alumalight*
- Great Lakes LED*
- LightCorp*
- Lumecon*
- Lumerica*
- Detroit Radiant*
- SourceOne LED*
- ZonLED*
- Sky Blade
- Toggled
- Best Lights
- Commercial Retrofit-CBR Insulation
- Everlast*
- Duro-Last Roofing
- Reihl Efficient
- Kimberly LED Lighting

The program paid 87 project bonuses, awarding $\$ 75,846$ in incentives.
Total investment and deemed energy savings for all business customer pilots are shown in Tables 4-4 and 4-5 on pages 13 and 14.

6.4.3 Business Pilots - Agriculture

Program	Business PHlots: Agriculture
Objective	The Agriculture Pilot Program was designed to offer both commercial and residential agriculture customers incentives for energy-saving measures included within the Business Solutions Program. By utilizing funding from the Consumers Energy residential program, the Consumers Energy Business Solutions Program was able to offer commercial incentives to residential farms that had industrial-grade equipment and operations.
Target Market	Commercial and/or industrial natural gas and/or electric customers or residential electric and/or natural gas customers on an eligible farm rate code, operating a full-time agricultural operation at the facility where the measures were being installed.
Program	This pilot was an element of the program portfolio that was introduced in the Michigan market in 2011. It continued phase two in 2012 and completed its final year as a pilot in 2013.
Duration	This program provided participating customers access to prescriptive and custom incentives through the Business Solutions Program for both commercial and residential agricultural farm customers.
Description	This program collaborated with Michigan State University's Farm Audit Program to offer incentives to customers who had an audit completed at their facility. Program staff worked with MSU to collect leads generated by the MSU Farm Audit Program, funded through the USDA REAP Program. By having access to the audit reports of farms that have participated in the MSU/REAP program, program staff were able to create a targeted approach to assist customers applying for incentives offered through the Business
Solutions Program. By combining resources of the residential and	
commercial programs, the agriculture sector had greater access to participate	
in Consumers Energy's efficiency programs.	

- Monetary resources and financing to pursue projects
- Audit incentive as well as financial incentives

Audit Incentive

The pilot provided a rebate of up to $\$ 500$ for the customer's portion of the energy audit performed by MSU/REAP. Typical audit costs were $\$ 1,700$ per farm for small- and medium-size agricultural operations. For large operations, the farm paid the incremental difference. The requirements to receive the rebate included completion of a Rural Farm Energy Audit Agreement application, an invoice from the auditor valued at $\$ 500$ or more, and submission of the summary of energy conservation measures from the audit.

Measure Incentives

This program also provided participating customers access to prescriptive and custom incentives through the Business Solutions Program for both commercial and residential customers. Residential agricultural customers were an integral portion of this pilot, as many farms were served under a residential rate code, but had business operations.

Cost-effective natural gas and electric efficiency measures that improved upon the program's baseline were eligible for consideration in the program. Fuel switching (electric to alternative fuel) measures, hybrid fuel, and grid connected renewable energy systems were not eligible for incentives through this program.

The program team provided staff to conduct program management, tracking, marketing, and implementation. Collaboration with MSU's REAP Audit Program was critical to the success of this program. A heavy focus on outreach was crucial to identify eligible residential and commercial customers.

Marketing was accomplished using mass marketing techniques as well as individual outreach by program staff, in particular the Agriculture Pilot project manager.

Marketing campaigns to customers such as dairy farmers, greenhouses and grain processors included direct mail postcards, newspaper ads, digital Internet banner advertisements, and billboards throughout the Consumers Energy service territory to drive customer participation.

The Consumers Energy Business Solutions outreach staff also promoted the program to all agricultural customer segments, trade allies and CAMs.

Milestones

Major Milestone	Date
Launched 2013 Agriculture Pilot Program	$1 / 13$
Paid final 2013 projects	$12 / 13$

EM\&V Strategy
The following evaluation activities were performed for the 2013 Pilot Agricultural Program.

Agricultural Customer Surveys: The evaluation team conducted 29 online surveys with participating and nonparticipating agricultural customers. The objectives of these surveys were to assess satisfaction with the pilot, identify potential barriers to participation, and evaluate the impact of the audits provided for future recommendations.

Auditor Interviews: The evaluation team conducted 16 interviews with representatives of the Michigan State University audit team, including three program staff, three auditors, and 10 trade allies. The objectives of these interviews were to determine the barriers to agricultural customers' participation and the most successful strategies used to encourage participation.

Participation

Consumers
Energy
Administrative
Requirements

2013 Agriculture Program Results					
Program Year/Type	Audits	Project Applications	Audit Incentives Paid \$	Project Incentives Paid \$	
2013 Residential	12	28	$\$ 11,000$	$\$ 67,238$	
2013 Commercial	20	95	$\$ 9,000$	$\$$	
Total 2013	$\mathbf{3 2}$	$\mathbf{1 1 1}$	$\$ 20,000$	$\$ \mathbf{6 7 , 2 3 8}$	

Consumers Energy was responsible for oversight of the implementation contractor and providing funds for administration, marketing, and implementation. The implementation contractor's responsibilities included ongoing program design, marketing materials, program marketing and implementation, project management and QA/QC, customer and contractor dispute resolution, tracking and reporting, site verification of installed measures, and program goal achievement.
Investment \&
Energy Savings
Total investment and deemed energy savings for all business customer pilots are shown in Tables 4-4 and 4-5 on pages 13 and 14.

6.4.4 Business Pilots - Building Performance with ENERGY STAR ${ }^{\circledR}$

Program	Business Phots - Bufling Performance Objective
The Building Performance with ENERGY STAR ${ }^{\circledR}$ for K-12 Schools Pilot Program focused on buildings owned and operated by school districts. The program staff provided services to school districts to benchmark their buildings using Environmental Protection Agency's Portfolio Manager, provided a comprehensive energy assessment performed by a third-party engineering firm on one of the buildings in their district, and worked with school officials to develop an energy-savings goal, and an energy management policy and plan. This program aided the school in developing an energy team comprised of a school business official or superintendent, as well as representatives from the departments within the district.	
Target Market	Consumers Energy commercial/industrial customers that are K-12 school districts with three or more school buildings that received electric and/or natural gas services.
Program	This pilot was an element of the program portfolio that was introduced in the Michigan market in 2012 and continued through the 2013 program year.
Duration	The pilot was designed to assist school districts in developing an energy management plan that would help direct their efforts to become more energy efficient. Energy teams, comprised of both school officials and program staff were assembled, to develop a roadmap for strategic implementation of improvement measures using a mix of low-cost/no-cost measures, best practices and capital projects.
Program	
Description	

Following is a list of the primary barriers in this market and the program elements that addressed them:

Market Barrier

- Availability of financial funds and resources within school districts to implement projects
- Getting the time commitment of the decision maker within the district

Program Element

- Offering services and incentives to these customers
- A business official or superintendent is required to participate on the energy team

This pilot was available to a limited number of participants who met the eligibility criteria and the overall pilot goals. Customers accepted into the pilot received technical assistance and financial incentives.

In addition to any incentives received from the Consumers Energy Business Solutions Program, participants were eligible to receive a bonus incentive from the Building Performance with ENERGY STAR ${ }^{\circledR}$ Pilot Program of $\$ 5,000$ for every 1% in energy reduction across the district, capped at $\$ 50,000$.

Cost-effective natural gas and electrical efficiency measures that improved upon the baseline were eligible for consideration in the program. Fuel switching (electric to alternative fuel) measures, hybrid fuel, and grid connected renewable energy systems were not eligible for incentives through this program.

The program team provided staff to conduct program management, tracking, marketing, and implementation. The program team also provided technical assistance services to participants, assisted participants with program requirements, conducted technical assistance and simulation services, performed quality control, and inspected measure installations.

| Milestones | Major Milestone Date
 Launched 2013 Building Performance with
 ENERGY STAR ${ }^{\circledR}$ Pilot Program $01 / 13$
 Closed 2013 Pilot Program $12 / 13$
 The following evaluation activities were performed for the 2013 Pilot
 Building Performance with ENERGY STAR
 On-Site Interviews: The evaluation team conducted three on-site interviews
 with program participants. The objectives of these interviews were to
 identify ways to improve the program's delivery and how, if at all, the
 program should be altered if expanded to a larger audience.
 Telephone Interviews: The evaluation team conducted eight telephone
 interviews with program participants. The objectives of these interviews were
 to assess satisfaction with the various program components, identify the
 motivations for program participation and audit follow-through, and identify
 potential process improvements for program delivery.
 Consumers Desk Review of Audits: The evaluation team conducted a desk review of
 three of the audit reports provided to participants. The objective of this
 review was to assess the quality and comprehensiveness of the audits in terms
 of specific recommendations and usability.
 Energy Consumers Energy was responsible for oversight of the implementation
 Administrative
 Rentractor and providing funds for administration, marketing, and
 implementation. The implementation contractor's responsibilities included
 ongoing program design, marketing materials, program marketing and
 implementation, project management and QA/QC, customer and contractor
 dispute resolution, tracking and reporting, site verification of installed
 measures, and program goal achievement. |
| :--- | :--- | :---: |
| Participation | In 2012, this pilot worked with 11 school districts across Michigan. Of these, |
| 51 buildings were benchmarked using ENERGY STAR ${ }^{\circledR}$ Portfolio Manager | |
| softare. In 2013, these 11 districts continued in the pilot program, as this is | |
| a multi-year pilot offering. Of the original 11, five more completed the audit | |
| phase. Five new 2013 participants were registered, benchmarked, and | |
| audited, including another 65 buildings benchmarked through Portfolio | |
| Manager. | |

The Building Performance Pilot for the 2013 program year influenced 40% of the districts involved in the two years of the pilot to submit additional projects for the C\&I Program. Over 20 Comprehensive Business Solutions projects of various sizes can be attributed to the 2012 and 2013 Building Performance participants. Many were exterior LED lighting and HVAC performance related. Implemented project savings are summarized below.

Program Year	kWh Saved	Mcf Saved	Incentives Paid
2012	246,469	4,320	$\$ 28,715$
2013	10,416	0	$\$ 751$
Total	256,885	4,320	$\$ 29,466$

Investment \&
Energy Savings

Total investment and deemed energy savings for all business customer pilots are shown in Tables 4-4 and 4-5 on pages 13 and 14 .

6.4.5 Business Pilots - Refrigeration

Program	Business Pllots - Refrigeration
Objective	The Refrigeration Pilot was intended to determine and study the best practices or process implementations at large commercial cold storage facilities. The Consumers Energy Business Solutions team provided technical services and financial incentives to customers through this program. Program staff helped customers identify opportunities for energy management to reduce energy consumption and associated costs.
Target Market	Consumers Energy electric or electric and natural gas customers operating a year-round commercial or industrial cold storage facility.
Program Duration	This pilot was an element of the program portfolio that was introduced in the Michigan market in 2012 and continued through the end of the 2013 program year.
Program Description	The objective of the refrigeration pilot was to help customers identify operational and maintenance issues resulting in inefficiencies and to identify opportunities to upgrade refrigeration systems to realize greater energy savings.
Program Logic	Following is a list of the primary barriers in this market and the program elements that addressed them:
Incentive Strategy	Eligible customer projects were incentivized following the Custom Business Solutions Program guidelines and specifications. Custom projects were incentivized at the current program year custom rate.
Eligible Measures, Efficiency Requirements, Energy Savings \& Incentives	Cost-effective natural gas and electric efficiency measures that improved upon the program's baseline were eligible for consideration in the program. Fuel switching (electric to alternative fuel) measures, hybrid fuel, and grid connected renewable energy systems were not eligible for incentives.

I mplementation
Strategy

Marketing
Strategy
Milestones

EM\&V Strategy

Consumers

Energy
Administrative
Requirements

Participation

Investment \& Energy Savings

The program team provided staff to conduct program management, tracking, marketing, and implementation. The program team also provided technical assistance services to participants, assisted participants with program requirements, conducted technical assistance and simulation services, performed quality control, and inspected measure installations.

Because this program was limited in scope, outreach was accomplished through the Consumer Energy corporate account managers (CAMs).

Major Milestone	Date
Launched 2013 Industrial Refrigeration Pilot Program	$01 / 13$
Program closed	$9 / 13$

No evaluation activity was performed during 2013.

Consumers Energy staff was responsible for oversight of the implementation contractor and providing funds for administration, marketing, and implementation. The implementation contractor's responsibilities included ongoing program design, marketing materials, program marketing and implementation, project management and QA/QC, customer and contractor dispute resolution, tracking and reporting, site verification of installed measures, and program goal achievement.

During the 2012 program year, four audits were conducted for customer sites. In 2013, another four audits were conducted for a total of eight reports delivered to participating customers. Individual audit reports were delivered to each of the eight participating sites. Below is a summary of the potential measures identified through the eight audits.

During the 2012 program year, Phase 1 audits were performed for three customers, with reports completed in early stages 2013.

Customers	Measures	Annual kWh Savings	Annual Savings \$	Incremental Measure Cost	CE Incentive $\mathbf{(\$)}$	Simple Payback $\mathbf{(y r s) ~}$
8	36	$4,640,565$	$\$ 384,165$	$\$ 1,265,325$	$\$ 236,026$	2.7

Total investment and deemed energy savings for all business customer pilots are shown in Tables 4-4 and 4-5 on pages 13 and 14.

6.4.6 Business Pilots - I ndustrial Continuous I mprovement

Program	Business Pilots - Industrial Continuous I mprovement (ICl P)
Objective	This Industrial Continuous Improvements Pilot was designed to help industries integrate Energy Management Systems (EnMS) into continuous improvement processes to help reduce energy consumption, CO_{2} emissions, and operational costs.
	The pilot program provided technical assistance and financial incentives to customers implementing the necessary strategies for ISO 50001, ENERGY STAR ${ }^{\circledR}$ for Industry and/or Superior Energy Performance (SEP) certification and resulting energy saving actions.
Target Market	Industrial customers with electric and/or natural gas interested in pursuing ISO 50001 certification or ENERGY STAR ${ }^{\circledR}$ for Industry.
Program Duration	This pilot was an element of the program portfolio that was introduced in the Michigan market in 2012 and continued through the end of the 2013 program year.
Program Description	The Industrial Continuous Improvement Pilot (ICIP) was developed to help manufacturing companies in the Consumers Energy's service territory adopt Energy Management System practices to improve the energy performance of the facility.
	This program supports development of an EnMS: a set of organizational tools, systems and processes necessary for a holistic and systematic approach to achieve continuous improvement of energy performance, i.e., energy efficiency, use, consumption and intensity. Specifically, the pilot program provided technical assistance and financial incentives to customers implementing the necessary strategies for ISO 50001, ENERGY STAR ${ }^{\circledR}$ Challenge for Industry, and/or SEP certification and resulting energy-saving actions.
	The ICIP Program had two paths for customers to pursue based on company priorities and structure. Paths were available to help customers achieve ISO 50001 and optionally SEP or the ENERGY STAR ${ }^{\circledR}$ Challenge for Industry. Each path was structured with a two-phase delivery system and designed as follows.
	ISO 50001/SEP Path Consumers Energy offers incentives for large- and medium-sized industrial customers to achieve ISO 50001 certification, and (optionally) SEP Certification. Phase I offers the customer a better understanding of ISO 50001. During Phase I, the customer selected an energy manager, formulated an energy team, tracked energy consumption, developed an

energy policy and set a goal to improve the energy performance of the facility (typically 2% per year for the first three years). Phase I did not include financial incentives, however participating facilities received technical assistance in the form of training sessions and an analysis of current energy management practices in relation to ISO 50001.

During Phase II, the customer created energy action plans, pursued improvement opportunities and worked toward compliance and certification of ISO 50001. Customers received a focused energy audit aid with planning and implementation of the EnMS, and ISO 50001 compliance assistance. After ISO 50001 certification, medium sized customers qualify for 25% matching incentive funds for efficiency projects paid through the Consumers Energy Business Solutions Program. These matching funds were limited to a total of $\$ 5,000$. ISO 50001 does not recognize actual energy improvement. A customer received recognition for realized savings through SEP by employing a monitoring and verification protocol. SEP gave facilities a rating of Gold, Silver, or Platinum for achieving improvements of 5,10 , and 15%, respectively, during a three-year time period. Large customers qualified for incentives if SEP certification was achieved.

ENERGY STAR ${ }^{\circledR}$ Challenge for Industry Path

Consumers Energy medium and large industrial customers also qualify for the ENERGY STAR ${ }^{\circledR}$ pathway. Phase I offered the customer a better understanding of the ENERGY STAR ${ }^{\circledR}$ Challenge for Industry. During Phase I, the customer selected an energy manager, formulated an energy team, tracked energy consumption, and developed an energy policy and set a goal to improve the energy performance of the facility by 10% within five years.

During Phase II, the customer created energy action plans, pursued improvement opportunities and worked toward compliance and certification of ENERGY STAR ${ }^{\circledR}$ Challenge for Industry. Customers received a focused energy audit aid with planning and implementation of the EnMS, and ENERGY STAR ${ }^{\circledR}$ compliance assistance. If a customer completed the Challenge in two years or less, a bonus incentive of 25% was paid for projects approved through the Commercial \& Industrial Program during pilot participation. This bonus was limited to $\$ 10,000$ and was subject to the availability of funds.

Following is a list of the primary barriers in this market and the program elements that addressed them:

Market Barrier

- Resource allocation of the facility staff to commit the time to the certification process
- Allocating funds to pursue capital intensive projects

Program Element

- Technical services and financial incentives to assist the customer
- Financial incentives to help offset the cost of upgrades

Incentive Strategy	Large customers ($>5,000 \mathrm{MWh}$) achieving ISO 50001 certification received $\$ 7,500$. Matching funds for energy efficiency measures were not applicable. Those customers achieving SEP certification received up to $\$ 22,500$ ($\$ 7,500$ Silver, $\$ 15,000$ Gold, or $\$ 22,500$ Platinum) based on energy consumption. Incentives could total $\$ 30,000$ in addition to any Comprehensive Business Solutions incentives pursued.	
	Medium customers (1,000 to $5,000 \mathrm{MWh}$) achieving ISO 50001 certification received $\$ 3,000$. Matching funds of 25% for EE measures completed, up to $\$ 5,000$ was available. The SEP certification is not applicable. Incentives could total $\$ 8,000$ in addition to any Comprehensive Business Solutions incentives pursued.	
Eligible Measures, Efficiency Requirements, Energy Savings \& Incentives	Cost-effective natural gas and electric efficiency measures that improve upon the program's baseline were eligible for consideration in the program. Fuel switching (electric to alternative fuel) measures, hybrid fuel, and grid connected renewable energy systems were not eligible for incentives through this program.	
Implementation Strategy	The program team provided staff to conduct program management, tracking, marketing, and implementation. The program team also provided technical assistance services to participants, assisted participants with program requirements, conducted technical assistance and simulation services, performed quality control, and inspected measure installations.	
Marketing Strategy	Because this program was limited in scope, outreach was accomplished through the CAMs.	
Milestones	Major Milestone	Date
	Launched 2013 Industrial Continuous Improvements Pilot Program	01/13
	Eight Energy Audit Reports delivered	12/13
EM\&V Strategy	No evaluation activity was performed during 2013.	
Consumers Energy Administrative Requirements	Consumers Energy staff were responsible for oversight of the implementation contractor and providing funds for administration, marketing, and implementation. The implementation contractor's responsibilities included ongoing program design, marketing materials, program marketing and implementation, project management and QA/QC, customer and contractor dispute resolution, tracking and reporting, site verification of installed measures, and program goal achievement.	

Participation

Nine companies participated in the Industrial Continuous Improvement Pilot Program in 2013. Of the 16 participating companies, eight comprehensive audit reports were delivered during the 2013 program year. From the eight audit reports delivered, the following three technology categories represented almost 80% of the potential energy savings identified:

- Process - 28%
- Lighting - 25%
- Compressed Air - 25%

The table below represents the potential energy savings, cost savings, and payback value from the eight audit reports.

Annual Electricity Savings (MWh)	Annual Natural Gas Savings (Mcf)	Annual Energy Cost Savings (\$/year)	Incremental Measure Cost (\$)	Consumers Energy Incentive (\$)	Simple Payback Period (years)
11,673	138,902	$\$ 1,464,914$	$\$ 3,662,711$	$\$ 1,296,526$	1.6

Three of those companies qualified for the streamlined path and the other four qualified for the certification path.
Investment \& Energy Savings

Total investment and deemed energy savings for all business customer pilots are shown in Tables 4-4 and 4-5 on pages 13 and 14 .

6.4.7 Business Pilots - Energy Check

Program	Business Pilots - Energy Check
Objective	The Energy Check Pilot was designed to touch a broad spectrum of small and medium business customers with individualized energy reports based on their facility's energy use. Energy Check is also intended to drive to higher participation in energy efficiency programs using a Web-based platform which offered detailed information of their energy use. Education, motivation and engagement were key factors in the success of this pilot, which also intended to deliver a broad positive marketing message to a sometimes underserved segment of Consumers Energy business customers.
Target Market	The target markets for the first program year were Consumers Energy commercial electric or electric and natural gas customers with energy usage $<400,000 \mathrm{kWh} /$ year in the following business sectors:
	Accounting Offices Hotels
	Automotive Repair Insurance Offices
	Bars Laundromats
	Barber Shops Legal Offices
	Beer, Wine and Liquor Nail Salons
	Chiropractic Offices New Car Dealers
	Clothing Stores Physician Offices
	Convenience Stores Realty Offices
	Dental Offices Religious Organizations
	Dry Cleaners Restaurants
	Elementary Schools Secondary Schools
	Fast Food Snack Bars
	Grocery Stores Trade Contractors
	Hair Salons Used Car Dealers
Program Duration	This pilot was an element of the program portfolio that was introduced in the Michigan market in 2013 and will continue in the 2014 program year.
Program Description	
	Energy Check was developed to engage owners of small and medium-sized businesses to examine their consumption using analysis and benchmarking tools, provided through a series of individualized energy reports and an Internet portal. The program mission was to give business owners insight into how they compare to similar businesses in terms of energy efficiency. Suggestions offered to customers based on their business type help them make improvements to their energy footprint, and motivate them to begin to make changes.
	The initial Energy Check Program cycle is 12 months. Approximately 20,000 customers were chosen based on business sector and consumption. The 20,000 customers were then separated into a 5,000 -member control group and a

15,000-member treatment group. The treatment group received a series of seven printed individualized energy reports in the mail over 12-months, and were invited to view the information on the web through a simple registration process. In 2013, the first customers received three reports, and four additional print reports were scheduled to be mailed in 2014 (January, March, May and July).

Following is a list of the primary barriers in this market and the program elements that addressed them:

Market Barrier

- Customers are not motivated to take action and implement energy efficiency projects
- Determining the persistency of savings and how to claim

Program Element

- Tips and recommendations for energy efficiency actions tailored to their business
- Inclusion of primary, secondary and tertiary control and treatment groups for program evaluation

Eligible customer projects were incentivized following the Custom Business Solutions Program guidelines and specifications. Custom projects were incentivized at the current program year custom rate.

Cost-effective natural gas and electric efficiency measures that improve upon the program's baseline were eligible for consideration in the program. Fuel switching (electric to alternative fuel) measures, hybrid fuel, and grid connected renewable energy systems were not eligible for incentives through this program.

The program team provided staff to conduct program management, tracking, marketing, and implementation. The program team also provided technical assistance services to participants, assisted participants with program requirements, conducted technical assistance and simulation services, performed quality control, and inspected measure installations.

Outreach was not intended for the first year of Energy Check, as customers were chosen based on customer business sector and consumption. In 2014 Energy Check could become an "opt-in" program available to customers who wish to use it to more effectively manage their energy costs.

Milestones

Major Milestone	Date
Launched 2013 Energy Check Pilot Program	$09 / 13$
$1^{\text {st }}$ Energy Check report delivered	$09 / 13$
$2^{\text {nd }}$ Energy Check report delivered	$10 / 13$
$3^{\text {rd }}$ Energy Check report delivered	$12 / 13$

EM\&V Strategy
Evaluation activity was started at the end of 2013. Evaluation will be completed in the 2014 program year.

Consumers

Energy
Administrative
Requirements
Consumers Energy staff were responsible for oversight of the implementation contractor and providing funds for administration, marketing, and implementation. The implementation contractor's responsibilities included ongoing program design, marketing materials, program marketing and implementation, project management and QA/QC, customer and contractor dispute resolution, tracking and reporting, site verification of installed measures, and program goal achievement.

During the 2013 program year there were 222 customers who registered in the Energy Check web portal, and an additional 105 customers who contacted the Consumers Energy Business Solutions Program to update or request information about their written reports. This totals 327 customers who engaged with the program in the first four months of operation. Savings evaluation activities are slated at the end of the first year cycle of the program, approximately September 2014.

Investment \&

Energy Savings pilots are shown in Tables 4-4 and 4-5 on pages 13 and 14.

6.4.8 Business Pilots - HVAC Quality Maintenance

Program	Business Pilots - HVAC Quality Maintenance
Objective	The HVAC Quality Maintenance Pilot (QM)was designed to identify energysaving opportunities and achieve energy savings by performing preventive maintenance on rooftop unit (RTU) air conditioning units while transforming the trade ally market via education and implementation of the ASHRAE/ACCA Quality Maintenance Standards.
Target Market	Customers receiving Consumers Energy electric service are the primary target market for this program. This pilot also engaged and served the commercial HVAC service industry by requiring trade ally participation
Program Duration	This pilot was an element of the program portfolio that was introduced in the Michigan market in 2013 and will continue in the 2014 program year.
Program Description	This pilot engaged and served the commercial HVAC service industry by requiring the trade allies to practice the ASHRAE/ACCA Quality Maintenance Standards when performing tune-up maintenance on rooftop air conditioning units. The HVAC QM pilot established and conducted the following: - Training on the ASHRAE/ACCA Quality Maintenance Standard - Training on the use of the Amprobe TMA-21HW Hotwire Anemometer with Temperature that provided test-in and test-out data to allow a technician to accurately test, measure, balance, and retest for refrigerant charge and airflow - Ongoing mentoring and support for participating Trade Allies on the program and use of the tool - Incentives for successful tests performed on RTUs and a reimbursement incentive for the purchase of up to three diagnostic tools per trade ally - Verification of project data and on-site results to ensure participating contractors are performing the QM tasks and diagnostic testing accurately
Program Logic	Following is a list of the primary barriers in this market and the program elements that addressed them:

	Market Barrier		Program Element
	- Trade ally particip - Customer acceptan the program - Proper application and diagnostic tes units needing servic	on of QM g for ng	- Project incentives; Advanced diagnostic tool reimbursement; comprehensive training; program staff support - Program promotion and awareness by Consumers Energy Business Solutions - Program training, on-site verification, and vendor support staff
Incentive Strategy	The pilot program was designed to maximize the implementation of comprehensive, cost-effective, energy efficient measures to eligible customers in Consumers Energy's service territory. The program set incentive levels capable of driving this market. Below is a table listing the applicable incentive tiers based on the size of the unit that received the tune-up.		
	Measure	In	(\$/Unit)
	RTU Tune-Up (4-6 Tons)	\$200	er Rooftop Air Conditioner unit
	RTU Tune-Up (7-15 Tons)	\$325	Rooftop Air Conditioner unit
	$\begin{aligned} & \text { RTU Tune-Up (16-40 } \\ & \text { Tons) } \end{aligned}$	\$42	er Rooftop Air Conditioner unit
	Trade allies were also reimbursed up to 80% of the cost of the diagnostic tool for participating in the program.		
Eligible Measures, Efficiency Requirements, Energy Savings \& Incentives	Cost-effective natural gas and electric efficiency measures that improve upon the program's baseline were eligible for consideration in the program. Fuel switching (electric to alternative fuel) measures, hybrid fuel, and grid connected renewable energy systems were not eligible for incentives through this program.		
I mplementation Strategy	The program team provided staff to conduct program management, tracking, marketing, and implementation. The program team also provided technical assistance services to participants, assisted participants with program requirements, conducted technical assistance and simulation services, performed quality control, and inspected measure installations.		

The trade allies were the main program outreach source for the program. The only marketing effort was through a program flyer, which was created and printed for the trade allies to distribute to customers. This was the most effective way to attract interested customers and drive program awareness based on the limited program funds available.

Major Milestone	Date
Launched 2013 HVAC QM Program	$05 / 13$
Paid final 2013 projects	$10 / 13$

The following evaluation activities were performed for the 2013 Pilot HVAC Quality Maintenance program.

Participating Trade Ally Surveys: The evaluation team implemented pre/post surveys to 64 contractors attending the HVAC QM training. The objectives of this survey were to identify current practices among participating contractors and garner feedback from the contractors on the content of the training

Utility
Administrative
Requirements

Participation
Consumers Energy staff were responsible for oversight of the implementation contractor and providing funds for administration, marketing, and implementation. The implementation contractor's responsibilities included ongoing program design, marketing materials, program marketing and implementation, project management and QA/QC, customer and contractor dispute resolution, tracking and reporting, site verification of installed measures, and program goal achievement.

Paid Applications	Total Units Paid	Incentives Paid
111	560	$\$ 165,450$

Total investment and deemed energy savings for all business customer pilots are shown in Tables 4-4 and 4-5 on pages 13 and 14.

6.5 Self-Direct Option for Large Business Customers

Overview

A total of 11 large electric customers chose to opt out of participating in Consumers Energy's energy efficiency programs and instead self-direct their own energy efficiency projects. These customers were required to design and submit plans to achieve energy savings equal to or greater than the statutory requirements.

Eligibility Requirements

To be eligible for the self-direct option a customer was required to have a single account with greater than 1 megawatts (MW) of demand or an aggregation of several accounts with greater than 5 MW of demand.

Customer Enrollment

One open enrollment period was held for plan year 2013 starting June 15, 2012. Eligible customers were notified with an on bill messaging and existing self-direct customers with expiring plans were mailed information in May. The plan application form and other useful self-direct program information was posted on the MPSC and Consumers Web sites. Customers were given until July 15, 2012, to submit their plans. In total, one new customer applied and subsequently enrolled in the 2013 self-directed program.

Energy Savings

Participating customers submitted self-direct plans totaling 5,936 MWh in electric savings for 2013. This total is being counted towards Consumers Energy's overall portfolio savings goals.

2013 Self Direct Program Planned Savings

Projected savings from measures to be implemented under a self-directed plan (cumulative summary of planned savings):

	Number of Customer Plans Participating	Approximate Number of Accounts (sites)	2013 Minimum Saving MWh	2013 Planned Saving MWh	2013 Annual Based Usage MWh
2013 Planned Savings	11	267	$5,934.90$	$5,936.50$	593,475

Full Terminations

Company Number	Number of Sites Terminated	Termination Approval Date	2013 Minimum Savings MWh	2013 Planned Saving MWh
$\# 1$	6	$6 / 13 / 2013$	443	443

Partial Terminations

Company Number	Number of Sites Terminated	Termination Approval Date	2013 Minimum Savings MWh	2013 Planned Saving MWh	2013 Amended Minimum Saving MWh	2013 Amended Plan Saving MWh
Zero Reported						

Amended Planned Savings

Company	Number of Customers Participating	Approximate Number of Accounts (sites)	2013 Minimum Saving MWh	2013 Planned Saving MWh	2013 Annual Based Usage MWh

Zero Reported

2013 Annual Report Results
Customer-prepared annual progress reports of implemented energy savings covering year 2013 is summarized in the tables below. Eleven reports are required from customers on March 1, 2014 covering year 2013. Of these reports only one report was delinquent and one report was deficient.
a.) Total Implemented Savings

Plan Year	Number of Annual Reports	Minimum Savings MWh	Planned Savings MWh	Reported Savings MWh
2013	9	4723.75	4725.65	5779.20

b.) 2013 Implemented Savings that are below the minimum standard

Customer Number	Minimum Savings MWh	Reported Savings MWh
$\# 2$	108	88

c.) 2013 Unreported Savings

Customer Number	2013 Minimum Savings Mwh	
$\# 3$	358.5	Delinquent Report
$\# 4$	608.7	Deficient Report

6.6 Opt-Out Option for Large Gas Business Customers

Overview:
No large gas transportation customers chose to opt-out of participating in Consumers Energy's energy efficiency programs and instead run their own energy efficiency projects. These customers were required to submit reports demonstrating energy savings achieved equal to or greater than the statutory requirements.

Eligibility Requirements:

To be eligible for the gas opt-out option, a customer was required to have been a gas transportation customer with greater than $100,000 \mathrm{Mcf}$ annual gas usage.

Customer Enrollment:
Customers may enroll at any time. The opt-out request letter and other useful opt-out program information was posted on the Consumers Energy website.

Energy Savings:
None

6.7 Electric Rate GSG-2 Opt-I n Option for Business Customers

Overview:
No GSG-2 rate electric customers chose to opt-in to the energy efficiency program in 2013.
Eligibility Requirements:
To be eligible for the electric GSG-2 opt-in program, a customer was required to be taking electric service under the General Service Self Generation Rate GSG-2.

Customer Enrollment:
Customers may enroll at any time. The GSG-2 opt-in request letter and other useful opt-in program information was posted on the Consumers Energy website.

Energy Savings:
Energy savings are submitted though the normal energy efficiency business programs described in the preceding sections.

7 Portfolio MANAGEMENT

Most of the programs in the 2013 portfolio were introduced into the Michigan market during July 2009. Consumers Energy managed the portfolio of programs through a combination of in-house utility staff and six competitively selected third-party implementation contractors. With the exception of Franklin Energy being brought on-board in 2013, all other implementation contractors were brought on-board beginning with 2009 implementation efforts.

Table 7-1 lists the implementation contractors and the program(s) they were responsible for managing.
Table 7-1. 2013 Program I mplementation Contractors

Implementation Contractor	Customer Class	Program
CLEAResult	Residential Residential	Income Qualified New Construction
Franklin Energy	Residential	Multifamily
DNV GL	Business	All Business Programs
ICF	Residential Residential Residential Residential Residential Residential	ENERGY STAR ${ }^{\circledR}$ Lighting ENERGY STAR ${ }^{\circledR}$ Appliances HVAC \& Water Heating Home Energy Analysis (HEA) Home Energy Report (HER)Home Performance with ENERGY STAR ${ }^{\circledR}$ Home Energy Analysis Insulation and Windows Residential Pilots
JACO Environmental	Residential	Residential
National Energy Foundation	Residential	Appliance Recycling

A portfolio of this size and scope required careful management oversight. Consumers Energy staff provided oversight of administrative, contract management, program design, program implementation, marketing, and cross-sector education and awareness activities.

The Company has a comprehensive tracking database to ensure accurate and comprehensive recording of all program participation. The database allowed Consumers Energy to research and track participation by customer class and geographic area, and to identify trends and untapped opportunities to advance program goals. Additionally, Consumers Energy staff assumed primary responsibility for general energy efficiency education and awareness strategies and activities, including the corporate website, online energy audit software, mass-market general education, and efficiency awareness marketing promotions. In summary, Company staff provided comprehensive program oversight, including management, financial planning, and budgeting, as well as:

- High-level guidance and direction to the implementation contractors, including review and revision of proposed annual implementation plans and proposed milestones and, additionally, engagement with the contractor teams when working through strategy and policy issues.
- Review and approval of implementation contractor invoices to ensure program activities were within investment targets and on schedule.
- Review of implementation contractor operational databases to ensure accurate incorporation of data into the Company's comprehensive tracking system to be used for overall tracking and regulatory reporting.
- Review of measure saving estimates maintained by the implementation contractors.
- Oversight and coordination of evaluation, measurement, and verification of contractors.
- Public education and outreach to community groups, trade allies, and trade associations.
- Guidance and direction on new initiatives or strategies proposed by the implementation contractors.
- Communication to implementation contractors regarding other Company initiatives that offered opportunities for cross-program promotion.
- Review and approval of printed materials and advertising plans.
- Evaluation of program and portfolio effectiveness and recommending modifications to programs and approach, as needed.
- Periodic review of program metrics, investment analysis, and evolving program design.

7.1 Marketing and Outreach Strategy

The marketing and outreach strategy for the Company's portfolio of EO programs was to make customers, as well as trade allies and other key market segments, aware of the Company's program offerings and their benefits and to influence customers who were purchasing and installing new energy systems or equipment to choose more energy efficient models.

The specifics of the marketing strategy were dependent on the program and the demographics of the group being engaged. Generally, it included a mix of television, radio, Internet, print media, direct contact, direct mail, bill inserts, and presentations. The primary call-to-action for broad-based promotions was to drive customer traffic to the Consumers Energy website for more information on the Company's energy efficiency programs.

7.2 Tracking and Reporting

Consumers Energy utilized a proprietary central data repository that enables tracking, reporting, and compliance for the Company's portfolio of EO programs. The system was designed to capture internal and external data across all EO programs for all classes of customers. The repository utilized a Web service to capture data to provide accurate, consistent, and timely reporting of program participation, energy savings, incentives and documentation.

7.3 Midstream Adjustments

Throughout 2013, the Company continuously reviewed customer participation levels in each of the programs to ensure it could meet customer demand. Building on lessons learned in the area of program participation since program launch in 2009, the Company kept a close eye on this metric and was able to successfully manage and satisfy customer demand. Residential programs like Multifamily and
commercial programs like Small Business Direct Install served as lever programs, and allowed for investment reallocation within customer classes to programs that were more highly visible in the market.

7.4 Inter-Utility Coordination

Consumers Energy worked with DTE Energy and other utilities to maximize the effectiveness of its EO programs. Ongoing communication and coordination with DTE was especially important in those areas where the companies' gas and electric service territories overlap. The two companies worked together to identify administrative and implementation cost-savings opportunities, provide a consistent message, and manage programs in a similar manner to reduce confusion and difficulty for customers and trade allies.

In the Multifamily Program alone, Consumers Energy and DTE completed nearly 11,722 units at 113 properties through collaborative efforts. This program continues to be very successful in capturing gas savings and making multifamily installations seamless to customers.

Consumers Energy worked with the Lansing Board of Water \& Light to deliver the elementary education program, THINK! ENERGY ${ }^{\circledR}$, to Lansing schools. The collaboration with the LBW\&L provided program benefits to 1,334 student and 57 teachers. Also, collaboration with DTE provided program benefits to 6,576 student and 306 teachers.

Recycling drop events were conducted in collaboration with Holland Board of Public Works, Lowell Light and Power, city of South Haven, city of Sturgis and Traverse City Light and Power.

The Building Operator Certification (BOC) moved from a pilot to a program in 2013. Processes were developed enabling the Midwest Energy Efficiency Alliance, Michigan Economic Development Corporation, Lansing Board of Water \& Light and Consumers Energy to offer rebates and encourage their customers to register for BOC in 2013 in a collaborative manner.

7.5 Leveraging Other Efficiency I nitiatives

Within Michigan, several entities were promoting energy efficiency including the state government, federal government, the Midwest Energy Efficiency Alliance (MEEA), the U.S. Environmental Protection Agency and U.S. Department of Energy's ENERGY STAR ${ }^{\circledR}$ brand, and other Commission programs. The Company and its implementation contractors worked diligently to remain aware of and up to date on these efforts and to coordinate with them where possible.

7.6 Trade Ally Coordination

Trade allies were essential to the effective implementation and achievement of 2013 results. The Company had more than 1,000 participating HVAC contractors listed on the Consumers Energy website in the residential HVAC Program and about 75 contractors in the Home Performance with ENERGY $\operatorname{STAR}^{\circledR}$ (HPwES) Program. Five participating contractors in the HPwES program were recognized for their outstanding contribution and were presented with the Department of Energy Century Club award, as each performed more than 100 home performance jobs. In addition, 500 mechanical and electrical contractors have signed up as business trade allies and are all listed on Consumers Energy's website.

In the residential lighting program, the Company had agreements with 14 major retailers representing 404 retail locations where customers could purchase specially priced CFLs. Plus, the Company worked with many other retail locations that supported and encouraged participation in the ENERGY STAR ${ }^{\circledR}$ Appliances Program.

Relationships with key groups were cultivated and nurtured through numerous methods to ensure effective two-way communication. At program kickoff meetings involving trade allies, clear and concise program descriptions were distributed to each attendee. Ongoing training and program updates were a key part of program delivery, and this was effective in stimulating trade ally involvement and program participation. Trade allies were regularly informed of program progress. Changes and feedback from trade allies about "what is working and what is not" in the field were essential, and many suggestions for improvement were incorporated into program designs. The Company will continue to emphasize coordination, "listening sessions," and frequent communications with these key partners to advance program goals.

8 Evaluation, Measurement and Verification (EM\&V)

8.1 Overview

Program evaluation, measurement, and verification (EM\&V) activities were central to the success of Consumers Energy's portfolio and were used to verify program savings impacts and monitor program performance. These activities served as a way to determine the actual program level savings being delivered and to maximize energy efficiency investments.

Effective EM\&V ensures that expected results are measurable, achieved results are robust and defensible, program delivery is effective in maximizing participation, and the overall portfolio is cost-effective.

Third-Party Evaluation Contractors

The residential program evaluation consulting team was led by The Cadmus Group and also included Nexus Market Research and TetraTech. The commercial and industrial program evaluation consulting team was led by Energy Market Innovations (EMI) and also included Evergreen Economics, Michaels Energy, Research into Action, Wirtshafter Associates, PWP, and Market Strategies International.

Objective of EM\&V

The overall objective of program evaluations was to provide an independent and objective assessment of both estimated (ex-ante) and realized (ex-post) energy and demand impacts. Evaluation work also assessed program and portfolio operational efficiency and determined the influence of programs on changes in the marketplace. The evaluation plans were designed and implemented to provide ongoing assessments of program performance, including measurements of program participation, measure installation and persistence, and achieved gross and net demand and energy impacts. Timely and ongoing feedback allowed for mid-course adjustments in program implementation if results indicated progress was falling short of expectations.

There are three primary evaluation activities that were performed for Consumers Energy: impact evaluation, process evaluation, and market assessments.

Impact Evaluation: The primary objective of impact evaluations was to assess the changes in energy use that can be attributed to a particular intervention (such as the installation of energy efficient equipment). Impact Evaluations verified equipment installation and performance, proposed adjustments to MEMD saving estimates based on engineering or statistical methods, and estimated "net savings" directly attributable to a program.

Process Evaluation: Process evaluations assessed the effectiveness of program design and delivery. These evaluations studied all aspects of program administration and implementation, including internal and external procedures and operations, organization and efficiency of implementation contractor performance, the manner and effectiveness of how the programs were interacting with the marketplace (with customers, trade allies, etc.), and with respect to other perspectives identified through the course of the evaluation.

Market Assessment: This activity identified factors in the marketplace that could affect program design and delivery. These assessments also provided information concerning the impact EO programs have on transforming the energy service/product marketplace.

In addition to the activities identified above, EM\&V also encompassed a variety of tasks that did not pertain to specific programs, but were important to the overall evaluation effort. Key crosscutting evaluation activities and responsibilities included (but were not limited to) the following:

- Reviewed deemed measure estimates and made recommendations for revisions (if needed) for the Michigan Energy Measures Database (MEMD);
- Coordinated and participated in the Evaluation Working Group and other statewide collaboratives established by the MPSC;
- Provided input and recommendations on the development and ongoing tracking of program enrollment and participation data; and
- Synthesized program evaluations and market assessments to provide a strategic performance assessment of the entire portfolio.

8.2 2013 Evaluation Activities

Summaries of 2013 evaluation activities are included in the program summaries appearing earlier in this report. Results of the studies performed will be communicated through the MPSC Evaluation Collaborative.

$9.1 \quad$ 2014-2017 Planned I nvestment

Table 9-1 details the Company's planned investments in its EO programs each year 2014 through 2017 as approved by the Commission in its December 19, 2013 Order in Case No. U-17351.

Table 9-1. 2014-2017 Planned I nvestment

Electric Investment	2014	2015	2016	2017	Total
Statutory Investment Cap as \% of Revenue	2.00\%	2.00\%	2.00\%	2.00\%	
$\begin{aligned} & \text { Investment Cap } \\ & \text { (} \$ \mathrm{M} \text {) } \end{aligned}$	\$77.4	\$77.5	\$79.3	\$80.2	\$314.4
Planned Investment (\$M)	\$75.0	\$76.5	\$77.4	\$78.8	\$307.7
\% of Limit	97\%	99\%	98\%	98\%	98\%
Natural Gas Investment	2014	2015	2016	2017	Total
Statutory Investment Cap as \% of Revenue	2.00\%	2.00\%	2.00\%	2.00\%	
$\begin{aligned} & \text { Investment Cap } \\ & (\$ M) \end{aligned}$	\$37.2	\$39.9	\$36.7	\$35.7	\$149.5
Planned Investment (\$M)	\$40.7	\$42.2	\$40.1	\$38.9	\$161.9
\% of Limit	109\%	106\%	109\%	109\%	108\%

Appendix A: Glossary of Terms

Cost-effectiveness: A measure of the relevant economic effects resulting from the implementation of an energy efficiency measure. If the benefits outweigh the cost, the measure is said to be cost-effective.

Early Replacement: Refers to an efficiency measure or efficiency program that seeks to encourage the replacement of functional equipment before the end of its operating life with a higher-efficiency unit.

End-Use: A category of equipment or service that consumes energy (e.g., lighting, refrigeration, heating, process heat).

Energy Efficiency: Using less energy to provide the same or an improved level of service to the energy consumer in an economically efficient way. Sometimes "conservation" is used as a synonym, but that term is sometimes perceived as using less of a resource even if it results in a lower service level (e.g., setting a thermostat lower or reducing lighting levels). This recognizes that energy efficiency includes using less energy at any time, including at times of peak demand through demand response and peak shaving efforts.

Free Driver: Individuals or businesses that adopt an energy efficient product or service because of an energy efficiency program, but are difficult to identify either because they do not receive an incentive or are not aware of exposure to the program.

Free Rider: Participants in an energy efficiency program who would have adopted an energy efficiency technology or improvement in the absence of a program or financial incentive.

Incremental: Savings or costs in a given year associated only with new installations happening in that year.

Impact Evaluation: Impact evaluations are the estimation of gross and net effects from the implementation of one or more energy efficiency programs. Most program impact projections contain exante estimates of savings. These estimates are what the program is expected to save as a result of its implementation efforts and are often used for program planning and contracting purposes and for prioritizing program funding choices. In contrast, the impact evaluation focuses on identifying and estimating the amount of energy and demand savings the program actually provides.

Market Transformation: An approach in which a program attempts to influence "upstream" service and equipment provider market channels and what they offer end-use customers, along with educating and informing end-use customers directly. The emphasis is on influencing market channels and key market participants other than end-use customers.

Measure: Any action taken to increase efficiency, whether through changes in equipment, control strategies, or behavior. Examples include higher-efficiency central air conditioners, occupancy sensors to control lighting, and retro-commissioning. In some cases, bundles of technologies or practices may be modeled as single measures. For example, an ENERGY STAR ${ }^{\circledR}$ home package may be treated as a single measure.

Mcf: A measurement of gas, representing 1,000 cubic feet.
MW: A unit of electrical output, equal to 1 million watts or 1,000 kilowatts.
MWh: 1,000 kilowatt-hours, or 1 million watt-hours. One MWh is equal to the use of $1,000,000$ watts of power in one hour.

Portfolio: Either a collection of similar programs addressing the same market, technology, or mechanisms or the set of all programs conducted by one organization.

Process Evaluation: The process evaluation is a systematic assessment of an energy efficiency program for the purposes of documenting program operations at the time of the examination and identifying improvements that can be made to increase the program's efficiency or effectiveness.

Program: A mechanism for encouraging energy efficiency. It may be funded by a variety of sources and pursued by a wide range of approaches. Typically, it includes multiple measures.

Resource Acquisition: An approach in which end-use customers are the primary target of program offerings (e.g., using rebates to influence customers' purchases of end-use equipment).

Retrofit: Refers to an efficiency measure or efficiency program that seeks to encourage the replacement of functional equipment before the end of its operating life with higher-efficiency units (also called "early retirement") or the installation of additional controls, equipment, or materials in existing facilities for purposes of reducing energy consumption (e.g., increased insulation, low-flow devices, lighting occupancy controls, economizer ventilation systems).

Therm: A measurement of natural gas representing 100,000 British thermal units (Btus).
Useful Life: The number of years (or hours) that the new energy efficient equipment is expected to function. Useful life also is commonly referred to as "measure life."
Case No.: U-17601
Extibitit A-12 (RMR-2)
Witess: BMuhl
Date: May 2014
Page: 1 of 2

$$
\begin{aligned}
& \text { (ab }
\end{aligned}
$$

(© $\stackrel{m}{\sim}$

Calculation of 2013 Natural Gas Savings Target
$\begin{array}{ll}\text { Sources: } & \\ & \text { * } \\ & \text { Case No. U-17351 Miller Exhibit A -2 (HWM-2). } \\ & \text { Case No. U-17351 VanSumeren Exhibit A -9 (TLV-1). }\end{array}$

Consumers Energy
Energy Optimization -- 2013 Electric Plan Reconciliation
2013 Electric Program Portfolio Savings and Investment Summary

Line No.	(b)		(c)	(d)	(e)	(f)	(g)	(h)	(i)
1					ctual		nned	Varianc	anned - Actual
		UCT Results (1)	$\begin{gathered} \text { CCE (\$/kWh) } \\ (2) \\ \hline \end{gathered}$	MWh Savings (3)	Investment (2)	MWh Savings	Investment	MWh Savings	Investment
	Residential								
2	Appliance Recycling	3.34	\$0.017	31,357	\$4,521,572	43,840	\$3,961,125	-12,483	\$560,447
3	ENERGY STAR Appliances	3.03	\$0.018	446	\$85,598	877	\$413,987	-431	-\$328,389
4	ENERGY STAR Lighting	7.99	\$0.006	101,918	\$6,418,208	59,439	\$4,888,497	42,479	\$1,529,711
5	Home Energy Analysis (HEA)	1.01	\$0.050	3,435	\$1,730,680	0	\$0	3,435	\$1,730,680
6	Home Energy Report (HER)	0.81	\$0.068	28,410	\$2,111,089	0	\$0	28,410	\$2,111,089
7	Home Performance with Energy Star	0.89	\$0.081	759	\$855,858	21,251	\$5,446,437	-20,492	-\$4,590,579
8	HVAC \& Water Heating	2.47	\$0.024	6,002	\$2,033,870	4,842	\$3,334,469	1,160	-\$1,300,599
9	Income Qualified	0.68	\$0.077	2,075	\$1,553,208	1,540	\$1,554,158	535	-\$950
10	Insulation and Windows Program	1.51	\$0.047	726	\$678,638	0	\$0	726	\$678,638
11	Res. Multifamily Direct Install	1.15	\$0.045	7,955	\$3,679,529	5,758	\$3,858,598	2,197	-\$179,069
12	New Home Construction	1.21	\$0.064	167	\$208,928	101	\$246,904	66	-\$37,976
13	THINK! Energy	2.08	\$0.022	2,685	\$601,997	1,846	\$601,484	839	\$513
14	Residential Pilots			6,792	\$1,398,767	6,322	\$1,445,342	470	-\$46,575
	Commercial \& Industrial								
15	Comprehensive \& Custom Business Solutions	4.39	\$0.010	166,774	\$21,534,553	210,142	\$23,695,126	-43,368	-\$2,160,573
16	Small Business Direct Install	2.64	\$0.018	84,184	\$10,068,877	31,110	\$8,389,353	53,074	\$1,679,524
17	Bus. Multifamily Direct Install	4.67	\$0.010	4,576	\$391,573	0	\$0	4,576	\$391,573
18	Business Pilots			9,478	\$1,952,000	10,536	\$1,851,056	-1,058	\$100,944
19	Self-Direct Projects			5,936	\$0	5,936	\$0	0	\$0
	Portfolio Support Services								
20	Utility Oversight				\$3,690,106		\$3,655,606		\$34,500
21	Tracking System				\$723,339		\$886,424		-\$163,085
22	Education \& Awareness			9,370	\$1,929,702	10,114	\$2,047,271	-744	-\$117,569
23	Evaluation, Measurement \& Verification				\$2,928,945		\$2,949,347		-\$20,402
24	Totals	2.70	\$0.018	473,045	\$69,097,040	413,654	\$69,225,184	59,391	-\$128,147

[^23]Energy Optimization－－ 2013 Gas Plan Reconciliation
2013 Gas Program Portfolio Savings and Investment Summary
©

 Exhibit：A－14（BM Ditness：BMRuhl
Date：May 2014 Page： 1 of 1
e

（h） | 7,902 | |
| ---: | ---: |
| 39,681 | |
| 2,034 | $\$ 266, \$ 13$ |

2,034	$-\$ 330,566$
22,144	

（）
\oplus
©
으
\qquad

Planned	
$\begin{array}{c}\text { Mcf } \\ \text { Savings }\end{array}$	Invest

N

9عと＇0ts＇て\＄

ஸ゙
ก

O

$\begin{array}{r}\$ 2,861,933 \\ \$ 527,772 \\ \hline\end{array}$
$\$ 527,772$
$\$ 2,490,192$
$\$ 2,49,192$
$\$ 9,892,713$
$\begin{array}{r}\$ 9,892,713 \\ \$ 2,325,038 \\ \hline\end{array}$ $\$ 2,093,274$
$\$ 515,788$
N
N
N
on
－

∞
$\underset{\sim}{\sim}$
$\underset{\sim}{n}$
\oplus
\oplus
न
n
N
N
N
N

O20

				¢
				\cdots
				（1）

Notes：
$\underline{\text { Line No．}}$

19
20
21
22
23

$$
\begin{aligned}
& \text { Case No: U-17601 } \\
& \text { Exhibit: A-15 (BMR-5) } \\
& \text { Witness: BMRuhl } \\
& \text { Date: May } 2014 \\
& \text { Page: } 1 \text { of } 1
\end{aligned}
$$

[^24]In the matter of the application of Consumer) Energy Company for Authority to Reconcile) Its 2013 Energy Optimization Plan Costs)
Associated With the Plan Approved in)
Case Nos. U-16670 and U-17138.)
\qquad
Case No. U-17601

DIRECT TESTIMONY
OF
JAMES P. SCHWANITZ
ON BEHALF OF
CONSUMERS ENERGY COMPANY

May 2014
Q. Please state your name and business address.
A. My name is James P. Schwanitz. My business address is One Energy Plaza, Jackson, Michigan 49201.
Q. Please describe your position and responsibilities.
A. I am employed by Consumers Energy Company ("Consumers Energy" or the "Company") as a Senior Accounting Analyst in the Energy Efficiency Solutions group. I am responsible for all accounting and financial related activities associated with the investments in the electric and gas Energy Optimization ("EO") program.
Q. Please describe your education and professional experience.
A. I received a Bachelor of Business Administration degree in General Business from Michigan State University in 1983. I also received a Masters of Business Administration degree from Wayne State University in 1989 with a concentration in Finance. Between 1987 and 2004, I held numerous accounting positions for various companies. Between 2004 and 2007, I was employed by CMS Enterprises, a subsidiary of CMS Energy, as a Senior Accounting Analyst. In 2007, I transferred to the General Accounting Department of Consumers Energy as a Senior Accounting Analyst responsible for Sarbanes Oxley compliance. In 2009, I assumed the general ledger accounting responsibilities for the EO and Renewable Energy programs. In 2011, I assumed my current position.
Q. Have you previously testified before the Michigan Public Service Commission ("MPSC" or the "Commission")?
A. Yes. I provided direct testimony in Case Nos. U-16302, U-16303, U-16736, and U-17281 regarding the Company's 2009, 2010, 2011, and 2012 annual reconciliations for its EO program, respectively. I also provided direct testimony in Case Nos. U-16300 and

U-16301 regarding the Company's 2009 and 2010 annual reconciliations for its Renewable Energy program, respectively.
Q. What is the purpose of your testimony?
A. The purpose of my testimony is to provide 2013 EO investment results for its electric and gas EO programs, including a breakdown between Residential and Commercial \& Industrial ("C\&I") customer groups, and to demonstrate the level of EO incentive payment earned by the Company for its 2013 EO Plan performance per the methodology established by the Commission in its September 29, 2009 Order in Case Nos. U-15805 and U-15889.
Q. Are you sponsoring any exhibits with your direct testimony?
A. Yes, I am sponsoring two exhibits.

- Exhibit A-16 (JPS-1): Electric Investments \& Incentive Calculation
- Exhibit A-17 (JPS-2): Gas Investments \& Incentive Calculation
Q. Were these exhibits prepared by you or under your supervision?
A. Yes.
Q. What information is provided in these exhibits?
A. These exhibits provide investment data for the electric and gas EO programs and a calculation of the earned incentive.
Q. What were the EO investments in 2013?
A. In 2013, the Company invested $\$ 69,097,040$ in its electric EO program. These costs are split between Residential and C\&I in the amounts of $\$ 30,352,119$ and $\$ 38,744,921$, respectively, as shown on Exhibit A-16 (JPS-1), line 6. In 2013, the Company invested $\$ 47,776.959$ in its gas EO program. These costs are split between Residential and C\&I in
the amounts of $\$ 35,511,599$ and $\$ 12,265,360$, respectively, as shown on Exhibit A-17 (JPS-2), line 6.
Q. Why do total investments differ from the amounts provided by Company accounting witness Katherine L. Allen in her direct testimony in this proceeding?
A. Ms. Allen's testimony and exhibits are based on 2013 general ledger activity. Actual investments exclude adjustments to 2012 Plan year costs that were recorded in the general ledger in 2013 and include 2013 Plan year costs that were recorded in the general ledger in 2014. These differences are caused by normal year-end accruals for costs incurred but not yet invoiced on an estimated basis. For investment testimony purposes, actual costs are recognized instead of estimated accruals.
Q. Was the Company's 2013 electric investment level within the Commission-approved investment level authorized in Case No. U-16670?
A. Yes. The Commission approved $\$ 69,224,372$ as the Company's 2013 electric investment level. See, April 17, 2012 Order in MPSC Case No. U-16670. The Company actually invested $\$ 69,097,040$ as shown on Exhibit A-16 (JPS-1), line 6.
Q. Was the Company's 2013 gas investment level within the Commission-approved investment level authorized in Case No. U-16670?
A. Yes. The Commission approved $\$ 47,935,419$ as the Company's 2013 gas investment limit. See, April 17, 2012 Order in Case No. U-16670. The Company actually invested \$47,776,959 as shown on Exhibit A-17 (JPS-2), line 6.
Q. Is the Company requesting incentive payments for its 2013 energy efficiency operations?
A. Yes. The Company has earned incentive payments for both its electric and gas results. The Company achieved 141% of its statutory electric savings target with a Utility Cost

Test ("UCT") score of 2.70 . The Company achieved 123% of its statutory gas savings target with a UCT score of 2.13. See, testimony of Company witness Benjamin M. Ruhl. Exhibits A-16 (JPS-1), line 7 and A-17 (JPS-2), line 7 illustrate the calculations of the performance incentives the Company has earned for the performance of its 2013 electric and gas EO program portfolios. The Company calculated these incentives as $\$ 10,364,556$ for the Company's electric EO program and $\$ 7,166,544$ for the Company's gas EO program.
Q. Why does the incentive amount differ from those provided by Company accounting witness Allen in her direct testimony in this proceeding?
A. Ms. Allen's incentive calculation is based on 2013 general ledger investment activity which includes estimated accruals for costs incurred but not yet invoiced at year end. The incentive calculation shown in exhibits A-16 (JPS-1), line 7 and A-17 (JPS-2), line 7 excludes adjustments to 2012 Plan year costs recorded in the general ledger in 2013 and includes adjustments to 2013 Plan year costs recorded in the general ledger in 2014.
Q. Does that conclude your testimony?
A. Yes.

In the matter of the application of Consumer)
Energy Company for Authority to Reconcile) Its 2013 Energy Optimization Plan Costs)

Case No. U-17601
Associated With the Plan Approved in) Case Nos. U-16670 and U-17138.

EXHIBITS

OF
JAMES P. SCHWANITZ

ON BEHALF OF
CONSUMERS ENERGY COMPANY

May 2014
Consumers Energy
EO Gas Investments \& Incentive Calculation

	(a)	(b)		(c)		(e)	
Line	Description	Residential		C\&1		Total	
Investment Summary							
1	Program Investments	\$	30,803,270	\$	10,530,375	\$	41,333,645
2	Administration (allocated)	\$	1,873,823	\$	690,488	\$	2,564,311
3	Education \& Awareness (allocated)	\$	979,888	\$	361,087	\$	1,340,975
4	Evaluation, Measurment and Verification (allocated)	\$	1,487,308	\$	548,060	\$	2,035,368
5	Database (allocated)	\$	367,309	\$	135,350	\$	502,659
6	Total Gas Investments	\$	35,511,599	\$	12,265,360	\$	47,776,959
	Incentive Earned (15\% of total investment)	\$	5,326,740	\$	1,839,804	\$	7,166,544

In the matter of the application of Consumer) Energy Company for Authority to Reconcile) Its 2013 Energy Optimization Plan Costs) Case No. U-17601
Associated With the Plan Approved in)
Case Nos. U-16670 and U-17138.)
\qquad

DIRECT TESTIMONY
OF
THEODORE A. YKIMOFF
ON BEHALF OF

CONSUMERS ENERGY COMPANY

Q. Please state your name and business address.
A. My name is Theodore A. Ykimoff. My business address is One Energy Plaza, Jackson, Michigan 49201.
Q. Please describe your current position and responsibilities.
A. As Residential Energy Efficiency Operations Director, I am responsible for the development and implementation of Consumers Energy Company’s ("Consumers Energy" or the "Company") electric and gas energy optimization ("EO") programs for residential customers.
Q. Please describe your education and professional experience.
A. I hold a Bachelor's degree in Business Administration from Michigan State University. I have been employed at Consumers Energy since 1992, where I began my professional career as a Gas Conservation Program Manager with responsibility for managing marketing and operations for residential and business new construction programs. For nearly ten years I worked in the marketing area, where my responsibilities included supervising a team tasked with marketing value-added products and services to the Company's residential customers. In 2003, I assumed a position as a Corporate Account Manager for large electric and gas customers. In early 2008, I was promoted to a Senior Program Lead to lead and manage the development of the Company's 2009-2014 EO Plan. Since that first Plan filing, the Company has filed three amended Plans (2011-2014, 2012-2015, and 2014-2017) and four annual reconciliations (2009, 2010, 2011, and 2012) in support of its EO efforts, and I have provided either a leadership and/or support role for each of those filings. In 2011, I was promoted to my current
position to lead the Company's residential energy efficiency planning and implementation efforts.
Q. Have you previously testified before the Michigan Public Service Commission ("MPSC" or the "Commission")?
A. Yes, I filed testimony on behalf of the Company in following cases:

- Case No. U-17351 regarding Consumers Energy’s 2014-2017 Amended EO Plan;
- Case No. U-16860 regarding Consumers Energy’s Gas Revenue Pilot Decoupling Mechanism; and
- Case No. U-16670 regarding Consumers Energy’s 2012-2015 Amended EO Plan.
Q. What is the purpose of your testimony in this proceeding?
A. I will provide in my testimony:

1. An overview of the Company's residential EO programs; and
2. Actual energy savings and investment for the residential portfolio.
Q. Are you sponsoring any exhibits with your direct testimony?
A. No.
Q. What EO residential programs were available during 2013?
A. There were 12-residential programs and nine-residential pilot programs. The programs included the following:

- Efficient Lighting
- ENERGY STAR ${ }^{\circledR}$ Appliances
- High-Efficiency heating, ventilation, and air conditioning ("HVAC") and Water Heating Equipment
- Low-Income Weatherization
- Multi-Family
- Home Performance with ENERGY STAR ${ }^{\circledR}$
- New Construction
- Appliance Recycling
- Think! Energy - Energy Education
- Home Energy Report
- Home Energy Analysis
- Insulation and Windows
Q. What EO residential pilot programs were available in 2013?
A. The residential pilot programs included the following:
- Multi-measure Engagement (Energy Advisor)
- Smart (Learning) Thermostats
- Smart Energy Challenge
- Visual Smart Energy Challenge
- Demonstration Project (Mobile Energy Efficiency Pilot)
- Made in Michigan
- Agriculture
- Habitat for Humanity - Phase Two
- Secondary Education (Youth Energy Advisor)
Q. For each of the residential programs and residential pilot programs listed above, is there detailed information available in this filing?
A. Yes. Company witness Benjamin M. Ruhl's Exhibit A-11 (BMR-1), Consumers Energy: 2013 Energy Optimization Annual Report, is a 184-page comprehensive Report that
reviews the Company's 2013 EO performance that includes information on the 12-residential programs and nine-residential pilot programs.
Q. What information is contained in this Report?
A. The Consumers Energy: 2013 Energy Optimization Annual Report is a comprehensive Report that reviews the Company's 2013 EO performance on its portfolio of programs. The Report provides detailed program sections that include; program objective, target market, program duration, program description, program logic, incentive strategy, eligible measures, implementation strategy, marketing strategy, key milestones, evaluation strategy requirements, Consumers Energy administrative requirements, participation, investment, energy saving, and benefit-cost test results. Detailed information on residential programs and pilot programs can be found beginning on page 22 of that document.
Q. From the residential programs and residential pilot programs that the Company implemented as part of this filing, what were the actual total annualized MWh, MW, and Mcf savings for 2013?
A. From the residential programs and residential pilot programs, the Company delivered 192,728 MWh, 19.5 MW, and 1,186,815 Mcf of energy savings in 2013, respectively. Individual residential program energy saving results can be found in Exhibit A-11 (BMR-1), Consumers Energy: 2013 Energy Optimization Annual Report on page 14 in Table 4-5. 2013 Portfolio Savings.

Q, Has the Company certified these electric and gas energy savings?
A. Yes. As detailed in Company witness Ruhl's direct testimony, the Company engaged The Cadmus Group, Inc. to certify the residential energy savings. Energy savings for
residential pilot programs are done by calculation as detailed in Company witness Ruhl's direct testimony, and on page 15 of his Exhibit A-11 (BMR-1), Consumers Energy: 2013 Energy Optimization Annual Report in section 4.2 Energy Savings for Pilot and Education and Awareness.
Q. Did the Company achieve its residential electric savings within the Commissionapproved residential spend in Case No. U-16670?
A. The Company established its 2013 residential electric spend in Case No. U-16670 to be $\$ 30,352,991$. The Company actually spent $\$ 30,352,119$ as shown in Company witness James P. Schwanitz' direct testimony, and his Exhibit A-16 (JPS-1), EO Electric Investments \& Incentive Calculation.
Q. Why does the actual electric spend vary from the planned electric spend?
A. Due to the large number of programs and timing of program expenses it is not possible to exactly match planned spending with actual spending. It should be noted that the variance between planned spending and actual spending is a deminimus amount when compared to the total spending.
Q. Did the Company achieve its residential gas savings within the Commission-approved residential spend in Case No. U-16670?
A. The Company established its 2013 gas spend in Case No. U-16670 to be \$35,667,978. The Company actually spent $\$ 35,511,599$ as shown in Company witness Schwanitz' direct testimony, and his Exhibit A-17 (JPS-2), EO Gas Investment \& Incentive Calculation.
Q. Why does the actual gas spend vary from the planned gas spend?
A. Due to the large number of programs and timing of program expenses it is not possible to exactly match planned spending with actual spending. It should be noted that the variance between planned spending and actual spending is a deminimus amount when compared to the total spending.
Q. Does that conclude your testimony?
A. Yes.

BEFORE THE MICHIGAN PUBLIC SERVICE COMMISSION

In the matter of the application of Consumer)
Energy Company for Authority to Reconcile)
Its 2013 Energy Optimization Plan Costs)
Associated With the Plan Approved in)
Case Nos. U-16670 and U-17138.)

PROOF OF SERVICE

STATE OF MICHIGAN)
) SS
COUNTY OF JACKSON)

Dorothy H. Wright, being first duly sworn, deposes and says that she is employed in the Legal Department of Consumers Energy Company; that on May 30, 2014, she served an electronic copy of Consumers Energy Company's "Application and Testimony and Exhibits of Company witnesses Alfred A. Alatalo, Katherine L. Allen, Robert D. Bordner, Laura M. Collins, M. Sami Khawaja, Richard A. Morgan, Benjamin M. Ruhl, James P. Schwanitz, and Theodore A. Ykimoff" upon the persons listed in Attachment 1 hereto, at the e-mail addresses listed therein.

Dorothy H. Wright

Subscribed and sworn to before me this $30^{\text {th }}$ day of May, 2014.

Mnchele ab(2) $\begin{aligned} & \text { Digitally signed by Michelle J. Abbs } \\ & \text { Date: 2014.05.30 12:49:02 -04'00' }\end{aligned}$
Michelle Abbs, Notary Public
State of Michigan, County of Jackson
My Commission Expires: 08/09/17
Acting in the County of Jackson

Counsel for the Michigan Public Service Commission Staff

Spencer A. Sattler, Esq.
Assistant Attorney General
Public Service Division
6520 Mercantile Way, Suite 1
Lansing, MI 48911
E-Mail: sattlers@michigan.gov
Counsel for the Natural Resources
Defense Council ("NRDC",
Environmental Law \& Policy Center
("ELPC"), and Michigan Environmental Council ("MEC")

Christopher M. Bzdok, Esq.
Ruth Ann Liebziet, Legal Assistant
Olson, Bzdok \& Howard, P.C.
420 E. Front Street
Traverse City, MI 49686
E-Mail: chris@envlaw.com
ruthann@envlaw.com
Counsel for Environmental Law \& Policy Center ("ELPC")

Robert Kelter, Esq.
Environmental Law \& Policy Center
35 East Wacker Drive, Suite 1600
Chicago, IL 60601
E-Mail: rkelter@elpc.org
Nicholas McDaniel, Esq.
Environmental Law \& Policy Center
1207 Grandview Avenue, Suite 201
Columbus, OH 43212
E-Mail: NMcDaniel@elpc.org

Counsel for the Association of Businesses Advocating Tariff Equity ("ABATE")

Leland R. Rosier, Esq.
Clark Hill PLC
212 E. Grand River Avenue
Lansing, MI 48906-4328
E-Mail: lrrosier@clarkhill.com

[^0]: ${ }^{1}$ On August 1, 2013 Consumers Energy filed an Application in Case No. U-17351 requesting Commission approval to amend the EO Plan approved in Case Nos. U-16670. The Commission issued an Order on December 19, 2013 in which it approved a Settlement Agreement which resolved all issues in Case No. U-17351, and approved the Company's amended EO Plan. The EO Plan approved in Case No. U-17351 applies to the years 2014-2017. The EO reconciliation which is the subject of this Application concerns the year 2013, which was subject to the terms of the Case No. U-16670 EO Plan, as amended in Case No. U-17138.

[^1]: $(3,510,722)$

[^2]: ${ }^{1}$ Michigan Public Service Commission, Case No. U-17138.
 ${ }^{2}$ Michigan Public Service Commission, Case No. U-17138 updated with Case No. U17531.

[^3]: c) The verified net savings including the Long Life Equipment Savings Multiplier (LLESM) are equal to the verified net savings plus a 10% multiplier for all measures installed
 under each program that have a measure of 10 years or more.
 d) The Business Solutions Program is comprised of the Business
 d) The Business Solutions Program is comprised of the Business Solutions-Custom, Business Solutions-Prescriptive, Building Operator Certification, and New Construction

 Programs.

[^4]: e) The Small Business Solutions Program is comprised of the Direct Install-Core, Programmable Thermostat, Hospitality, Furnace Tune-up, CFL-Drop Ship, and CFL-Buydown Programs.

[^5]: ${ }^{3}$ For non-MEMD measure, we used the measure life values from eTracker. These measure life values have never been reviewed during the annual impact evaluations, but will be assessed during future evaluations.

[^6]: ${ }^{4}$ For savings certification, the certification team referenced the version of the master MEMD dated 11/20/2012 with the file name "mi_master_measure_database_2013_11202012_final.xls." For weather sensitive measures, the certification team referenced the weather-sensitive MEMD file
 "mi_weather_sensitive_dbase_2012_10_31_12.xls." Additionally, Navigant Consulting conducted additional weighting for some weather sensitive measures and provided the certification team with spreadsheets containing the weighted results. For the Business Solutions Program, the spreadsheet "Navigant 2013 Q4_Bus Sol Master Measures_2014_01_24.xlsx" was used; for the Small Business Solutions Programs, the spreadsheet "Navigant 2013 Q4_SB DI Master Measures_2013_1_23.xlsx" was used; for the Multi-Family Initiative, the spreadsheet "Navigant 2013 Q4_CI MF Master Measures_2013_1_28.xlsx" was used. Note that the date suffixes on the latter two files are incorrect and the year component should read "2014."
 ${ }^{5}$ In addition to the MEMD data files cited in Footnote 4, the certification team's verification of several measure savings values required the use of workpapers because the measures were not yet incorporated into the MEMD. The specific workpapers are highlighted later in the report when presenting measure level results.

[^7]: ${ }^{6}$ For program years 2009 and 2010, adjustments based on the results of the document review process were applied to program savings because gross savings adjustment factors derived from the rigorous annual program evaluations were not yet applied in the certification process. Beginning in PY2010, gross savings adjustment factors were applied to certification results and adjustments from the document reviews were no longer incorporated to eliminate potential double counting.
 7 The phrase "...could also be captured..." was used instead of "...would also be captured..." because the evaluations are conducted using statistical sampling methods while the entire population of measures is assessed through this certification process. However, this does not detract from the basic argument and double counting is still the concern.

[^8]: 8 Michigan Public Service Commission, Case No. U-17138.

[^9]: ${ }^{9}$ Michigan Public Service Commission, Case No. U-17138 updated with Case No. U17531.
 ${ }^{10}$ http://efile.mpsc.state.mi.us/efile/docs/17138/0060.pdf and https:// efile.mpsc.state.mi.us/efile/docs/17351/0028.pdf

[^10]: ${ }^{11}$ Rounding to four decimal places can result in very small variances when comparing the reported gross and adjusted reported gross savings. This is because it appears different data is rounded at different steps when computing the reported savings values in the tracking data. For example, some rounding seems to have occurred as three decimal places and some at four decimal places during intermediate calculation steps; some values were not rounded at all until the final value was computed. Even in aggregate, the net impacts of these rounding issues are quite small and the resulting variances are not discussed in this certification report. Instead, the focus is placed on ensuring that the correct MEMD/weather-sensitive-weighted values were used in the tracking data and that systematic computation errors were not committed.
 12 mi_master_measure_database_2013_11202012_final.xls
 ${ }^{13}$ For Business Solutions: Navigant 2013 Q4_Bus Sol Master Measures_2014_01_24.xlsx; for Small Business Solutions: Navigant 2013 Q4_SB DI Master Measures_2013_1_23.xlsx; for Multi-Family: Navigant 2013 Q4_CI MF Master Measures_2013_1_28.xlsx.

[^11]: 14 Though nearly all measures used deemed savings, several measures also had additional performance savings adjustments. The per-unit savings values for these measures varied and, thus, are not analyzed in this section. ${ }^{15}$ More specifically, for the Business Solutions Program, savings values were sourced from the following workpapers: CA Outside Air Intake Workpaper_042812.docx (CAE0008); CA-Low pressure drop filter Workpaper042412.docx (CAE0004); CA-NoLossDrain Workpaper-042412.docx (CAE0005); CE Work Paper Review- Toilet Exhaust 03082012.docx (CHC0070); CHE0012 21373839 - Chillers.pdf (CHE0041); DecorativeLEDWorkpaper_062613.docx (CFE0010); Ductless AC WorkPaper_043013.docx (CHE0011 and CHE0064); Exterior LED-Induction - watts reduced Workpaper.docx (CFE0008); High Efficiency Dishwasher_011813.docx (CSE0028, CSE0078, CSE0079, CSE0080 and CSE0082); Hydronic HVAC Pump Control Workpaper_030811.docx (CHC0015 and CHE0062); Indoor CFL WorkPaper_042712.docx (CFE0003 and CLE0052); LED Tube Light Workpaper_040613.docx (CFE0013); Neon to LED Workpaper_042912.docx (CFE0006 and CFE0009); ParkingGarage LED-Induction - watts reduced Workpaper.docx (CFE0005); Process Steam Pipe Condensate Insulation_050312.docx (CHG0054); ToiletExhaustOccSensor workpaper_052011.docx (CHG0065); UPS Workpaper_032713.docx (CSE0042); Lighting Power Density Workpaper 032713.docx (CSE0017 and CSE0049).

[^12]: ${ }^{16}$ Note that as discussed in the methods section of this report, because impact evaluations for this program capture the same type of information as the application review, to avoid the double counting of effects, the reported gross savings are not adjusted for these findings.

[^13]: a) The Business Solutions Program consists of the Business Solutions-Prescriptive, Business Solutions-Custom, Building Operator Certification, New Construction-Major Retrofit
 and New Construction-Whole Building Programs.
 b) This table presents results by end use because of the relatively large number of measures installed under the program. Measure level results are presented in Appendix B.
 c) Note that the verified gross adjustment factors were derived from the prior year's impact evaluations (see Section 2.4).
 d) The net-to-gross adjustment factor was deemed at 0.900 for all programs by the MPSC.
 years or more.

[^14]: a) The Business Solutions Program consists of the Business Solutions-Prescriptive, Business Solutions-Custom, Building Operator Certification, New Construction-Major Retrofit
 b) This table presents results by end use because of the relatively large number of measures installed under the program. Measure level results are presented in Appendix B. c) Note that the verified gross adjustment factors were derived from the prior year's impact evaluations (see Section 2.4). d) The net-to-gross adjustment factor was deemed at 0.900 for all programs by the MPSC.
) The verified net savings including LLESM is equal to the verified net savings plus a 10% multiplier for all measures installed under each program that have a measure life of 10
 years or more.

[^15]:
 єMI
 EMI

 | Measure Code | Measure Description | 2013
 Reported Gross kW Savings
 [A] | 2013 Adjusted Reported Gross kW Savings [B] | 2012 Verified Gross kW Adjustment Factor ${ }^{\text {b }}$
 [C] | 2013 Verified Gross kW Savings $[\mathrm{D}]=[\mathrm{B} \times \mathrm{C}]$ | Deemed Net-toGross Adjustment Factor ${ }^{\text {c }}$ | 2013 Verified Net kW Savings $[\mathrm{F}]=[\mathrm{D} \times \mathrm{E}]$ | 2013 kW Realization Rate $[\mathrm{G}]=[\mathrm{F} / \mathrm{A}]$ | 2013 Verified
 Net kW
 Savings Including LLESM $[H]=\left[\begin{array}{lll} F & \times & 1.1 \end{array}\right]^{\mathrm{d}}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | CDC0058 | Programmable Thermostats -Combination Customers | -106 | -106 | 0.993 | -106 | 0.900 | -95 | 0.894 | -95 |
 | CDE0044 | LED Lighting -
 12 W LED
 Lamps
 replacing
 incandescent
 lights | 185 | 185 | 1.000 | 185 | 0.900 | 166 | 0.900 | 166 |
 | CDE0045 | LED Lighting -
 11 W LED
 Flood Lamp | 412 | 412 | 0.924 | 381 | 0.900 | 343 | 0.832 | 377 |
 | CDE0046 | LED Lighting -
 8 W LED
 Lamps
 replacing
 incandescent
 lights | 128 | 128 | 0.924 | 119 | 0.900 | 107 | 0.832 | 107 |
 | CDE0051 | CFL Bulb -Screw-in | 37 | 37 | 0.925 | 34 | 0.900 | 31 | 0.832 | 31 |
 | CDE0052 | Hardwired CFL | 10 | 10 | 0.873 | 9 | 0.900 | 8 | 0.786 | 8 |
 | CDE0053 | Specialty CFL | 16 | 16 | 0.873 | 14 | 0.900 | 12 | 0.786 | 12 |
 | CDE0054 | T8s and UTube T8 Lamps | 2,241 | 2,241 | 0.873 | 1,957 | 0.900 | 1,761 | 0.786 | 1,937 |
 | CDE0055 | T5 Lamps | 11 | 11 | 0.873 | 9 | 0.900 | 8 | 0.786 | 9 |
 | CDE0057 | LEDs, LED
 Exit Signs, | 1,167 | 1,167 | 0.873 | 1,018 | 0.900 | 917 | 0.786 | 1,008 |

 $\underset{\text { E }}{ }$

 | | Induction | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | CDE0058 | Programmable Thermostats | -207 | -207 | 0.993 | -206 | 0.900 | -185 | 0.894 | -185 |
 | CDE0064 | Small Business Custom Electric | 5 | 5 | 0.873 | 4 | 0.900 | 4 | 0.786 | 4 |
 | CDE0068 | CFL Box Door Delivery | 5,549 | 5,549 | 1.000 | 5,549 | 0.900 | 4,994 | 0.900 | 4,994 |
 | CDE0069 | CFL Box Door Delivery (TC) | 638 | 638 | 1.000 | 638 | 0.900 | 574 | 0.900 | 574 |
 | CDE0072 | Programmable Thermostat DTE Shared Electric | -42 | -42 | 0.993 | -41 | 0.900 | -37 | 0.894 | -37 |
 | CDE0080 | ECM Case Motor | 4 | 4 | 1.000 | 4 | 0.900 | 3 | 0.809 | 4 |
 | CDE0081 | ECM Walk-in Cooler and Freezer Motor | 47 | 42 | 0.873 | 37 | 0.900 | 33 | 0.707 | 37 |
 | CDE0084 | Evaporator Fan Motor Controls on PSC motors | 1 | 1 | 1.000 | 1 | 0.900 | 1 | 0.811 | 1 |
 | CDE0087 | Vending Equipment Controller (Halo) | 1 | 1 | 1.000 | 1 | 0.900 | 0 | 0.900 | 0 |
 | CDE0090 | 3.5 W LED Candelabra | 26 | 26 | 1.000 | 26 | 0.900 | 24 | 0.900 | 24 |
 | CDE0100 | 13W BR30
 LED Downlight | 0 | 0 | 1.000 | 0 | 0.900 | 0 | 0.900 | 0 |
 | CDE0101 | LED Exit Sign | 25 | 25 | 1.000 | 25 | 0.900 | 22 | 0.900 | 25 |
 | CDE0102 | LED Lighting -
 9.5 W LED
 Lamps
 Replacing | 311 | 311 | 1.000 | 311 | 0.900 | 280 | 0.900 | 280 |

 | | Incandescent Lights | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | CDE0103 | LED Lighting 6 W LED Lamps Replacing Incandescent Lights | 66 | 79 | 1.000 | 79 | 0.900 | 71 | 1.070 | 71 |
 | CDE0104 | 14 W CFL
 Replacing 60 W Globe Inc (Halo) | 3 | 3 | 1.000 | 3 | 0.900 | 3 | 0.900 | 3 |
 | CDE0198 | CFL bulbs regular (buydown) | 6,328 | 5,701 | 0.955 | 5,444 | 0.900 | 4,900 | 0.774 | 4,900 |
 | CDE0199 | CFL bulbs specialty (buydown) | 194 | 175 | 0.955 | 167 | 0.900 | 150 | 0.774 | 150 |
 | CDE0200 | Miscellaneous Lighting | 2,442 | 2,442 | 0.873 | 2,132 | 0.900 | 1,919 | 0.786 | 1,919 |
 | CDE0201 | Fixture Removal | 217 | 217 | 0.873 | 189 | 0.900 | 170 | 0.786 | 187 |
 | CFE0014 | Linear Fluorescent to LED Retrofit | 35 | 35 | 1.000 | 35 | 0.900 | 31 | 0.900 | 35 |
 | TOTAL | | 19,743 | 19,104 | 0.943 | 18,017 | 0.900 | 16,216 | 0.821 | 16,545 |
 | Columns may not sum to total due to rounding.
 a) The Small Business Solutions Program consists of the Direct Install-Core, Programmable Thermostat, Hospitality, Furnace Tune-up, CFL Drop Ship, and CFL Buydown Programs.
 b) Note that the verified gross adjustment factors were derived from the prior year's impact evaluations (see Section 2.4).
 c) The net-to-gross adjustment factor was deemed at 0.900 for all programs/initiatives by the MPSC.
 d) The verified net savings including LLESM is equal to the verified net savings plus a 10% multiplier for all measures installed under each program that have a measure of 10 years or more. | | | | | | | | | |

 TOTAL
 Table 5-6. PY2013 Small Business Solutions Program Natural Gas (Mcf) Certified Savings by Measure ${ }^{\text {a }}$

 | Measure Code | Measure Description | 2013
 Reported Gross Mcf Savings
 [A] | 2013
 Adjusted Reported Gross Mcf Savings [B] | 2012
 Verified Gross Mcf Adjustment Factor ${ }^{\text {b }}$
 [C] | 2013 Verified Gross Mcf Savings $[D]=[B \times C]$ | Deemed Net-toGross Adjustment Factor ${ }^{\text {c }}$ [E] | 2013 Verified Net Mcf Savings $[F]=[D \times E]$ | 2013 Mcf Realization Rate $[G]=[F / A]$ | 2013 Verified Net Mcf Savings Including LLESM $[H]=\left[\begin{array}{lll} F & \times 1.1 \end{array}\right]^{d}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | CDC0058 | Programmable Thermostats -Combination Customers | 31,653 | 31,653 | 0.993 | 31,431 | 0.900 | 28,288 | 0.894 | 28,288 |
 | CDG0011 | DI - Gas Furnace or RTU Tune-up (>=40 and < 300 MBH) | 10,070 | 10,068 | 1.000 | 10,068 | 0.900 | 9,061 | 0.900 | 9,967 |
 | CDG0012 | DI - Gas Furnace or RTU Tune-up ($>=300 \mathrm{MBH}$) | 3,171 | 3,171 | 1.000 | 3,171 | 0.900 | 2,854 | 0.900 | 3,139 |
 | CDG0033 | Programmable Thermostat DTE Shared Gas | 10,468 | 10,468 | 0.993 | 10,395 | 0.900 | 9,356 | 0.894 | 9,356 |
 | CDG0058 | Programmable
 Thermostat -
 Gas
 Customers | 91,599 | 91,599 | 0.993 | 90,958 | 0.900 | 81,862 | 0.894 | 81,862 |
 | TOTAL | | 146,960 | 146,958 | 0.994 | 146,022 | 0.900 | 131,420 | 0.894 | 132,612 |
 | Columns may not sum to total due to rounding.
 a) The Small Business Solutions Program consists of the Direct Install-Core, Programmable Thermostat, Hospitality, Furnace Tune-up, CFL Drop Ship, and CFL Buydown Programs.
 b) Note that the verified gross adjustment factors were derived from the prior year's impact evaluations (see Section 2.4).
 c) The net-to-gross adjustment factor was deemed at 0.900 for all programs/initiatives by the MPSC.
 d) The verified net savings including LLESM is equal to the verified net savings plus a 10% multiplier for all measures installed under each program that have a measure of 10 years or more. | | | | | | | | | |

 ## Multi-Family Program

 Table 5-7, Table 5-8, and Table 5-9 present the certified savings for electric energy (kWh), electric demand (kW), and gas savings (Mcf), respectively, for the Program Year 2013 MultiFamily Program by measure.

 | | $\begin{aligned} & 8 \\ & \stackrel{8}{6} \\ & \stackrel{-}{5} \end{aligned}$ | $\begin{aligned} & \bar{\circ} \\ & \dot{N} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$ | N N N | $\underset{\infty}{\infty}$ | $\begin{aligned} & \frac{m}{j} \\ & \underset{N}{N} \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \stackrel{N}{N} \\ & \stackrel{\circ}{\circ} \end{aligned}$ | $\begin{aligned} & \underset{\sim}{\mathrm{G}} \\ & \underset{\mathrm{~N}}{ } \end{aligned}$ | $\begin{aligned} & \infty \\ & \propto \\ & \sim \\ & \underset{\sim}{0} \\ & \end{aligned}$ | No웅 | $\begin{aligned} & \text { B } \\ & \text { - } \\ & \text { - } \end{aligned}$ | N | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underset{N}{N} \end{aligned}$ | $\begin{aligned} & 8 \\ & 0 \\ & \stackrel{8}{-} \end{aligned}$ | $\begin{aligned} & \text { o } \\ & \stackrel{1}{\circ} \\ & \stackrel{N}{\top} \end{aligned}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | $\begin{aligned} & \text { セ్ } \\ & \\ & 0 \end{aligned}$ | O- | $\begin{aligned} & \text { O- } \\ & \hline-0 \end{aligned}$ | $\begin{aligned} & \text { O- } \\ & \hline-0 \end{aligned}$ | $\begin{aligned} & \text { O- } \\ & \hline-0 \end{aligned}$ | $\begin{aligned} & \text { O- } \\ & \hline-0 \end{aligned}$ | $\begin{aligned} & \text { O- } \\ & \hline-0 \end{aligned}$ | $\begin{aligned} & \text { O- } \\ & \hline-0 \end{aligned}$ | O- | $\begin{aligned} & \text { O- } \\ & \hline-0 \end{aligned}$ | $\begin{aligned} & \text { O- } \\ & \hline-1 \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \hline 0 \\ & \hline \end{aligned}$ | O- | $\begin{aligned} & \text { O- } \\ & \hline- \end{aligned}$ |
 | | $\begin{aligned} & 8 \\ & \stackrel{8}{8} \\ & \stackrel{y}{2} \end{aligned}$ | $\begin{aligned} & \infty \\ & \underset{N}{N} \\ & \underset{N}{n} \end{aligned}$ | $\stackrel{\circ}{\underset{N}{N}}$ | 毋 | $\begin{aligned} & \bar{N} \\ & \text { N } \\ & \text { N } \end{aligned}$ | $\begin{aligned} & \boxed{8} \\ & \stackrel{0}{0} \\ & \infty \end{aligned}$ | $\begin{aligned} & \underset{\sim}{\text { O}} \\ & \underset{F}{2} \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { Nָ } \end{aligned}$ | $\begin{aligned} & \text { ® } \\ & \text { © } \\ & \text { Nे } \end{aligned}$ | $\begin{aligned} & \infty \\ & \text { O} \\ & \stackrel{\text { N}}{ } \end{aligned}$ | $\begin{aligned} & \mathbb{N} \\ & \text { Oi } \end{aligned}$ | $$ | $\begin{aligned} & \mathbf{D}^{\infty} \\ & \infty \\ & \stackrel{N}{n} \end{aligned}$ | $\underset{\sim}{\underset{\sim}{\circ}}$ |
 | | $\begin{aligned} & \text { O- } \\ & \text { ó } \end{aligned}$ | O- | $\begin{aligned} & 8 \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \text { O- } \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \text { O- } \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline \text { oi } \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \text { ò } \end{aligned}$ | $\begin{aligned} & \text { O- } \\ & \text { ó } \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \hline \text { oi } \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \hline \text { O- } \end{aligned}$ |
 | | $\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\sim}{n} \end{aligned}$ | $\begin{aligned} & \text { + } \\ & \text { N } \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \underset{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \underset{N}{0} \end{aligned}$ | ষ | $\begin{aligned} & \text { O} \\ & \text { on } \\ & \text { Ǹ } \end{aligned}$ | $\frac{\mathrm{N}}{\stackrel{N}{N}}$ | $\begin{aligned} & \text { Q } \\ & \underset{N}{N} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$ | $\begin{aligned} & \text { ๙̀ } \\ & \stackrel{0}{\circ} \end{aligned}$ | $\frac{\stackrel{\rightharpoonup}{\mathrm{N}}}{\underset{\mathcal{F}}{(}}$ | $\begin{aligned} & 0 \\ & 0 \\ & 10 \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \infty \\ & \underset{y}{*} \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { Y゙ } \end{aligned}$ | $\frac{\text { 은 }}{\stackrel{1}{c}}$ |
 | | $\begin{aligned} & \infty \\ & \underset{0}{\infty} \\ & \hline \end{aligned}$ | $\stackrel{8}{8}$ | $\stackrel{8}{8}$ | $\stackrel{8}{\circ}$ | $\stackrel{8}{8}$ | $\stackrel{8}{\circ}$ | O | $\stackrel{8}{\circ}$ | 8 | O- | $\stackrel{8}{8}$ | O | O- | $\stackrel{8}{8}$ |
 | | $\begin{aligned} & \stackrel{0}{N} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { O } \\ & \text { N } \\ & \text { ò } \end{aligned}$ | $\begin{aligned} & \underset{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \underset{N}{0} \end{aligned}$ | ষু | $\begin{aligned} & 8 \\ & 8 \\ & \text { N } \end{aligned}$ | $\begin{aligned} & \stackrel{N}{N} \\ & \underset{\circ}{\circ} \end{aligned}$ | $\begin{aligned} & \text { ค̀ } \\ & \underset{N}{N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \stackrel{\mathrm{~N}}{\mathrm{~T}} \end{aligned}$ | $\begin{aligned} & \text { N} \\ & \stackrel{0}{\mathbf{O}} \\ & \stackrel{1}{2} \end{aligned}$ | $\stackrel{\text { N}}{\stackrel{N}{\mathrm{~N}}}$ | $\begin{aligned} & \circ \\ & \stackrel{0}{n} \\ & i \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \infty \\ & \text { N } \\ & \underset{F}{2} \end{aligned}$ | O O Y | $\frac{\text { 운 }}{\text { ¢ }}$ |
 | | $\begin{aligned} & \text { Non } \\ & \underset{0}{0} \end{aligned}$ | $\begin{aligned} & \text { + } \\ & \text { N } \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \underset{\infty}{\infty} \\ & \sim_{n}^{0} \\ & \infty \end{aligned}$ | ষ | $\begin{aligned} & \text { O} \\ & \text { on } \\ & \text { Ǹ } \end{aligned}$ | $\begin{gathered} \stackrel{N}{N} \\ \text { Bi } \end{gathered}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \underset{N}{N} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{~N}} \end{aligned}$ | $\begin{aligned} & \text { §̀ } \\ & \stackrel{y}{\circ} \\ & \stackrel{1}{n} \end{aligned}$ | $\frac{\stackrel{\rightharpoonup}{\mathrm{N}}}{\stackrel{-}{\mathrm{Y}}}$ | $\begin{aligned} & \circ \\ & 0 \\ & 1 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \infty \\ & \tilde{N} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { H゙ } \end{aligned}$ | $\frac{\text { 읃 }}{\text { ¢ }}$ |
 | | | | | | | | | | | | | | | |
 | | $\begin{aligned} & \text { N} \\ & \text { O} \\ & \text { ⓪ } \end{aligned}$ | $\begin{aligned} & \stackrel{\text { O}}{0} \\ & \stackrel{U}{0} \end{aligned}$ | | | | $\begin{aligned} & \text { OO } \\ & \stackrel{O}{6} \\ & \hline 5 \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { ㅡㅡ́n } \end{aligned}$ | $\begin{aligned} & \text { ơO } \\ & \stackrel{\text { U}}{6} \end{aligned}$ | | | $\begin{aligned} & \stackrel{0}{8} \\ & \stackrel{0}{U} \\ & \hline \end{aligned}$ | \circ
 $\stackrel{\circ}{O}$
 $\stackrel{3}{4}$ | $\begin{aligned} & \text { 응 } \\ & \stackrel{\text { U}}{6} \end{aligned}$ | $\begin{aligned} & \stackrel{5}{O} \\ & \stackrel{\text { U}}{6} \\ & \hline \end{aligned}$ |

 | | operation - DI | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | CTE0144 | DI - CFL
 Candelabra Lamp (5-13W) - DI | 100,426 | 100,426 | 1.000 | 100,426 | 0.900 | 90,383 | 0.900 | 90,383 |
 | CTE0145 | DI - LED
 Candelabra
 Lamp (3-5W) -
 24/7 operation
 - DI | 450,034 | 450,034 | 1.000 | 450,034 | 0.900 | 405,031 | 0.900 | 405,031 |
 | CTE0146 | DI - LED
 Candelabra
 Lamp (3-5W) -
 DI | 36,332 | 36,332 | 1.000 | 36,332 | 0.900 | 32,699 | 0.900 | 32,699 |
 | CTE0147 | Exterior CFL (replacing d175W HID) | 98,208 | 98,208 | 1.000 | 98,208 | 0.900 | 88,387 | 0.900 | 97,226 |
 | CTE0153 | HPT8 replacing T12 per lamp Common | 57,507 | 57,507 | 1.000 | 57,507 | 0.900 | 51,756 | 0.900 | 56,932 |
 | CTE0157 | LED Fixture In Unit | 2,288 | 2,288 | 1.000 | 2,288 | 0.900 | 2,059 | 0.900 | 2,265 |
 | CTE0158 | LED Lamp 100W Replacement In Unit | 16,368 | 16,368 | 1.000 | 16,368 | 0.900 | 14,731 | 0.900 | 16,204 |
 | CTE0160 | LED Lamp - 50-80W
 Replacement Common | 483,140 | 483,140 | 1.000 | 483,140 | 0.900 | 434,826 | 0.900 | 434,826 |
 | CTE0161 | LED Lamp 60W Replacement In Unit | 920 | 920 | 1.000 | 920 | 0.900 | 828 | 0.900 | 911 |
 | CTE0163 | LED Lamp -80-100W
 Replacement - | 21,930 | 21,930 | 1.000 | 21,930 | 0.900 | 19,737 | 0.900 | 19,737 |

 EMI

 | | Common | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | CTE0164 | LED Lamp Flood/PAR Common | 464 | 464 | 1.000 | 464 | 0.900 | 418 | 0.900 | 418 |
 | CTE0166 | LED Lamp PAR - In Unit | 1,998 | 1,998 | 1.000 | 1,998 | 0.900 | 1,798 | 0.900 | 1,978 |
 | CTE0168 | PTHP - In Unit | 8,309 | 8,309 | 1.000 | 8,309 | 0.900 | 7,478 | 0.900 | 8,226 |
 | CTE0171 | VFD - Pump | 7,096 | 7,096 | 1.000 | 7,096 | 0.900 | 6,386 | 0.900 | 7,025 |
 | CTE0172 | Low Flow Bath
 Faucet
 Aerators
 1.0gpm -
 Electric - DI | 5,797 | 5,797 | 1.000 | 5,797 | 0.900 | 5,217 | 0.900 | 5,739 |
 | CTE0174 | DI - LED Candelabra Lamp (3-5W) -In-Unit - DI | 15,300 | 15,300 | 1.000 | 15,300 | 0.900 | 13,770 | 0.900 | 15,147 |
 | CTE0175 | DI-CFL
 Candelabra
 Lamp (5-13W)
 - In-Unit - DI | 2,955 | 2,955 | 1.000 | 2,955 | 0.900 | 2,659 | 0.900 | 2,659 |
 | CTG0009 | Boiler Controls | -142 | -142 | 1.000 | -142 | 1.000 | -142 | 1.000 | -157 |
 | TOTAL | | 4,821,077 | 4,821,077 | 0.995 | 4,796,908 | 0.900 | 4,317,203 | 0.895 | 4,575,765 |
 | Columns may not sum to total due to rounding.
 a) Note that the verified gross adjustment factors were derived from the prior year's impact evaluations (see Section 2.4).
 b) The net-to-gross adjustment factor was deemed at 0.900 for all programs/initiatives by the MPSC.
 c) The verified net savings including LLESM is equal to the verified net savings plus a 10% multiplier for all measures installed under each program that have a measure of 10 years or more. | | | | | | | | | |

 Table 5-8. PY2013 Multi-Family Program Electric Demand (kW) Certified Savings by Measure

 | Measure Code | Measure Description | 2013
 Reported Gross kW Savings [A] | 2013
 Adjusted
 Reported
 Gross kW
 Savings
 [B] | 2012
 Verified Gross kW Adjustment Factor ${ }^{\text {a }}$
 [C] | 2013
 Verified Gross kW Savings $[\mathrm{D}]=[\mathrm{B} \times \mathrm{C}]$ | Deemed Net-toGross Adjustment Factor ${ }^{\text {b }}$ | 2013 Verified
 Net kW
 Savings $[\mathrm{F}]=[\mathrm{D} \times \mathrm{E}]$ | 2013 kW Realization Rate $[G]=[F / A]$ | 2013 Verified
 Net kW
 Savings
 Including
 LLESM $[H]=\left[\begin{array}{lll} F & x & 1.1 \end{array}\right]^{c}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | CCE0001 | C_I Multifamily Custom Electric | 89 | 89 | 1.000 | 89 | 0.900 | 80 | 0.900 | 88 |
 | CTE0003 | Common Area -- LED Exit Signs (Retrofit Only) | 8 | 8 | 1.000 | 8 | 0.900 | 7 | 0.900 | 8 |
 | CTE0004 | Low Flow Bath Faucet Aerators - Electric - DI | 1 | 1 | 1.004 | 1 | 0.900 | 1 | 0.904 | 1 |
 | CTE0019 | Low Flow Kitchen Faucet Aerators- Electric - DI | 2 | 2 | 1.004 | 2 | 0.900 | 2 | 0.900 | 2 |
 | CTE0020 | T12 4-ft Lamp Removal (combined with T8/T5 ballast retrofit) | 3 | 3 | 1.000 | 3 | 0.900 | 3 | 0.900 | 3 |
 | CTE0023 | CFL bulbs - 13W | 41 | 41 | 0.948 | 39 | 0.900 | 35 | 0.853 | 35 |
 | CTE0025 | CFL Bulbs - 23W | 0 | 0 | 0.948 | 0 | 0.900 | 0 | 0.853 | 0 |
 | CTE0027 | CFL Screw in Prescriptive | 7 | 7 | 0.948 | 7 | 0.900 | 6 | 0.853 | 6 |
 | CTE0029 | CFL Fixture - Prescriptive | 4 | 4 | 1.000 | 4 | 0.900 | 3 | 0.900 | 4 |
 | CTE0031 | Occupancy Sensors under 500 W | 7 | 7 | 1.000 | 7 | 0.900 | 6 | 0.900 | 7 |
 | CTE0032 | Occupancy Sensors over 500 W | 0 | 0 | 1.000 | 0 | 0.900 | 0 | 0.900 | 0 |
 | CTE0033 | LED Downlight Fixture | 7 | 7 | 1.000 | 7 | 0.900 | 6 | 0.900 | 7 |
 | CTE0039 | LED/Induction (24×7) <175W | 3 | 3 | 1.000 | 3 | 0.900 | 3 | 0.900 | 3 |
 | CTE0040 | LED/Induction (24×7) 175-250W | 5 | 5 | 1.000 | 5 | 0.900 | 4 | 0.900 | 5 |
 | CTE0046 | CFL Specialty - In-Unit DI | 17 | 17 | 1.000 | 17 | 0.900 | 15 | 0.900 | 15 |

 Chapter 5 Certified Savings

 | CTE0050 | Low Flow Showerhead 1.5 gpm - Electric | 5 | 5 | 1.000 | 5 | 0.900 | 4 | 0.900 | 5 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | CTE0051 | Low Flow Showerhead 1.5 gpm - Electric Handheld | 1 | 1 | 1.000 | 1 | 0.900 | 1 | 0.900 | 1 |
 | CTE0124 | 1L HPT8 replacing T12 -Common-24/7 | 0 | 0 | 1.000 | 0 | 0.900 | 0 | 0.900 | 0 |
 | CTE0125 | 1L RW HPT8 replacing T12 - Common-24/7 | 1 | 1 | 1.000 | 1 | 0.900 | 1 | 0.900 | 1 |
 | CTE0126 | 2L HPT8 replacing T12 -Common-24/7 | 2 | 2 | 1.000 | 2 | 0.900 | 2 | 0.900 | 2 |
 | CTE0127 | 2L RW HPT8 replacing T12 - Common-24/7 | 5 | 5 | 1.000 | 5 | 0.900 | 4 | 0.900 | 4 |
 | CTE0130 | 4L HPT8 replacing T12 -Common-24/7 | 1 | 1 | 1.000 | 1 | 0.900 | 1 | 0.900 | 1 |
 | CTE0131 | 4L RW HPT8 replacing T12 - Common - 24/7 | 1 | 1 | 1.000 | 1 | 0.900 | 1 | 0.900 | 1 |
 | CTE0139 | CFL Candelabra Lamp (5-13W) - Common - 24/7 operation | 0 | 0 | 1.000 | 0 | 0.900 | 0 | 0.900 | 0 |
 | CTE0143 | DI - CFL Candelabra Lamp (5-13W) - 24/7 operation - DI | 5 | 5 | 1.000 | 5 | 0.900 | 5 | 0.900 | 5 |
 | CTE0144 | DI - CFL Candelabra Lamp (5-13W) - DI | 23 | 23 | 1.000 | 23 | 0.900 | 21 | 0.900 | 21 |
 | CTE0145 | DI - LED Candelabra Lamp (3-5W) - 24/7 operation - DI | 52 | 52 | 1.000 | 52 | 0.900 | 46 | 0.900 | 46 |
 | CTE0146 | DI - LED Candelabra Lamp (3-5W) - DI | 8 | 8 | 1.000 | 8 | 0.900 | 7 | 0.900 | 7 |
 | CTE0153 | HPT8 replacing T12 - per lamp - Common | 14 | 14 | 1.000 | 14 | 0.900 | 13 | 0.900 | 14 |
 | CTE0157 | LED Fixture - In Unit | 0 | 0 | 1.000 | 0 | 0.900 | 0 | 0.900 | 0 |
 | CTE0158 | LED Lamp - 100W Replacement - In Unit | 2 | 2 | 1.000 | 2 | 0.900 | 2 | 0.900 | 2 |
 | CTE0160 | LED Lamp - 50-80W Replacement - Common | 118 | 118 | 1.000 | 118 | 0.900 | 106 | 0.900 | 106 |
 | | | | | | | | | | |
 | | | | | | | | | | |

 | CTE0161 | LED Lamp-60W Replacement - In Unit | 0 | 0 | 1.000 | 0 | 0.900 | 0 | 0.900 | 0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | CTE0163 | LED Lamp - 80-100W Replacement - Common | 5 | 5 | 1.000 | 5 | 0.900 | 5 | 0.900 | 5 |
 | CTE0164 | LED Lamp - Flood/PAR Common | 0 | 0 | 1.000 | 0 | 0.900 | 0 | 0.900 | 0 |
 | CTE0166 | LED Lamp - PAR - In Unit | 0 | 0 | 1.000 | 0 | 0.900 | 0 | 0.900 | 0 |
 | CTE0168 | PTHP - In Unit | 3 | 3 | 1.000 | 3 | 0.900 | 3 | 0.900 | 3 |
 | CTE0171 | VFD - Pump | 1 | 1 | 1.000 | 1 | 0.900 | 1 | 0.900 | 1 |
 | CTE0172 | Low Flow Bath Faucet Aerators 1.0 gpm Electric - DI | 1 | 1 | 1.000 | 1 | 0.900 | 1 | 1.114 | 1 |
 | CTE0174 | DI - LED Candelabra Lamp (3-5W) - In-Unit DI | 17 | 1 | 1.000 | 1 | 0.900 | 1 | 0.032 | 1 |
 | CTE0175 | DI - CFL Candelabra Lamp (5-13W) - In-Unit DI | 2 | 0 | 1.000 | 0 | 0.900 | 0 | 0.140 | 0 |
 | TOTAL | | 463 | 445 | 0.994 | 442 | 0.900 | 398 | 0.859 | 412 |
 | Columns may not sum to total due to rounding.
 a) Note that the verified gross adjustment factors were derived from the prior year's impact evaluations (see Section 2.4).
 b) The net-to-gross adjustment factor was deemed at 0.900 for all programs/initiatives by the MPSC.
 c) The verified net savings including LLESM is equal to the verified net savings plus a 10% multiplier for all measures installed under each program that have a measure of 10 more. | | | | | | | | | |

 Chapter 5 Certified Savings
 EMI

 | 8 | 006 0 | 8 | 0060 | 8 | 000＊ | 8 | 8 | | ヤヤ00ソ」つ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $8 \angle 8$ | 0060 | $8 \angle 8$ | 0060 | GL6 | 000＊ | S 26 | GL6 | ！！
 se૭－－צэeqəə әґеләрош
 －łセłsounəuł yวセqłəS | 0ヤ00ソ」つ |
 | OG | 0060 | $S \downarrow$ | 0060 | OG | 000＊ | 09 | 09 | мори！M コセłS イбләиヨ | ¢ع00ソ10 |
 | 8てカ＇て | $\downarrow 06^{\circ} 0$ | LOて＇乙 | 0060 | ZSt＇て | ヤ00＊ | とカヤ＇乙 | とカヤ＇乙 | －se૭－sıołeдəト łəכne」 иəપગ！！પ્ર MOI」 MO7 | ャレ00ソ」つ |
 | 08乙 | 0060 | 08乙 | 0060 | トレE | 000\％ | レレヒ | レレE | dn－əunt גə！！0я | レレ00910 |
 | $\angle L E$ | 006 0 | 88乙 | 0060 | O乙\＆ | 000\％ | O乙E | O乙\＆ | s｜oıuOつ גə！！0马 | $6000 \bigcirc 1 \bigcirc$ |
 | $0 \varepsilon 8$ | 0060 | $0 \varepsilon 8$ | 006 0 | こて6 | 000＊ | 乙て6 | 乙て6 | $\begin{array}{r} \text { t!un } \\ \text { ul - MHO-seפ } \\ - \text { de»M әd!d } \end{array}$ | L000ソ1つ |
 | $9 \angle 6$ | $\downarrow 06^{\circ} 0$ | $\angle 88$ | 0060 | 986 | ヤ00＊ | 286 | 286 | | ヤ000ソ」つ |
 | 乙 | 000\％ | \downarrow | 000＇1 | \downarrow | 000\％ | \downarrow | \downarrow | dund－$\square \exists \wedge$ | レーレ0ヨ」O |
 | 99て＇乙 | 0060 | LSO＇Z | 0060 | 98て＇乙 | 000 1 | G8て＇乙 | 98て＇乙 | sev－mołsno
 K！！we！！f！nW I | เ000ソつつ |
 | ${ }_{0}[\llcorner\sim \mathrm{~L}$ ¢ $]=[\mathrm{H}]$ | $[\forall / \ddagger]=[⿹]$ | ［ $3 \times \mathrm{Cl}]=[\mathrm{l}]$ | ［ヨ］ | ［0 \times g］＝［a］ | ［כ］ | ［g］ | ［ B ］ | | |
 | NSヨ77 6u！pn｜ou sбu！nes †ЮN łəN рә！！！ләへ عเ0Z | әృеy ио！ןеz！ןeәy †ગW ELOZ | s6u！nes †ગW ¥əN рә！！！ләへ عเо乙 | | s6u！̣es †ナW SSO．פ рə！！！৷ノ عLOZ | ${ }^{10102]}$ ¡uәułsn！pヲ よフN SSOג рә！！！əఎ てLOZ | sбu！̣es よગW SSO．⿹ peprodəy pəısn！pも عLOZ | | uo！̣d！̣iosea ə．nseəw | әроэ ə．＿nseəฟ |

 | CTG0047 | High Efficiency Boiler Replacement > 92\% Eff | 2,591 | 2,591 | 1.000 | 2,591 | 0.900 | 2,332 | 0.900 | 2,565 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | CTG0048 | High Efficiency Boiler Replacement > 95\% Eff | 105 | 105 | 1.000 | 105 | 0.900 | 94 | 0.900 | 104 |
 | CTG0050 | Low Flow Showerhead 1.5 gpm - DI | 6,575 | 6,575 | 1.000 | 6,575 | 0.900 | 5,917 | 0.900 | 6,509 |
 | CTG0051 | Low Flow Showerhead 1.5 gpm Handheld - DI | 3,828 | 3,828 | 1.000 | 3,828 | 0.900 | 3,445 | 0.900 | 3,790 |
 | CTG0052 | Pipe Wrap DHW -
 Common - DI | 1,927 | 1,920 | 1.000 | 1,920 | 0.900 | 1,728 | 0.896 | 1,900 |
 | CTG0104 | Low Flow Bath Faucet Aerators Prescriptive Gas | 25 | 25 | 1.004 | 25 | 0.900 | 22 | 0.904 | 25 |
 | CTG0114 | Low Flow Kitchen Faucet AeratorsPrescriptive Gas | 32 | 32 | 1.004 | 33 | 0.900 | 29 | 0.904 | 32 |
 | CTG0122 | DHW Boiler Tune-up | 132 | 132 | 1.000 | 132 | 0.900 | 119 | 0.900 | 119 |
 | CTG0131 | In-Direct Water Heater (90\% Eff) | 847 | 847 | 1.000 | 847 | 0.900 | 762 | 0.900 | 838 |
 | CTG0141 | Low Flow Bath Faucet Aerators 1.0gpm - Gas DI | 2,658 | 2,658 | 1.000 | 2,658 | 0.900 | 2,392 | 0.900 | 2,631 |

 Chapter 5 Certified Savings

 | CTG0150 | Boiler Tune-Up | 4,330 | 4,330 | 1.000 | 4,330 | 0.900 | 3,897 | 0.900 | 4,286 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | TOTAL | | 31,347 | 31,339 | 1.000 | 31,353 | 0.900 | 28,218 | 0.900 | 30,823 |
 | Columns may not sum to total due to rounding.
 a) Note that the verified gross adjustment factors were derived from the prior year's impact evaluations (see Section 2.4).
 b) The net-to-gross adjustment factor was deemed at 0.900 for all programs/initiatives by the MPSC.
 c) The verified net savings including LLESM is equal to the verified net savings plus a 10% multiplier for all measures installed under each program that have a measure of 10 years or more. | | | | | | | | | |

 ## 6. Performance Incentive Mechanism

 This section outlines our certification of the various metrics that contribute to Consumers Energy's Performance Incentive Mechanism. Besides the long-life savings and the demand (kW) reductions detailed in this report, the metrics detailed in this chapter include:

 - Multi-measure C\&I projects: electric and gas
 - New Construction C\&I gas savings

 ### 6.1 Multi-measure C\&I projects

 The Settlement Agreement for Case No. U-17138 outlines PIM metrics related to both gas and electric multiple measures projects. This metric is defined as a percentage increase over 2012 levels in 2013, 2014, and 2015. For both the gas and electric PIMs, there is a metric defined as such:
 "ii. The Company would earn a 0.33% incentive for achieving a 50% increase in multi-measure participants in 2013 (over 2012 levels) and additional 33\% increases in each of 2014 and 2015.
 iii. The Company would earn a 1.0% incentive for achieving a 60% increase in 2013 and additional 40\% increases in each of 2014 and 2015."

 Since 2012 Consumers Energy has offered a Multiple Measures incentive bonus, through which bonus incentives are paid to customers who complete projects that include more than 1 of 13 measure categories, if the sum of all additional measure categories is at least 25% of the measure category with the highest incentive. The project is considered an electric project if the primary measure category is an electric measure, and a gas project if the primary measure category is a gas measure. For each year, EMI is certifying the number of multiple measure projects as equal to the number of bonuses that Consumers Energy pays through this program.

 Based on the text of the Settlement Agreement, the number of 2012 multiple measures projects is a static baseline, which determines 2013, 2014, and 2015 savings targets. In other words, the 2014 metric is based on a 33% (minimum incentive) to 40% (maximum incentive) increase over the 2013 minimum goal, not over the actual numbers of multiple measure projects in 2013. Table 6-1 shows our calculations of what those targets will be.

 Table 6-1. Multiple Measures Projects: Targets

 | | 2012 | 2013 | | | | 2014 | | | 2015 | | |
 | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
 | Metric | Actual | Floor | 0.33%
 incentive | 1%
 incentive | Floor | 0.33%
 incentive | 1%
 incentive | Floor | 0.33%
 incentive | 1%
 incentive | |
 | Electric | 47 | 47.0 | 70.5 | 75.2 | 70.5 | 93.8 | 98.7 | 93.8 | 124.7 | 131.3 | |
 | Gas | 22 | 22.0 | 33.0 | 35.2 | 33.0 | 43.9 | 46.2 | 43.9 | 58.4 | 61.4 | |

 Table 6-2 summarizes the certified number of multiple measures bonuses paid in 2012 and 2013, for both electric and gas projects. These calculations are based on lists of multiple measures projects and hard copies of bonus incentive payments provided by program implementation staff. Consumers Energy achieved a 74.5% increase in electric multi-measure projects between 2012 and 2013, and a 59.1% increase in gas multi-measure projects between 2012 and 2013.

 Table 6-2. Multiple Measures Projects: Achieved

 | Multiple Measures Projects | $\mathbf{2 0 1 2}$ | $\mathbf{2 0 1 3}$ | Percent Change
 in Projects |
 | :--- | :---: | :---: | :---: |
 | Electric | 47 | 82 | 74.5% |
 | Gas | 22 | 35 | 59.1% |

 ### 6.2 New Construction C\&I gas savings

 The Settlement Agreement for Case No. U-17138 outlines a PIM metric related to MCF savings from C\&I New Construction program participants. This metric is defined as a percentage increase over 2012 levels in 2013, 2014, and 2015:
 > "iv. The Company would earn, on a sliding scale, an incentive between 0% and 0.33% for achieving an increase (over 2012 levels) between 0% and 50% in gas energy savings for the New Construction C\&l program, and additional 0% to 33% increases in savings in each of 2014 and 2015.
 > v. The Company would earn, on a sliding scale, an incentive between 0.33% and 1.0% incentive for achieving an increase between 50% and 60% in gas energy savings for the New Construction C\&I program, and additional 33\% to 40\% increases in savings in each of 2014 and 2015."

 For this metric, the certified C\&I New Construction savings are equal to the verified net savings included in our annual Certification reports. These savings include whole building design incentives, as well as major retrofit projects included in the larger Business Solutions program.

 Based on the text of the Settlement Agreement, the 2012 New Construction savings is a static baseline, which determines 2013, 2014, and 2015 savings targets. In other words, the 2014 metric is based on a 33% (minimum incentive) to 40% (maximum incentive) increase over the 2013 minimum goal, not over the 2013 performance of the New Construction program. Table 6-3 shows our calculations of what those targets will be.

 Table 6-3. Gas New Construction Savings: Targets

 | | 2012 | | 2013 | | | | 2014 | | 2015 | |
 | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Metric | Actual | Floor | 0.33%
 inc. | 1% inc. | Floor | 0.33%
 inc. | 1% inc. | Floor
 (1nc. | 0.33%
 inc | 1% inc. |
 | Verified
 Net MCF
 Savings | 10,372 | 10,372 | 15,558 | 16,595 | 15,558 | 20,692 | 21,781 | 20,692 | 27,521 | 28,969 |

 Table 6-4 summarizes our calculations of New Construction gas savings achieved in 2012 and 2013. Between 2012 and 2013, Consumers Energy achieved a 281\% increase in New Construction verified net gas savings.

 Table 6-4. New Construction Gas Savings: Achieved

 | New Construction Savings | 2012 Verified Net MCF Savings | 2013 Verified Net MCF Savings ${ }^{\text {a }}$ | Percent Change in Projects |
 | :---: | :---: | :---: | :---: |
 | Major Retrofit Projects | 9,736 | 21,298 | 219\% |
 | Design Incentives | 636 | 7815.4225 | 1229\% |
 | Total | 10,372 | 29,113 | 281\% |

 ## 7. Savings Verification Summary

 Table 7-1 summarizes the verified electric energy (kWh) savings for each program. As shown, for the 2013 program year, the certification team derived total verified net electric energy savings of $240,551,436 \mathrm{kWh}$ across all programs resulting in an overall kWh savings realization rate of 0.876 . Almost two-thirds of total verified net electric energy savings $(64.13 \%$ or $154,270,443 \mathrm{kWh}$) resulted from the Business Solutions Program; about one-third (33.72% or $81,963,790 \mathrm{kWh})$ resulted from the Small Business Solutions Program; only 1.76% (4,317,203 kWh) arose from the Multi-Family Program. The LLESM for electric energy savings totaled $14,982,246 \mathrm{kWh}$ for an overall PY2013 kWh savings of 255,533,682.

 Table 7-2 summarizes the verified electric demand ($k W$) savings for each program. As shown, for the 2013 program year, the certification team derived total verified net electric demand savings of $40,479 \mathrm{~kW}$ across all programs resulting in an overall kW savings realization rate of 0.818. The Business Solutions Program represented the greatest proportion of total electric demand savings (58.96% or $23,865 \mathrm{~kW}$), followed the Small Business Solutions Program at $40.06 \%(16,216 \mathrm{~kW})$ and the Multi-Family Program (0.98% or 398 kW). The LLESM for electric demand savings totaled $2,070 \mathrm{~kW}$ for an overall PY2013 kW savings of 42,549 .

 Table 7-3 summarizes the verified natural gas (Mcf) savings for each program. For the 2013 program year, the certification team derived total verified net gas savings of $862,1550 \mathrm{Mcf}$ across all programs resulting in an overall gas realization rate of 0.844 . The Business Solutions Program accounted for the greatest proportion of verified net gas savings (81.48%) with 707,517 Mcf. Next was the Small Business Solutions Program with 15.24% of verified net gas savings ($131,420 \mathrm{Mcf}$); the Multi-Family Program accounted for 3.27% of verified net gas savings (28,218 Mcf). The LLESM for natural gas savings totaled 51,556 Mcf for an overall PY2013 Mcf savings of 913,711.

 Table 7-4 summarizes the three new performance incentive mechanism (PIM) metrics that the certification teamed certified for PY2013. These metrics include growth in Multi-Measure electric projects, which increased by 74.5\% between 2012 and 2013; growth in Multi-Measure gas projects, which increased by 59.1\% between 2012 and 2013; and growth in New Construction gas savings, which increased by 280.7% between 2012 and 2013.
 Table 7-1. PY2013 Certified Electric Energy (kWh) Savings by Program

 | Program | 2013 Reported Gross kWh Savings [A] | 2013
 Adjusted Reported Gross kWh Savings [B] | 2012
 Verified Gross kWh Savings Adjustment Factor ${ }^{\text {a }}$ [C] | 2013 Verified Gross kWh Savings $[\mathrm{D}]=[\mathrm{B} \times \mathrm{C}]$ | Deemed kWh NTG Adjustment Factor ${ }^{\text {b }}$ [E] | 2013 Verified Net kWh Savings $[F]=[D \times E]$ | 2013 kWh Realization Rate $[G]=[F / A]$ | 2013 Verified Net kWh Savings Including Long Life Equipment Savings Multiplier (LLESM) $[H]=\left[\begin{array}{lll} F & x & 1.1 \end{array}\right]^{c}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Program ${ }^{\text {d }}$ | 177,331,024 | 176,778,028 | 0.970 | 171,414,710 | 0.900 | 154,270,443 | 0.870 | 166,773,674 |
 | Small Business Solutions Program ${ }^{\text {e }}$ | 92,393,647 | 92,393,647 | 0.986 | 91,070,877 | 0.900 | 81,963,790 | 0.887 | 84,184,243 |
 | Multi-Family Program | 4,821,077 | 4,821,077 | 0.995 | 4,796,908 | 0.900 | 4,317,203 | 0.895 | 4,575,765 |
 | TOTAL | 274,545,749 | 273,992,753 | 0.976 | 267,282,495 | 0.900 | 240,551,436 | 0.876 | 255,533,683 |

 a) Note that the verified gross adjustment factors were derived from prior-year impact evaluations (see Section 2.4). b) The net-to-gross adjustment factor was deemed at 0.900 for all programs/initiatives by the MPSC
 c) The verified net savings including the Long Life Equipment Savings Multiplier (LLESM) are equal to the verified net savings plus a 10% multiplier for all measures installed
 d) The Business Solutions Program is comprised of the Business
 d) The Business Solutions Program is comprised of the Business Solutions-Custom, Business Solutions-Prescriptive, Building Operator Certification, and New Construction
 e) The Small Business Solutions Program is comprised of the Direct Install-Core, Programmable Thermostat, Hospitality, Furnace Tune-up, CFL-Drop Ship, and CFL-Buydown
 Table 7-2. PY2013 Certified Electric Demand (kW) Savings by Program

 | Program | 2013
 Reported Gross kW Savings [A] | 2013
 Adjusted Reported Gross kW Savings [B] | 2012
 Verified
 Gross kW
 Savings
 Adjustment Factor ${ }^{\text {a }}$
 [C] | 2013 Verified Gross kW Savings $[\mathrm{D}]=[\mathrm{B} \times \mathrm{C}]$ | Deemed kW NTG Adjustment Factor ${ }^{\text {b }}$ [E] | 2013 Verified Net kW Savings $[F]=[D \times E]$ | 2013 kW Realization Rate $[G]=[F / A]$ | 2013 Verified Net kW Savings Including Long Life Equipment Savings Multiplier (LLESM) $[H]=\left[\begin{array}{lll} F & x & 1.1 \end{array}\right]^{c}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Program ${ }^{\text {d }}$ | 29,264 | 28,959 | 0.916 | 26,517 | 0.900 | 23,865 | 0.816 | 25,592 |
 | Small Business Solutions Program ${ }^{\text {e }}$ | 19,743 | 19,104 | 0.943 | 18,017 | 0.900 | 16,216 | 0.821 | 16,545 |
 | Multi-Family Program | 463 | 445 | 0.994 | 442 | 0.900 | 398 | 0.859 | 412 |
 | TOTAL | 49,470 | 48,507 | 0.927 | 44,976 | 0.900 | 40,479 | 0.818 | 42,549 |

 Columns may not sum to total due to rounding. a) Note that the
 c) The verified net savings including the Long Life Equipment Savings Multiplier (LLESM) are equal to the verified net savings plus a 10% multiplier for all measures installed
 d) The Business Solutions Program is comprised of the Business Solutions-Custom, Business Solutions-Prescriptive, Building Operator Certification, and New Construction
 Programs.
 Columns may not sum to total due to rounding.
 a) Note that the verified gross adjustment factors were derived from prior-year impact evaluations (see Section 2.4).
 b) The net-to-gross adjustment factor was deemed at 0.900 for all programs/initiatives by the MPSC.
 c) The verified net savings including the Long Life Equipment Savings Multiplier (LLESM) are equal to the verified net savings plus a 10% multiplier for all measures installed
 d) The Business Solutions Program is comprised of the Business Solutions-Custom, Business Solutions-Prescriptive, Building Operator Certification, and New Construction
 projects.
 e) The Small Business Solutions Program is comprised of the Direct Install-Core, Programmable Thermostat, Hospitality, Furnace Tune-up, CFL-Drop Ship, and CFL-Buydown

 ## Table 7-4. PY2013 Performance Metric Certification

 ## Percent Change in Metric

 74.5\%
 59.1\%
 280.7\%
 Table 7-3. PY2013 Certified Natural Gas (Mcf) Savings by Program

 | Program | 2013 Reported Gross Mcf Savings [A] | 2013 Adjusted Reported Gross Mcf Savings [B] | 2012 Verified Gross Mcf Savings Adjustment Factor ${ }^{\text {a }}$ [C] | 2013 Verified Gross Mcf Savings $[\mathrm{D}]=[\mathrm{B} \times \mathrm{C}]$ | Deemed Mcf NTG Adjustment Factor ${ }^{\text {b }}$ [E] | 2013 Verified Net Mcf Savings $[F]=[D \times E]$ | 2013 Mcf Realization Rate $[\mathrm{G}]=[\mathrm{F} / \mathrm{A}]$ | 2013 Verified Net Mcf Savings Including Long Life Equipment Savings Multiplier (LLESM) $[H]=\left[\begin{array}{lll} F & x & 1.1 \end{array}\right]^{c}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Program ${ }^{\text {d }}$ | 843,237 | 842,966 | 0.926 | 780,574 | 0.900 | 702,517 | 0.833 | 750,276 |
 | Small Business Solutions Program ${ }^{\text {e }}$ | 146,960 | 146,958 | 0.994 | 146,022 | 0.900 | 131,420 | 0.894 | 132,612 |
 | Multi-Family Program | 31,347 | 31,339 | 1.000 | 31,353 | 0.900 | 28,218 | 0.900 | 30,823 |
 | total | 1,021,544 | 1,021,264 | 0.938 | 957,949 | 0.900 | 862,155 | 0.844 | 913,711 | Programs.

 # Certification of Reported Savings: Consumers Energy C\&I Energy Optimization Programs

 Presented To:
 Joseph Forcillo
 Director
 Energy Efficiency Research \& Evaluation Consumers Energy Company

 One Energy Plaza
 Jackson, MI 49201

 Presented By:

 Energy Market Innovations, Inc. 83 Columbia Street | Suite 400

 Seattle, WA 98104 206.621.1160

 ## Table of Contents

 Appendix A: Savings Values of Validated Measures A-1
 Appendix B: Validated Savings B-1
 Appendix C: Application Variances C-1

 | Program | End Use | Measure Code | Measure Description | Units | Install Quantity | MEMD or Workpaper Per-Unit kWh Savings | Deemed Source | Effect on Reported kWh | Variance Description |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | BOC | Other | CSC0042 | BOC (Combo Customer) | Units | 11.00 | 23,534.5000 | Master MEMD; Commercial | 0.0000 | No variances |
 | BOC | Other | CSE0090 | BOC (Electric Customer) | Units | 12.00 | 23,534.5000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Custom | Custom | CBE0001 | Custom
 Electric
 Program | Units | 44.00 | 0.0000 | Custom calculated | 0.0000 | No variances |
 | Business Solutions Custom | Custom | CBE0300 | Smart
 Buildings -
 Electric | Units | 3.00 | 0.0000 | Custom calculated | 0.0000 | No variances |
 | Business Solutions Custom | Custom | CJE0001 | Lumens per
 Watt
 Improvement per Year | kWh | 54.00 | 0.0000 | Custom calculated | 0.0000 | No variances |
 | Business Solutions Custom | Custom | CJE0002 | Energy Conservation Improvement per Year | kWh | 14.00 | 0.0000 | Custom calculated | 0.0000 | No variances |
 | Business Solutions Prescriptive | Compress ed Air | CAE0001 | VSD Air Compressor | HP | $\begin{array}{r} 2,050.0 \\ 0 \end{array}$ | 1,390.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Compress ed Air | CAE0002 | Refrigerated Cycling Thermal Mass Air Dryer | SCFM | $\begin{array}{r} 10,800 . \\ 00 \end{array}$ | 5.2420 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Compress ed Air | CAE0004 | Low-Pressure Drop Air Filter | SCFM | 800.00 | 24.9600 | CA-Low pressure drop filter Workpaper042412.docx | 7,984.0000 | eTracker reported per unit kWh = 14.9800; should be 24.9600 kWh |
 | Business
 Solutions -
 Prescriptive | Compress ed Air | CAE0005 | Zero Loss Condensate Drain | Units | 20.00 | 1,914.0000 | CA-NoLossDrain Workpaper042412.docx | -10,080.0000 | eTtracker reported per unit kWh = 2418.0000; should be 1914.0000 kWh |
 | Business
 Solutions -
 Prescriptive | Compress ed Air | CAE0007 | Compressed Air Energy Audit | Units | $\begin{array}{r} 5,263.1 \\ 9 \end{array}$ | 624.0000 | Master MEMD; Commercial | 1.9472 | eTracker reported incorrect kWh savings for 7 projects (values |

 | | | | | | | | | | vary) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | Compress ed Air | CAE0008 | Air
 Compressor
 Outdoor Air Intake | HP | 100.00 | 89.8600 | CA Outside Air
 Intake
 Workpaper_042812. docx | 300.0000 | eTracker reported per unit kWh = 86.8600; should be 89.8600 kWh |
 | Business
 Solutions -
 Prescriptive | Compress ed Air | CAE0009 | Compressed
 Air Pressure
 Flow Controller | HP | 275.00 | 73.9400 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Compress ed Air | CAE0011 | Refrigerated Cycling Digital Scroll | SCFM | $\begin{array}{r} 1,000.0 \\ 0 \end{array}$ | 16.1620 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | BLDG Envelope | CBC0001 | Window Reduction | Square
 Feet | $\begin{array}{r} 1,421.0 \\ 0 \end{array}$ | 315.0000 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Energy Manageme nt Systems | CEB0001 | EMS Combination Customers | Square Feet | $\begin{array}{r} 1,911,8 \\ 12.00 \end{array}$ | 981.3116 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Energy Manageme nt Systems | CEE0001 | EMS (Electric Cooling)Electric Customers | Square
 Feet | $\begin{array}{r} 1,444,0 \\ 47.00 \end{array}$ | 962.6345 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting
 Retrofit
 Fixtures | CFE0001 | Interior
 LED/Induction
 Lighting | Watts Remov ed | $\begin{array}{r} 38,085 . \\ 00 \end{array}$ | 4.1600 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting
 Retrofit
 Fixtures | CFE0003 | CFL Replacing MH | Watts Remov ed | $\begin{array}{r} 33,939 . \\ 00 \end{array}$ | 3.6800 | Indoor CFL
 WorkPaper_042712. docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting Retrofit Fixtures | CFE0004 | Exterior Linear
 Fluorescent
 Lighting
 Retrofit | Watts Remov ed | $\begin{array}{r} 466,59 \\ 4.00 \end{array}$ | 3,833.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting Retrofit Fixtures | CFE0005 | Parking Garage LED/Induction Lighting Retrofit | Watts
 Remov
 ed | $\begin{array}{r} 277,00 \\ 7.00 \end{array}$ | 8.7600 | Parking Garage LED-
 Induction - watts
 reduced
 Workpaper.docx | 0.0002 | kWh rounding issue |
 | Business Solutions Prescriptive | Lighting Retrofit Fixtures | CFE0006 | Neon to LED
 Sign Lighting Retrofit (Continuous Operation) | Watts Remov ed | $\begin{array}{r} 1,178.4 \\ 0 \end{array}$ | 8.7600 | Neon to LED
 Workpaper_042912. docx | 0.0000 | No variances |
 | Business Solutions - | Lighting Retrofit | CFE0007 | Interior LED Lighting | Watts Remov | 1,298,4 | 4,160.0000 | Master MEMD; | 0.0000 | No variances |

 EM

 | Prescriptive | Fixtures | | Retrofit | ed | 52.00 | | Commercial | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | Lighting Retrofit Fixtures | CFE0008 | Exterior LED/Induction Lighting Retrofit | Watts Remov ed | $\begin{array}{r} 3,936,7 \\ 98.10 \end{array}$ | 3.8330 | Exterior LED-
 Induction - watts reduced Workpaper.docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting Retrofit Fixtures | CFE0009 | Neon to LED Sign Lighting Retrofit (Commercial Hours) | Watts Remov ed | $\begin{array}{r} 12,074 . \\ 00 \end{array}$ | 3.6800 | Neon to LED
 Workpaper_042912. docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | LED or Induction Fixtures | CFE0010 | LED Replacing Incandescent Candelabra and Globe | Units | 623.00 | 118.0000 | DecorativeLEDWork paper_062613.docx | -5,607.0000 | eTracker reported per unit kWh = 127.0000; should be 118.0000 kWh |
 | Business
 Solutions -
 Prescriptive | LED or Induction Fixtures | CFE0011 | LED Replacing Incandescent BR-Series | Units | $\begin{array}{r} 3,525.0 \\ 0 \end{array}$ | 116.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | T8
 Fluorescen
 t | CFE0012 | 8-foot T12 to Two (2) 4-ft HP/RW T8 | Units | $\begin{array}{r} 4,160.0 \\ 0 \end{array}$ | 39.3000 | Master MEMD; Commercial | 0.0021 | kWh rounding issue |
 | Business
 Solutions -
 Prescriptive | LED or Induction Fixtures | CFE0013 | 4-ft T12 to LED Tube Lights | Units | $\begin{array}{r} 3,442.0 \\ 0 \end{array}$ | 43.2000 | LED Tube Light Workpaper_040613. docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | Furnaces and Heaters | CHC0010 | Infrared Heaters Combination Customers | kBtu/h | $\begin{array}{r} 10,802 . \\ 00 \end{array}$ | 26.3369 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | HVAC
 Controls | CHC0011 | Programmable Thermostat Combination Customers | Square Feet | $\begin{array}{r} 182,77 \\ 5.00 \end{array}$ | 886.0820 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | HVAC Controls | CHC0012 | Guestroom Energy Management Control Combination Customer | Units | 286.00 | 237.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | HVAC
 Controls | CHC0014 | Critical Zone Supply Air Reset Control (Combo) | Tons | 70.00 | 253.6519 | WS MEMD | 0.0000 | No variances |
 | Business Solutions - | HVAC Controls | CHC0015 | Hydronic HVAC Pump | Square Feet | $\begin{array}{r} 602,77 \\ 2.00 \end{array}$ | 0.5205 | Hydronic HVAC Pump Control | 0.0000 | No variances |

 | Prescriptive | | | (Combo) | | | | Workpaper_030811. docx | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | HVAC Controls | CHC0017 | Optimal Start/Stop on Air Handling Units (Combo) | Square
 Feet | $\begin{array}{r} 890,53 \\ 0.00 \end{array}$ | 840.3862 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | HVAC Controls | CHC0018 | Occupancy Sensor Controls on HVAC Units (Combo) | Square
 Feet | $\begin{array}{r} 123,95 \\ 0.00 \end{array}$ | 381.3629 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | DCV and Economize rs | CHC0027 | Demand Control Ventilation Combination Customers | Square
 Feet | $\begin{array}{r} 884,21 \\ 8.00 \end{array}$ | 77.7194 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Unitary/Spl it HVAC | CHC0070 | Occ Sensor For Toilet Rm Exhaust | Units | 2.00 | 94.0000 | CE Work Paper Review- Toilet Exhaust 03082012.docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | Unitary/Spl it HVAC | CHE0001 | $\begin{aligned} & \text { AC }<65,000 \\ & \text { Btuh (} 5.4 \text { tons) } \end{aligned}$ | Tons | 318.08 | 46.9503 | WS MEMD | -0.0001 | kWh rounding issue |
 | Business
 Solutions -
 Prescriptive | Unitary/Spl it HVAC | CHE0003 | AC $>240,000$
 Btuh (20 tons)
 \& <= 760,000
 Btuh (63.3
 tons) | Tons | 920.65 | 44.0911 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Room AC / PTAC | CHE0008 | Package Terminal AC AC >=10\% EER higher than IECC 2006 standard | Tons | 88.75 | 68.3707 | WS MEMD | -0.0001 | kWh rounding issues |
 | Business
 Solutions -
 Prescriptive | Room AC / PTAC | CHE0009 | Package Terminal ACHeat Pump $>=10 \%$ EER higher than IECC 2006 standard | Tons | 20.80 | 226.5647 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Room AC / PTAC | CHE0011 | Ductless Heat Pump | Units | 390.35 | 123.0000 | Ductless AC
 WorkPaper_043013. docx | -43,255.2300 | eTracker reported per unit kWh = 233.8114 and kW |

 $=0.085$ e
 be $\mathrm{kWh}=$
 123.0000 and kW
 $=0.0740$
 For 6 of the 21
 performance kWh
 and kW
 eTracker are
 incorrect

 | $\begin{array}{l}\text { Air-cooled } \\ \text { Chiller - 1.04 } \\ \text { kW/ton IPLV }\end{array}$ | Tons | $\begin{array}{r}4,000.4 \\ 0\end{array}$ | 139.6560 | WS MEMD |
 | :--- | :--- | ---: | :--- | :--- |
 | $\begin{array}{l}\text { Demand } \\ \text { Contro } \\ \text { Ventiation - } \\ \text { Electric } \\ \text { Customers }\end{array}$ | $\begin{array}{l}\text { Square } \\ \text { Feet }\end{array}$ | $\begin{array}{r}1,851,8 \\ 87.00\end{array}$ | -55.1625 | WS MEMD |
 | $\begin{array}{l}\text { AC Units > } \\ 65,000 \text { Btuh } \\ \text { (5.4 tons) and } \\ <=120,000 \\ \text { Btuh (10 tons) }\end{array}$ | Tons | 374.50 | 54.4702 | WS MEMD |
 | $\begin{array}{l}\text { AC Units > } \\ \text { 120,000 Btuh } \\ \text { (10 tons) and } \\ <=240,000 \\ \text { Btuh (20 tons) }\end{array}$ | Tons | 478.50 | 62.5513 | WS MEMD |
 | $\begin{array}{l}\text { Heat Pumps } \\ <=65,000 \\ \text { Btuh (5.4 tons) }\end{array}$ | Tons | 6.00 | 126.2635 | WS MEMD |
 | $\begin{array}{l}\text { Water Cooled } \\ \text { Chillers- } \\ \text { Centrifugal }\end{array}$ | Tons | 960.00 | 129.1580 | WS MEMD |
 | $\begin{array}{l}\text { Water Cooled } \\ \text { Chillers- } \\ \text { Centrifugal } \\ >300 \text { tons and } \\ <=600 \text { tons, } \\ \text { PLV = }\end{array}$ | Tons | $2,075.0$ | 0 | 109.5922 |

 | Business Solutions Prescriptive | Chiller | CHE0012 |
 | :---: | :---: | :---: |
 | Business Solutions Prescriptive | DCV and Economize rs | CHE0027 |
 | Business Solutions Prescriptive | Unitary/Spl it HVAC | CHE0028 |
 | Business Solutions Prescriptive | Unitary/Spl it HVAC | CHE0029 |
 | Business Solutions Prescriptive | Heat Pump | CHE0030 |
 | Business Solutions Prescriptive | Chiller | CHE0037 |
 | Business Solutions Prescriptive | Chiller | CHE0038 |
 | Business Solutions Prescriptive | Chiller | CHE0039 |
 | Business | Chiller | CHE0041 |

 | Solutions Prescriptive | | | Chillers-
 Reciprocating >150 tons and <=300 tons, IPLV = 0.52 | | | | 39 - Chillers.pdf | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business
 Solutions -
 Prescriptive | Chiller | CHE0043 | Air and WaterCooled Chiller Tune-up | Units | 85.00 | 133.7573 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | HVAC Controls | CHE0061 | Air Side Economizer | Tons | 433.00 | 204.7916 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | HVAC Controls | CHE0062 | Hydronic HVAC Pump | Square Feet | $\begin{array}{r} 1,153,4 \\ 56.00 \end{array}$ | 0.5205 | Hydronic HVAC
 Pump Control
 Workpaper_030811. docx | 0.0004 | kWh rounding issue |
 | Business
 Solutions -
 Prescriptive | $\begin{aligned} & \text { Room AC / } \\ & \text { PTAC } \end{aligned}$ | CHE0064 | Ductless Air Conditioning | Units | 6.50 | 123.0000 | Ductless AC
 WorkPaper_043013. docx | 370.7977 | eTracker reported per unit kWh = 65.9542 and kW = 0.0799 ; should be $\mathrm{kWh}=123.0000$ and $\mathrm{kW}=0.0740$ |
 | Business
 Solutions -
 Prescriptive | HVAC Controls | CHE0065 | Chilled Water Reset Retrofit (10 degrees) Electric | Tons | 438.00 | 18.2350 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | HVAC Controls | CHE0067 | Optimal Start/Stop on Air Handling Units (EO) | Square Feet | $\begin{array}{r} 48,923 . \\ 00 \end{array}$ | 753.8879 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | HVAC Controls | CHE0069 | Critical Zone
 Supply Air Reset Control (EO) | Tons | 490.00 | 247.9121 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Furnaces and Heaters | CHE0090 | Programmable Thermostat Electric Customer | Square
 Feet | $\begin{array}{r} 65,690 . \\ 00 \end{array}$ | 736.4690 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | CFL | CLE0001 | CFL Screw in (30 watts or less) | Units | $\begin{array}{r} 6,140.0 \\ 0 \end{array}$ | 156.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | CFL | CLE0002 | CFL Specialty (down-light, 3way, | Units | 77.00 | 202.0000 | Master MEMD; Commercial | 0.0000 | No variances |

 EMI

 | | | | | $\begin{aligned} & \ddot{0} \\ & \stackrel{0}{0} \\ & \stackrel{\omega}{\omega 0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | O | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | O | $\stackrel{\circ}{\circ}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | O | \% |
 | | | | | | | | | | |
 | | $\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{i}{2} \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \stackrel{\text { O}}{\dot{~}} \\ & \stackrel{y}{c} \end{aligned}$ | \circ
 0
 \dot{O}
 in | \circ
 6
 \circ
 - | | $\begin{aligned} & \text { ò } \\ & \stackrel{\sim}{\infty} \end{aligned}$ | | $$ | O ¢ ¢ |
 | | $\begin{aligned} & \dot{c} \\ & \text { ¢i } \\ & \text { ion } \end{aligned}$ | | | $$ | $\begin{aligned} & \stackrel{\circ}{+} \\ & \stackrel{\sim}{\dot{~}} \end{aligned}$ | $\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\dot{j}}{\stackrel{0}{0}} \end{aligned}$ | $\begin{gathered} \stackrel{\circ}{\mathrm{O}} \\ \underset{6}{2} \end{gathered}$ | $\begin{gathered} \mathscr{O}_{\infty}^{\infty} 8 \\ \mathbb{O} \end{gathered}$ | ¢ |
 | | $\stackrel{n}{5}$ | $\stackrel{n}{5}$ | | | $\stackrel{n}{5}$ | $\stackrel{0}{5}$ | $\stackrel{n}{5}$ | $\stackrel{0}{5}$ | |
 | | | | | | | | | | |
 | | $\begin{aligned} & \text { oig } \\ & \text { U } \\ & 0 \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\partial} \\ & \stackrel{\rightharpoonup}{u} \\ & 0 \end{aligned}$ | $\begin{aligned} & \hat{\circ} \\ & \stackrel{\rightharpoonup}{u} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { © } \\ & \stackrel{\rightharpoonup}{u} \\ & \stackrel{3}{0} \end{aligned}$ | $\begin{aligned} & \text { Ò } \\ & \text { OU } \\ & \text { ü } \end{aligned}$ | | | $\begin{aligned} & \hat{0} \\ & \text { O} \\ & \text { Uu } \end{aligned}$ | へّ000 |
 | | | | | | U | | | | ¢ |
 | | | | | | | | | | |

 | | | | ballast retrofit) | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business
 Solutions -
 Prescriptive | Lamp Removal | CLE0029 | Lamp
 Removal:
 Remove 3-foot T12 fluorescent lamp (with T8 ballast retrofit) | Lamps Remov ed | 24.00 | 85.1000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Lamp
 Removal | CLE0030 | Lamp
 Removal:
 Remove 4-foot T12 fluorescent lamp (with T8 ballast retrofit) | Lamps Remov ed | $\begin{array}{r} 12,419 . \\ 00 \end{array}$ | 97.6000 | Master MEMD; Commercial | -449,567.8000 | eTracker reported per unit kWh = 133.8000; should be 97.6000 kwh |
 | Business
 Solutions -
 Prescriptive | Lamp
 Removal | CLE0031 | Lamp
 Removal:
 Remove 8-foot T12 fluorescent lamp (with T8 ballast retrofit) | Lamps Remov ed | $\begin{array}{r} 1,147.0 \\ 0 \end{array}$ | 150.3000 | Master MEMD; Commercial | -30,166.0998 | eTracker reported per unit kWh = 176.6000; should be 150.3000 kwh |
 | Business
 Solutions -
 Prescriptive | Lighting Controls | CLE0033 | Central Lighting Control | Square Feet | $\begin{array}{r} 2,199,3 \\ 92.00 \end{array}$ | 11,500.0000 | Master MEMD; Commercial | 0.0010 | kWh rounding issue |
 | Business
 Solutions -
 Prescriptive | Lighting Controls | CLE0034 | Switching Controls for Multilevel Lighting | Square Feet | $\begin{array}{r} 349,43 \\ 2.00 \end{array}$ | 8,000.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Lighting Controls | CLE0035 | Daylight Sensor controls | Square Feet | $\begin{array}{r} 1,524,9 \\ 33.00 \end{array}$ | 12,100.0000 | Master MEMD; Commercial | 0.0003 | kWh rounding issue |
 | Business Solutions Prescriptive | T8
 Fluorescen
 t | CLE0046 | 8 -FT T12HO to 2 4-FT T8HP | Units | $\begin{array}{r} 10,172 . \\ 00 \end{array}$ | 122.5000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Lighting Controls | CLE0050 | Exterior MultiStep Dimming Occ Sensor | Watts Control led | $\begin{array}{r} 94,524 . \\ 00 \end{array}$ | 1.5330 | Master MEMD; Commercial | 0.0001 | kWh rounding issue |
 | Business
 Solutions -
 Prescriptive | Lighting Controls | CLE0051 | Parking Garage MultiStep Dimming Occ Sensor | Watts Control led | $\begin{array}{r} 67,481 . \\ 00 \end{array}$ | 1.3140 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business | Lighting | CLE0052 | Probe Start to | Watts | 251,51 | 3.6800 | Indoor CFL | 0.0000 | No variances |

 | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 8
 0 | 8
 8 | $\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 0 \end{aligned}$ | 8
 8 | $\begin{aligned} & \bar{O} \\ & \hline \mathbf{O} \end{aligned}$ | 응 | 8
 8 | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{O} \\ & \hline \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$ |

 | | | | | \sum_{i}^{0} $\sum_{i n}^{0}$ 3 | | $\begin{aligned} & \sum_{\sum_{1}^{0}}^{\sum_{3}^{\infty}} \\ & \end{aligned}$ | $\begin{aligned} & \sum_{\sum_{1}^{0}}^{\sum_{3}^{\infty}} \\ & \hline \end{aligned}$ | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | $\begin{aligned} & \text { O} \\ & \text { B } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{6} \\ & \stackrel{6}{-} \end{aligned}$ | | | | $\begin{aligned} & \circ \\ & \stackrel{\circ}{6} \\ & \stackrel{\oplus}{6} \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | \circ
 8
 웅
 N | |
 | $\stackrel{8}{\circ}$ | $\begin{aligned} & \infty \\ & \underset{ల}{\infty} \text { o } \\ & \text { if } \end{aligned}$ | $\begin{aligned} & 0.0 \\ & \stackrel{\circ}{\circ} \\ & \underset{\sim}{i} \end{aligned}$ | | No | $\begin{aligned} & \frac{0}{\dot{O}} \\ & \frac{1}{-} \end{aligned}$ | $\begin{aligned} & \hat{o}^{\circ} \\ & \dot{f} \\ & \underset{\sim}{n} \end{aligned}$ | $\begin{aligned} & \text { ò } \\ & \stackrel{\sim}{\sim} \end{aligned}$ | - | ৪ | $\begin{aligned} & \stackrel{\text { B }}{\text { N }} \\ & \text { N } \end{aligned}$ |
 | | | | | | 모 | 모 | 오 | 모 | 모 | 모 |

 | Pulse Start |
 | :--- |
 | Lighting (Lamp |
 | and Ballast |
 | Retrofit) |
 | LED Replacing |
 | A19 |
 | LED MR16 |
 | Replacing |
 | Halogen MR16 |
 | LED Par |
 | Replacing |
 | Halogen Par |
 | Constant |
 | Volume AHU |
 | to VAV with |
 | Hydronic |
 | Reheat |
 | (Combo) |
 | VFD for |
 | Process |
 | Pumping, <= |
 | 50 HP |
 | VFD/HVAC |
 | Fans and |
 | Pumps < |
 | 100HP - |
 | Electric |
 | Customers |
 | VFD/Chiller |
 | Motors - |
 | Electric |
 | Customers |
 | VFD on |
 | Process |
 | Pumps (50- |
 | 250 HP) |
 | |
 | EC Motors |
 | |
 | VFD on |
 | Process Fans |
 | (< 50 HP) |

 | Business
 Solutions -
 Prescriptive | LED or Induction Fixtures | CLE0053 |
 | :---: | :---: | :---: |
 | Business Solutions Prescriptive | LED or Induction Fixtures | CLE0054 |
 | Business
 Solutions -
 Prescriptive | LED or Induction Fixtures | CLE0055 |
 | Business Solutions Prescriptive | Variable Frequency Drives | CMC0002 |
 | Business Solutions Prescriptive | Variable Frequency Drives | CME0006 |
 | Business
 Solutions -
 Prescriptive | Variable Frequency Drives | CME0007 |
 | Business Solutions Prescriptive | Variable Frequency Drives | CME0009 |
 | Business Solutions Prescriptive | Custom | CME0013 |
 | Business Solutions Prescriptive | Variable Frequency Drives | CME0014 |
 | Business Solutions Prescriptive | Variable Frequency Drives | CME0015 |

 | Business Solutions Prescriptive | Custom | CME0019 | VFDs for Process Fixed Speed Control (Throttled; <= 50 hz) | HP | 90.00 | 625.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | Variable
 Frequency Drives | CME0022 | Constant
 Volume AHU
 to VAV with
 Hydronic
 Reheat
 (Electric) | Square
 Feet | $\begin{array}{r} 228,09 \\ 7.00 \end{array}$ | 3,974.6476 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Variable Frequency Drives | CME0025 | VFD on HVAC
 Fans (<100 HP) | HP | $\begin{array}{r} 1,727.2 \\ 5 \end{array}$ | 1,012.1021 | WS MEMD | -0.0004 | kWh rounding issues |
 | Business Solutions Prescriptive | Variable
 Frequency Drives | CME0026 | VFD on HVAC Fans (100HP 250HP) | HP | 100.00 | 674.0385 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Variable Frequency Drives | CME0027 | VFD on HVAC
 Pumps (< 100 HP) | HP | 969.80 | 2,499.2531 | WS MEMD | -0.0002 | kWh rounding issues |
 | Business Solutions Prescriptive | Energy Recovery | CRC0001 | Enthalpy
 Wheels ERUs | CFM | $\begin{array}{r} 1,600.0 \\ 0 \end{array}$ | -18.3126 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Energy Recovery | CRC0002 | Fixed-Plate Air to Air ERUs | CFM | $\begin{array}{r} 22,475 . \\ 00 \end{array}$ | -5.1404 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Energy Recovery | CRE0001 | Laboratory
 Fume-Hood Ventilation Reduction (EO) | CFM | $\begin{array}{r} 9,345.0 \\ 0 \end{array}$ | 9.4054 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerati on | CSC0030 | Reach-In Refrigerated Case Door; Low Temp Combination Customer | Linear Feet | 148.00 | 1,454.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerati on | CSC0031 | Temperature and Optical Sensor on Exhaust Combo | CFM | $\begin{array}{r} 19,750 . \\ 00 \end{array}$ | 1.0067 | WS MEMD | 0.0000 | No variances |
 | Business | Other | CSC0039 | Roof Insulation | Square | 8,504.0 | 0.2001 | WS MEMD | 0.0000 | No variances |

 | | | | | $\begin{aligned} & \mathscr{0} \\ & 0 \\ & \text { © } \\ & \text {.00 } \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$ | | $\begin{aligned} & \mathscr{0} \\ & 0 \\ & \text { © } \\ & \text {.W } \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \mathscr{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\widetilde{N}} \\ & 0 \\ & 0 \end{aligned}$ | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline \mathrm{O} \\ & \text { O } \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 0 \end{aligned}$ | \% | O |

 | - Attic Roof (Combo) | Feet | 0 | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Roof Insulation - Flat Roof (Combo) | Square Feet | $\begin{array}{r} 212,78 \\ 0.00 \end{array}$ | 78.3786 | WS MEMD |
 | Wall Insulation
 - Combination Customer | Square Feet | $\begin{array}{r} 11,994 . \\ 00 \end{array}$ | 680.8227 | WS MEMD |
 | Beverage
 Vending
 Machine
 Controller | Units | 22.00 | 800.0000 | Master MEMD; Commercial |
 | Guestroom
 Energy
 Management
 Control
 (electric heat) | Units | 312.00 | 1,114.0000 | Master MEMD; Commercial |
 | Energy Efficient Ice Machines less than 500 lbs | Units | 3.00 | 599.0000 | Master MEMD; Commercial |
 | Energy Efficient Ice Machines 5001000 lbs | Units | 8.00 | 892.0000 | Master MEMD; Commercial |
 | Energy
 Efficient Ice
 Machines
 1000-1500 lbs | Units | 2.00 | 1,286.0000 | Master MEMD; Commercial |
 | Night Covers | Linear
 Feet | 786.00 | 16.9514 | WS MEMD |
 | Anti-Sweat
 Heater Controls | Units | $\begin{array}{r} 2,406.0 \\ 0 \end{array}$ | 1,489.0000 | Master MEMD; Commercial |
 | LED Lighting for Refrigeration Cases | Units | $\begin{array}{r} 42,782 . \\ 00 \end{array}$ | 460.0000 | Master MEMD; Commercial |
 | Network
 Power | PCs Control | $\begin{array}{r} 1,603.0 \\ 0 \end{array}$ | 135.0000 | Master MEMD; Commercial |

 | 0 0 0 0 0 0 | $\begin{aligned} & \circ \\ & \stackrel{0}{3} \\ & \hline 0 \times 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \bar{\circ} \\ & \text { OU } \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \text { ō } \\ & \text { OW } \\ & \text { Uu } \end{aligned}$ | $\begin{aligned} & \text { ơ } \\ & \text { OW0 } \\ & \text { Uu } \end{aligned}$ | O O O 0 0 | $\begin{aligned} & \text { ٌo } \\ & \text { OW } \\ & \text { U0 } \end{aligned}$ | | $\stackrel{7}{\circ}$ $\stackrel{\text { W }}{0}$ 0 | $\begin{aligned} & \text { M } \\ & \stackrel{0}{U} \\ & 0 \end{aligned}$ | 0
 8
 0
 0
 0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\begin{aligned} & \text { む } \\ & \stackrel{ \pm}{0} \end{aligned}$ | $\begin{aligned} & \pm \\ & \stackrel{\oplus}{0} \end{aligned}$ | | | | | | | | | ¢ |

 Solutions Solutions -
 Prescriptive
 S.

 Prescriptive
 Business

 Business
 Solutions -
 Prescriptive Business
 Solutions -
 Prescriptive

 | ∞ |
 | :--- |
 | $\stackrel{\infty}{0}$ |
 | $\stackrel{-}{\omega}$ |
 | |

 $\begin{array}{cc}0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$

 Business
 Solutions A-12

 | Prescriptive | | | Management Software | led | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | Kitchen and Refrigerati on | CSE0020 | Case EC
 Motor | Units | $\begin{array}{r} 1,706.0 \\ 0 \end{array}$ | 824.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions Prescriptive | Kitchen and Refrigerati on | CSE0021 | LED Lighting
 Occupancy
 Sensor for
 Refrigeration
 Cases | Units | $\begin{array}{r} 1,020.0 \\ 0 \end{array}$ | 195.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerati on | CSE0022 | A/C Reduction From Lighting Reduction (20F to 0F) | Watts Remov ed | $\begin{array}{r} 9,422.0 \\ 0 \end{array}$ | 1.7900 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerati on | CSE0023 | A/C Reduction From Lighting Reduction (OF to 20F) | Watts
 Remov ed | $\begin{array}{r} 6,600.0 \\ 0 \end{array}$ | 1.1600 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerati on | CSE0024 | A/C Reduction From Lighting Reduction (20F to 40F) | Watts Remov ed | $\begin{array}{r} 9,536.0 \\ 0 \end{array}$ | 0.7600 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerati on | CSE0026 | Evaporator Fan Control (EC motor) | Units | 33.00 | 330.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerati on | CSE0027 | Reach-In
 Refrigerated
 Case Door;
 Medium Temp
 - Electric
 Customers | Linear
 Feet | 79.00 | 574.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen
 and
 Refrigerati
 on | CSE0028 | Electric Dishwasher (High Temp; Under Counter) | Units | 3.00 | 1,136.0000 | High Efficiency Dishwasher_011813. docx | -0.0723 | eTracker reported per unit kWh = 1136.0241; should be 1136.0000 |
 | Business Solutions Prescriptive | Other | CSE0042 | UPS - Single Normal Mode $\mathrm{VI}(\mathrm{P}>10 \mathrm{~kW})$ | kW | 960.00 | 92.2000 | UPS
 Workpaper_032713. docx | 9,495.9360 | eTracker reported per unit kWh = 82.3084; should be 92.2000 kWh |
 | Business | Kitchen | CSE0043 | Night Covers | Linear | 204.00 | 16.6171 | WS MEMD | 0.0000 | No variances |

 | Solutions Prescriptive | and
 Refrigerati on | | (Combo) | Feet | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | Other | CSE0045 | Battery Charger Continuous | Units | 42.00 | 3,638.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Other | CSE0046 | Battery
 Charger-1
 Shift/Day | Units | 1.00 | 1,460.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Kitchen and Refrigerati on | CSE0078 | Electric Dishwasher (High Temp; Multi Tank) | Units | 1.00 | 7,778.0000 | High Efficiency Dishwasher_011813. docx | 0.3873 | eTracker reported per unit kWh = 7777.6127; should be 7778.0000 kWh |
 | Business
 Solutions -
 Prescriptive | Kitchen and Refrigerati on | CSE0079 | Electric Dishwasher (Low Temp; Single Tank) | Units | 1.00 | 3,017.0000 | High Efficiency Dishwasher_011813. docx | 0.0193 | eTracker reported per unit kWh = 3016.9807; should be 3017.0000 kWh |
 | Business
 Solutions -
 Prescriptive | Kitchen
 and
 Refrigerati
 on | CSE0080 | Electric Dishwasher (High Temp; Single Tank) | Units | 1.00 | 7,120.0000 | High Efficiency Dishwasher_011813. docx | -0.2650 | eTracker reported per unit kWh = 7120.2650; should be 7120.0000 kWh |
 | Business
 Solutions -
 Prescriptive | Kitchen
 and
 Refrigerati
 on | CSE0082 | Electric Dishwasher (Low Temp; Door) | Units | 1.00 | 3,567.0000 | High Efficiency Dishwasher_011813. docx | 0.1813 | eTracker reported per unit kWh = 3566.8187; should be 3567.0000 kWh |
 | Business
 Solutions -
 Prescriptive | Kitchen and Refrigerati on | CSE0089 | Walk-in EC Motor replacing nonEC Motor | Units | $\begin{array}{r} 1,028.0 \\ 0 \end{array}$ | 1,365.0000 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | C\&I
 Waterheati ng | $\begin{aligned} & \text { CWE001 } \\ & 0 \end{aligned}$ | Pipe Wrap Domestic Hot Water conditioned space (120F) | Linear Feet | 594.00 | 2.8550 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | C\&I
 Waterheati ng | $\begin{aligned} & \text { CWG001 } \\ & 2 \end{aligned}$ | Pipe Wrap -
 Domestic Hot
 Water -
 conditioned
 space (140F) | Linear Feet | 42.00 | 4.2060 | Master MEMD; Commercial | 0.0000 | No variances |
 | New
 Construction
 - Major
 Renovation | Compress ed Air | CAE0001 | VSD Air Compressor | HP | 170.00 | 1,390.0000 | Master MEMD; Commercial | 0.0000 | No variances |

 | 2013 | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | New
 Construction
 - Major
 Renovation
 2013 | Compress ed Air | CAE0002 | Refrigerated Cycling Thermal Mass Air Dryer | SCFM | $\begin{array}{r} 1,600.0 \\ 0 \end{array}$ | 5.2420 | Master MEMD; Commercial | 0.0000 | No variances |
 | New
 Construction
 - Major
 Renovation
 2013 | Compress ed Air | CAE0009 | Compressed Air Pressure Flow Controller | HP | 60.00 | 73.9400 | Master MEMD; Commercial | 0.0000 | No variances |
 | New
 Construction
 - Major
 Renovation
 2013 | Furnaces and Heaters | CHC0010 | Infrared
 Heaters Combination Customers | kBtu/h | $\begin{array}{r} 4,685.0 \\ 0 \end{array}$ | 26.3369 | WS MEMD | 0.0000 | No variances |
 | New
 Construction
 - Major
 Renovation
 2013 | DCV and Economize rs | CHC0027 | Demand Control Ventilation Combination Customers | Square Feet | $\begin{array}{r} 22,798 . \\ 00 \end{array}$ | 77.7194 | WS MEMD | 0.0000 | No variances |
 | New
 Construction
 - Major Renovation 2013 | Unitary/Spl it HVAC | CHE0001 | $\begin{aligned} & \mathrm{AC}<65,000 \\ & \text { Btuh (} 5.4 \text { tons) } \end{aligned}$ | Tons | 98.12 | 46.9503 | WS MEMD | -0.0001 | kWh rounding issues |
 | New Construction - Major Renovation 2013 | Chiller | CHE0012 | Air-cooled Chiller-1.04 kW/ton IPLV | Tons | 726.50 | 139.6560 | WS MEMD | -87.3852 | For 1 of the 5 projects the perfomance kWh calculations in eTracker are incorrect |
 | New
 Construction
 - Major
 Renovation
 2013 | DCV and Economize rs | CHE0027 | Demand Control Ventilation Electric Customers | Square
 Feet | $\begin{array}{r} 25,170 . \\ 00 \end{array}$ | -55.1625 | WS MEMD | 0.0000 | No variances |
 | New
 Construction
 - Major
 Renovation
 2013 | Unitary/Spl it HVAC | CHE0028 | AC Units > 65,000 Btuh (5.4 tons) and <=120,000 Btuh (10 tons) | Tons | 95.04 | 54.4702 | WS MEMD | 0.0000 | No variances |
 | New Construction | Unitary/Spl it HVAC | CHE0029 | AC Units > 120,000 Btuh | Tons | 178.58 | 62.5513 | WS MEMD | 0.0001 | kWh rounding issue |

 2013 Certification Appendices

 | | $\begin{aligned} & \text { e } \\ & \stackrel{0}{0} \\ & \stackrel{W}{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$ | | $\begin{aligned} & \mathscr{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$ | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | $\stackrel{8}{\circ}$ | $\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \bar{\circ} \mathrm{O} \\ & \text { O } \end{aligned}$ | N
 0 | 8
 8 | $\begin{aligned} & \mathrm{O} \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$ |
 | | $\begin{aligned} & \sum_{i}^{\infty} \\ & \sum_{\infty}^{\infty} \\ & \vdots \end{aligned}$ | $\begin{gathered} \sum_{i}^{0} \\ \sum_{\infty}^{\infty} \\ \vdots \end{gathered}$ | \sum_{i}^{0} $\sum_{i n}^{0}$ 3 | | $\begin{aligned} & \sum_{i n}^{0} \\ & \sum_{\infty}^{\infty} \\ & \vdots \end{aligned}$ | | | |
 | | $\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & \text { ö } \\ & \text { on } \\ & \text { © } \end{aligned}$ | N N̈ Ö 응 | | $\begin{aligned} & \bar{ल} \\ & \stackrel{N}{0} \\ & \dot{\infty} \\ & \hline \end{aligned}$ | 8
 0
 0
 0
 0 | $\begin{aligned} & \text { O} \\ & \hline \mathbf{O} \\ & \dot{\circ} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\circ}{\circ} \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \text { io } \end{aligned}$ |
 | | $$ | $\begin{aligned} & 8 \\ & \hline 0 \\ & \hline 8 \end{aligned}$ | $\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \text { N } \end{aligned}$ | | $\stackrel{\text { O}}{\stackrel{0}{0}}$ | $\stackrel{\circ}{\mathrm{o}}$ | $\stackrel{\circ}{\circ}$ | O N N |
 | | $\stackrel{\bigcirc}{\circ}$ | $\stackrel{\bigcirc}{\circ}$ | $\stackrel{\bigcirc}{\circ}$ | | 오 | | $\stackrel{9}{5}$ | ¢ |
 | | | | | | | | | |
 | | $\begin{aligned} & \overline{0} \\ & \text { O} \\ & \text { 픈 } \end{aligned}$ | $\begin{aligned} & \text { M } \\ & \text { O} \\ & \text { 포 } \end{aligned}$ | | | $\begin{aligned} & \text { O} \\ & \mathbf{S}_{0}^{W} \end{aligned}$ | 员 | - $\stackrel{\text { O}}{\text { un }}$ 0 | ¢ ¢ Wु |
 | | | | | | | | | |
 | | | | | | | | | |

 A-16
 \sum_{i}^{\sum}

 | 2013 | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | New
 Construction
 - Major
 Renovation
 2013 | Other | CSE0017 | Lighting Power Density | Watts Remov ed | $\begin{array}{r} 1,096,8 \\ 56.00 \end{array}$ | 3.6800 | Lighting Power Density Workpaper 032713.docx | 0.0000 | No variances |
 | New
 Construction
 - Major
 Renovation
 2013 | Other | CSE0042 | UPS - Single Normal Mode VI $(\mathrm{P}>10 \mathrm{~kW})$ | kW | 34.74 | 92.2000 | UPS
 Workpaper_032713. docx | 343.6342 | eTracker reported per unit kWh = 82.3084; should be 92.2000 kWh |
 | New
 Construction
 - Major
 Renovation
 2013 | Other | CSE0049 | Lighting Power Density (Exterior) | Watts
 Remov ed | $\begin{array}{r} 213,06 \\ 6.00 \end{array}$ | 3.6800 | Lighting Power Density Workpaper 032713.docx | -32,599.0980 | eTracker reported per unit kWh = 3.8830; should be 3.6800 kWh |
 | New
 Construction
 - Major
 Renovation
 2013 | Kitchen and Refrigerati on | CSE0079 | Electric Dishwasher (Low Temp; Single Tank) | Units | 1.00 | 3,017.0000 | High Efficiency Dishwasher_011813. docx | 0.0193 | eTracker reported per unit kWh = 3016.9807; should be 3017.0000 kWh |
 | New
 Construction
 - Whole Building | NEW CONSTRU CTION | CNE0001 | Design Incentive Building Owner | Units | 5.00 | 0.0000 | Custom calculated | 0.0000 | No variances |
 | TOTAL | | | | | | | | -552,996.5063 | |

 | Program | End Use | Measure Code | Measure Description | Units | Install Quantity | MEMD or
 Workpap er PerUnit kW Savings | Deemed Source | Effect on Reported kW | Variance Description |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | BOC | Other | CSC0042 | BOC (Combo Customer) | Units | 11.00 | 2.6866 | Master MEMD; Commercial | 0.0000 | No variances |
 | BOC | Other | CSE0090 | BOC (Electric Customer) | Units | 12.00 | 2.6866 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions Custom | Custom | CBE0001 | Custom Electric Program | Units | 44.00 | 0.0000 | Custom calculated | 0.0000 | No variances |
 | Business
 Solutions Custom | Custom | CJE0001 | Lumens per Watt Improvement per Year | kWh | 54.00 | 0.0000 | Custom calculated | 0.0000 | No variances |
 | Business
 Solutions Custom | Custom | CJE0002 | Energy Conservation Improvement per Year | kWh | 14.00 | 0.0000 | Custom calculated | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Compres sed Air | CAE0001 | VSD Air Compressor | HP | 2,050.00 | 0.1100 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Compres sed Air | CAE0002 | Refrigerated Cycling Thermal Mass Air Dryer | SCFM | 10,800.00 | 0.0008 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions Prescriptive | Compres sed Air | CAE0004 | Low-Pressure Drop Air Filter | SCFM | 800.00 | 0.0035 | CA-Low pressure drop filter Workpaper042412.docx | 0.3200 | eTtracker reported per unit kW = 0.0031; should be 0.0035 kW |
 | Business Solutions Prescriptive | Compres sed Air | CAE0005 | Zero Loss Condensate Drain | Units | 20.00 | 15.9200 | CA-NoLossDrain Workpaper042412.docx | 32.4000 | eTtracker reported per unit kW = 14.3000; should be 15.9200 kW |
 | Business Solutions Prescriptive | Compres sed Air | CAE0007 | Compressed Air Energy Audit | Units | 5,263.19 | 0.0865 | Master MEMD; Commercial | 2.5934 | eTracker reported incorrect kW savings for 18 projects (values vary) |
 | Business
 Solutions Prescriptive | Compres sed Air | CAE0008 | Air Compressor Outdoor Air Intake | HP | 100.00 | 0.0005 | CA Outside Air Intake
 Workpaper_04281
 2.docx | 0.0000 | No variances |

 A-18

 | Business Solutions Prescriptive | Compres sed Air | CAE0009 | Compressed Air Pressure Flow Controller | HP | 275.00 | 0.0103 | Master MEMD; Commercial | 0.0000 | No variances |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | Compres sed Air | CAE0011 | Refrigerated Cycling Digital Scroll | SCFM | 1,000.00 | 0.0026 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | BLDG Envelope | CBC0001 | Window Reduction | $\begin{aligned} & \text { Squar } \\ & \text { e } \\ & \text { Feet } \end{aligned}$ | 1,421.00 | 0.3840 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Energy Managem ent Systems | CEB0001 | EMS - Combination Customers | $\begin{aligned} & \text { Squar } \\ & \text { e } \\ & \text { Feet } \end{aligned}$ | $\begin{array}{r} 1,911,812 . \\ 00 \end{array}$ | 0.1911 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Energy Managem ent Systems | CEE0001 | EMS (Electric Cooling)Electric Customers | $\begin{aligned} & \text { Squar } \\ & \text { e } \\ & \text { Feet } \end{aligned}$ | $\begin{array}{r} \text { 1,444,047. } \\ 00 \end{array}$ | 0.1545 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting Retrofit Fixtures | CFE0001 | Interior LED/Induction Lighting | Watts Remo ved | 38,085.00 | 0.0010 | Master MEMD; Commercial | 3.8085 | eTracker reported per unit kW = 0.0009 ; should be using 0.0010 kW |
 | Business Solutions Prescriptive | Lighting Retrofit Fixtures | CFE0003 | CFL Replacing MH | Watts Remo ved | 33,939.00 | 0.0009 | Indoor CFL
 WorkPaper_04271 2.docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting Retrofit Fixtures | CFE0005 | Parking Garage LED/Induction Lighting Retrofit | Watts Remo ved | 277,007.00 | 0.0010 | ParkingGarage LED-Induction watts reduced Workpaper.docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting Retrofit Fixtures | CFE0006 | Neon to LED Sign Lighting Retrofit (Continuous Operation) | Watts Remo ved | 1,178.40 | 0.0010 | Neon to LED
 Workpaper_04291
 2.docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting
 Retrofit
 Fixtures | CFE0007 | Interior LED Lighting Retrofit | Watts Remo ved | $\begin{array}{r} \text { 1,298,452. } \\ 00 \end{array}$ | 0.9500 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting Retrofit Fixtures | CFE0009 | Neon to LED Sign Lighting Retrofit (Commercial Hours) | Watts Remo ved | 12,074.00 | 0.0009 | Neon to LED
 Workpaper_04291 2.docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | LED or Induction Fixtures | CFE0010 | LED Replacing Incandescent Candelabra and Globe | Units | 623.00 | 0.0289 | DecorativeLEDWo rkpaper_062613.d ocx | -1.3706 | eTracker reported per unit kW = 0.0289; should be 0.0289 kW |
 | Business | LED or | CFE0011 | LED Replacing | Units | 3,525.00 | 0.0257 | Master MEMD; | -9.5175 | eTtracker reported |

 | | | | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | $\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & \hline \end{aligned}$ | $\stackrel{\text { N}}{\substack{\text { N}}}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline \text { O} \\ & \hline \text { O } \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline \text { O} \\ & \hline \text { O } \end{aligned}$ | $\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$ | ¢ | 80 |

 | | | | $\begin{aligned} & \sum_{i}^{0} \\ & \sum_{\infty}^{\infty} \\ & \vdots \end{aligned}$ | $\begin{aligned} & \sum_{\sum_{1}^{0}}^{\substack{\infty}} \\ & 3 \end{aligned}$ | | $\sum_{\substack{\infty}}^{\substack{\infty}}$ | $\sum_{\substack{\infty}}^{\infty}$ | $\sum_{\sum_{i}^{\infty}}^{\infty}$ | $\begin{aligned} & \sum_{i n}^{0} \\ & \sum_{i n}^{n} \\ & 3 \end{aligned}$ | $\begin{aligned} & \sum_{i n}^{0} \\ & \sum_{n}^{\infty} \\ & \vdots \end{aligned}$ | $\underset{\substack{0}}{\substack{0}}$ | $\begin{aligned} & \sum_{i}^{\infty} \\ & \sum_{\infty}^{\infty} \\ & \vdots \end{aligned}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

 $$
 \begin{aligned}
 & \text { Incandescent BR- } \\
 & \text { Series } \\
 & \text { 8-foot T12 to Two (2) 4- } \\
 & \text { ft HP/RW T8 } \\
 & \text { 4-ft T12 to LED Tube } \\
 & \text { Lights } \\
 & \text { Infrared Heaters - } \\
 & \text { Combination } \\
 & \text { Customers } \\
 & \text { Programmable } \\
 & \text { Thermostat - } \\
 & \text { Combination } \\
 & \text { Customers } \\
 & \text { Guestroom Energy } \\
 & \text { Management Control - } \\
 & \text { Combination Customer } \\
 & \text { Critical Zone Supply Air } \\
 & \text { Reset Control (Combo) } \\
 & \text { Optimal Start/Stop on } \\
 & \text { Air Handling Units } \\
 & \text { (Combo) } \\
 & \text { Demand Control } \\
 & \text { Ventilation - } \\
 & \text { Combination } \\
 & \text { Customers } \\
 & \text { AC < 65,000 Btuh (5.4 } \\
 & \text { tons) } \\
 & \text { AC > 240,000 Btuh (20 } \\
 & \text { tons) \& }=760,000 \\
 & \text { Btuh (63.3 tons) } \\
 & \hline \text { Package Terminal AC - } \\
 & \text { AC >=10\% EER higher } \\
 & \text { than IECC 2006 } \\
 & \text { standard } \\
 & \text { Package Terminal AC- } \\
 & \text { Heat Pump >=10\% } \\
 & \text { EER higher than IECC } \\
 & \hline
 \end{aligned}
 $$

 | $4,160.00$ | 0.0095 |
 | :---: | :---: |
 | $3,442.00$ | 0.0106 |
 | $10,802.00$ | 0.0060 |
 | $182,775.00$ | -0.0558 |
 | 286.00 | 0.0930 |
 | 70.00 | -0.0012 |
 | $890,530.00$ | 0.0564 |
 | $884,218.00$ | 0.1354 |
 | 318.08 | 0.0616 |
 | 88.75 | 0.0791 |
 | | 0.0835 |
 | | |
 | | |
 | | |

 | $\begin{aligned} & \text { Qu } \\ & \text { üu } \end{aligned}$ | ח $\stackrel{m}{8}$ Ü | \circ
 8
 0
 0
 0 | $\stackrel{7}{8}$
 0
 1
 1 | N
 0
 0
 0
 0 | | N

 $\stackrel{1}{0}$ | $\begin{aligned} & \text { N} \\ & \text { O} \\ & \text { O} \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \bar{O} \\ & \text { O} \\ & \text { ָَ } \end{aligned}$ | $\begin{aligned} & \text { OO } \\ & \text { O} \\ & \text { 프 } \end{aligned}$ | | \% |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

 | | | | | | | | | | | | $\begin{aligned} & 0 \\ & \mathbb{4} \\ & \text { E } \\ & \text { O } \\ & \text { O} \end{aligned}$ | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

 | EMI |
 | :--- |
 | |
 | Solutions - |
 | Prescriptive |
 | Business |
 | Solutions - |
 | Prescriptive |
 | Business |
 | Solutions - |
 | Prescriptive |
 | Business |
 | Solutions - |
 | Prescriptive |
 | Business |
 | Solutions - |
 | Prescriptive |
 | Business |
 | Solutions - |
 | Prescriptive |
 | Business |
 | Solutions - |
 | Prescriptive |
 | Business |
 | Solutions - |
 | Prescriptive |
 | Business |
 | Solutions - |
 | Prescriptive |
 | Business |
 | Solutions - |
 | Prescriptive |
 | Business |
 | Solutions - |
 | Prescriptive |
 | Business |
 | Solutions - |
 | Prescriptive |
 | |
 | Business |
 | Solutions - |

 | Prescriptive | | | 2006 standard | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business
 Solutions -
 Prescriptive | Room AC
 / PTAC | CHE0011 | Ductless Heat Pump | Units | 390.35 | 0.0740 | Ductless AC
 WorkPaper_04301
 3.docx | -4.3719 | eTracker reported per unit kW = 0.0852 ; should be $\mathrm{kW}=0.0740$ |
 | Business Solutions Prescriptive | Chiller | CHE0012 | Air-cooled Chiller-1.04 kW/ton IPLV | Tons | 4,000.40 | 0.0575 | WS MEMD | -0.0384 | For 6 of the 21 projects the perfomance kW calculations in eTracker are incorrect |
 | Business
 Solutions -
 Prescriptive | DCV and Economiz ers | CHE0027 | Demand Control Ventilation - Electric Customers | $\begin{aligned} & \text { Squar } \\ & \text { e } \\ & \text { Feet } \end{aligned}$ | $\begin{array}{r} 1,851,887 . \\ 00 \end{array}$ | 0.0533 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Unitary/S plit HVAC | CHE0028 | ```AC Units > 65,000 Btuh (5.4 tons) and < =120,000 Btuh (10 tons)``` | Tons | 374.50 | 0.0669 | WS MEMD | -0.0002 | kW rounding issue |
 | Business
 Solutions -
 Prescriptive | Unitary/S plit HVAC | CHE0029 | AC Units > 120,000 Btuh (10 tons) and <= 240,000 Btuh (20 tons) | Tons | 478.50 | 0.0757 | WS MEMD | -0.0004 | kW rounding issues |
 | Business
 Solutions -
 Prescriptive | Heat Pump | CHE0030 | $\begin{aligned} & \text { Heat Pumps }<=65,000 \\ & \text { Btuh (} 5.4 \text { tons) } \end{aligned}$ | Tons | 6.00 | 0.0863 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Chiller | CHE0037 | Water Cooled ChillersCentrifugal | Tons | 960.00 | 0.0433 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Chiller | CHE0038 | Water Cooled ChillersCentrifugal >300 tons and $<=600$ tons, IPLV $=0.49$ | Tons | 2,075.00 | 0.0540 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Chiller | CHE0039 | Water-Cooled ChillersCentrifrugal >600 tons, IPLV $=0.49$ | Tons | 2,100.00 | 0.0471 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Chiller | CHE0041 | Water-Cooled ChillersReciprocating >150 tons and <=300 tons, IPLV = 0.52 | Tons | 220.00 | 0.0666 | CHE0012 2137
 3839 - Chillers.pdf | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Chiller | CHE0043 | Air and Water-Cooled Chiller Tune-up | Units | 85.00 | 0.0629 | WS MEMD | 0.0000 | No variances |
 | Business Solutions - | HVAC | CHE0061 | Air Side Economizer | Tons | 433.00 | -0.0008 | WS MEMD | 0.0000 | No variances |

 Appendix A: Savings Values of Validated Measures

 | Prescriptive | Controls | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | Room AC / PTAC | CHE0064 | Ductless Air Conditioning | Units | 6.50 | 0.0740 | Ductless AC
 WorkPaper_04301
 3.docx | -0.0383 | eTracker reported per unit kW = 0.0799 ; should be $\mathrm{kW}=0.0740$ |
 | Business Solutions Prescriptive | HVAC Controls | CHE0065 | Chilled Water Reset
 Retrofit (10 degrees) -
 Electric | Tons | 438.00 | -0.0179 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | HVAC Controls | CHE0067 | Optimal Start/Stop on Air Handling Units (EO) | Squar
 e
 Feet | 48,923.00 | 0.0515 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | HVAC Controls | CHE0069 | Critical Zone Supply Air Reset Control (EO) | Tons | 490.00 | -0.0020 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Furnaces and Heaters | CHE0090 | Programmable
 Thermostat - Electric Customer | Squar
 e
 Feet | 65,690.00 | -0.1147 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | CFL | CLE0001 | CFL Screw in (30 watts or less) | Units | 6,140.00 | 0.0382 | Master MEMD; Commercial | -25.7880 | eTracker reported 0.0424 kW ; should be 0.0382 kW |
 | Business Solutions Prescriptive | CFL | CLE0002 | CFL Specialty (downlight, 3-way, dimmable) | Units | 77.00 | 0.0494 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | HP or RW Fluoresce nt | CLE0009 | 4-foot Standard T8 to Reduced Wattage T8 (lamp only) | Units | 59,046.00 | 0.0036 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Exit Signs | CLE0014 | LED, T-1, or
 Electroluminescent Exit Signs | Units | 1,795.00 | 0.0230 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting Controls | CLE0017 | Lighting Occupancy Sensors | Watts Contr olled | $\begin{array}{r} 2,902,463 . \\ 00 \end{array}$ | 0.2700 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | T8/T5
 Fixture | CLE0018 | New T8/T5 Fixture (Includes HID to Fluorescent conversions) | Watts
 Remo ved | $\begin{array}{r} 9,003,551 . \\ 00 \end{array}$ | 0.9500 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | CFL | CLE0020 | Compact Fluorescents:
 Screw-in, 31-115 W | Units | 284.00 | 0.1215 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | T8
 Fluoresce
 nt | CLE0023 | T12 to Standard T8: 2foot lamp and ballast upgrade | Units | 1,019.00 | 0.0068 | Master MEMD; Commercial | 0.0000 | No variances |

 | Business Solutions Prescriptive | T8
 Fluoresce nt | CLE0024 | T12 to Standard T8: 3foot lamp and ballast upgrade | Units | 679.00 | 0.0099 | Master MEMD; Commercial | 0.0000 | No variances |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business
 Solutions -
 Prescriptive | HP or RW Fluoresce nt | CLE0027 | High Performance or Reduced Wattage T8: HP 4-foot lamp and ballast upgrade | Units | 96,863.00 | 0.0072 | Master MEMD; Commercial | 19.3726 | eTracker reported per unit kW = 0.0070; should be 0.0072 kW |
 | Business
 Solutions -
 Prescriptive | Lamp
 Removal | CLE0028 | Lamp Removal:
 Remove 2-foot T12 fluorescent lamp (with T8 ballast retrofit) | Lamp s Remo ved | 236.00 | 0.0230 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Lamp
 Removal | CLE0029 | Lamp Removal: Remove 3-foot T12 fluorescent lamp (with T8 ballast retrofit) | Lamp s Remo ved | 24.00 | 0.0210 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Lamp
 Removal | CLE0030 | Lamp Removal:
 Remove 4-foot T12 fluorescent lamp (with T8 ballast retrofit) | Lamp
 S
 Remo ved | 12,419.00 | 0.0243 | Master MEMD; Commercial | -95.6263 | eTracker reported per unit kW = 0.0320; should be 0.0243 kW |
 | Business
 Solutions -
 Prescriptive | Lamp Removal | CLE0031 | Lamp Removal:
 Remove 8-foot T12 fluorescent lamp (with T8 ballast retrofit) | Lamp s Remo ved | 1,147.00 | 0.0369 | Master MEMD; Commercial | -6.9967 | eTracker reported per unit kW = 0.0430; should be 0.0369 kW |
 | Business
 Solutions -
 Prescriptive | Lighting Controls | CLE0033 | Central Lighting Control | $\begin{aligned} & \text { Squar } \\ & \text { e } \\ & \text { Feet } \end{aligned}$ | $\begin{array}{r} \text { 2,199,392. } \\ 00 \end{array}$ | 2.8080 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting
 Controls | CLE0034 | Switching Controls for Multilevel Lighting | Squar
 e
 Feet | 349,432.00 | 2.1960 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Lighting Controls | CLE0035 | Daylight Sensor controls | Squar
 e
 Feet | $\begin{array}{r} 1,524,933 . \\ 00 \end{array}$ | 3.3250 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | T8
 Fluoresce
 nt | CLE0046 | $\begin{aligned} & \text { 8-FT T12HO to } 24-\mathrm{FT} \\ & \text { T8HP } \end{aligned}$ | Units | 10,172.00 | 0.0297 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Lighting Controls | CLE0051 | Parking Garage MultiStep Dimming Occ Sensor | Watts Contr olled | 67,481.00 | 0.0001 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Lighting Controls | CLE0052 | Probe Start to Pulse Start Lighting(Lamp and Ballast Retrofit) | Watts Remo ved | 251,519.00 | 0.0009 | Indoor CFL
 WorkPaper_04271
 2.docx | 0.0000 | No variances |
 | Business | LED or | CLE0053 | LED Replacing A19 | Units | 45,338.00 | 0.0491 | Master MEMD; | 0.0000 | No variances |

 | Solutions Prescriptive | Induction Fixtures | | | | | | Commercial | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | LED or Induction Fixtures | CLE0054 | LED MR16 Replacing Halogen MR16 | Units | 2,960.00 | 0.0115 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | LED or Induction Fixtures | CLE0055 | LED Par Replacing Halogen Par | Units | 16,847.00 | 0.0257 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Variable Frequenc y Drives | CMC0002 | Constant Volume AHU to VAV with Hydronic Reheat (Combo) | $\begin{aligned} & \text { Squar } \\ & \text { e } \\ & \text { Feet } \end{aligned}$ | 245,282.00 | 0.0000 | WS MEMD | 178.2789 | eTracker reported per unit kW = 0.0019 for 4 projects; there is no MEMD demand savings for this measure |
 | Business Solutions Prescriptive | Variable Frequenc y Drives | CME0006 | VFD for Process
 Pumping, $<=50 \mathrm{HP}$ | HP | 1,161.00 | 0.2286 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Variable Frequenc y Drives | CME0007 | VFD/HVAC Fans and Pumps < 100HP -
 Electric Customers | HP | 2,476.75 | 0.0174 | WS MEMD | -0.0001 | eTracker reported per unit kW = 0.0175 for 1 project; should be 0.0174 |
 | Business Solutions Prescriptive | Variable Frequenc y Drives | CME0009 | VFD/Chiller Motors Electric Customers | HP | 230.00 | 0.0000 | WS MEMD | -4.1400 | eTracker reported per unit kW = 0.0180; no MEMD demand savings for this measure |
 | Business Solutions Prescriptive | Custom | CME0013 | VFD on Process Pumps ($50-250 \mathrm{HP}$) | HP | 8.00 | 0.0000 | Custom calculated | 0.0000 | No variances |
 | Business Solutions Prescriptive | Variable Frequenc y Drives | CME0014 | EC Motors | HP | 93.00 | 0.0650 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Variable Frequenc y Drives | CME0015 | VFD on Process Fans (<50 HP) | HP | 223.00 | 0.1100 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Custom | CME0019 | VFDs for Process Fixed Speed Control (Throttled; <= 50 hz) | HP | 90.00 | 0.1516 | Master MEMD; Commercial | -0.0002 | eTracker reported per unit kW = 0.1567 for 1 project; should be 0.1516 kW |
 | Business Solutions - | Variable Frequenc | CME0022 | Constant Volume AHU to VAV with Hydronic | Squar
 e | 228,097.00 | 0.0000 | WS MEMD | -38.9880 | eTracker reported per unit kW = |

 | Prescriptive | y Drives | | Reheat (Electric) | Feet | | | | | 0.0019 for 1 project; there is no MEMD demand savings for this measure |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | Variable Frequenc y Drives | CME0025 | $\begin{aligned} & \text { VFD on HVAC Fans (< } \\ & 100 \mathrm{HP} \text {) } \end{aligned}$ | HP | 1,727.25 | 0.0301 | WS MEMD | -0.0004 | kW rounding issues |
 | Business Solutions Prescriptive | Variable
 Frequenc y Drives | CME0026 | VFD on HVAC Fans (100HP - 250HP) | HP | 100.00 | 0.0079 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Variable Frequenc y Drives | CME0027 | VFD on HVAC Pumps (< 100 HP) | HP | 969.80 | 0.1742 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Energy Recovery | CRC0001 | Enthalpy Wheels ERUs | CFM | 1,600.00 | -0.0082 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Energy Recovery | CRC0002 | Fixed-Plate Air to Air ERUs | CFM | 22,475.00 | -0.0006 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Energy Recovery | CRE0001 | Laboratory Fume-Hood Ventillation Reduction (EO) | CFM | 9,345.00 | 0.0026 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerat ion | CSC0030 | Reach-In Refrigerated Case Door; Low Temp Combination Customer | Linear Feet | 148.00 | 0.2500 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerat ion | CSC0031 | Temperature and Optical Sensor on Exhaust - Combo | CFM | 19,750.00 | 0.0001 | mi_weather_sensit ive_dbase_2012 10_31_12.xls | 0.0000 | No variances |
 | Business Solutions Prescriptive | Other | CSC0039 | Roof Insulation - Attic Roof (Combo) | Squar
 e
 Feet | 8,504.00 | 0.0000 | WS MEMD | -0.8504 | eTracker reported per unit kW = 0.0001 for 2 projects; there is no MEMD demand savings for this measure |
 | Business Solutions Prescriptive | Other | CSC0040 | Roof Insulation - Flat Roof (Combo) | Squar
 e
 Feet | 212,780.00 | 0.1004 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Other | CSC0106 | Wall Insulation Combination Customer | Squar
 e
 Feet | 11,994.00 | 0.1039 | WS MEMD | 0.0000 | No variances |

 | Business Solutions Prescriptive | Occupanc y Sensors and Controls | CSE0001 | Beverage Vending Machine Controller | Units | 22.00 | 0.0420 | Master MEMD; Commercial | 0.0000 | No variances |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | Occupanc y Sensors and Controls | CSE0002 | Guestroom Energy Management Control (electric heat) | Units | 312.00 | 0.0880 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Ice Machines | CSE0003 | Energy Efficient Ice Machines less than 500 lbs | Units | 3.00 | 0.0679 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Ice Machines | CSE0004 | Energy Efficient Ice Machines 500-1000 lbs | Units | 8.00 | 0.1024 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Ice Machines | CSE0005 | Energy Efficient Ice Machines 1000-1500 lbs | Units | 2.00 | 0.1464 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerat ion | CSE0013 | LED Lighting for Refrigeration Cases | Units | 42,782.00 | 0.0390 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Other | CSE0016 | Network Power Management Software | PCs Contr olled | 1,603.00 | 0.0060 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerat ion | CSE0020 | Case EC Motor | Units | 1,706.00 | 0.0846 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerat ion | CSE0021 | LED Lighting Occupancy Sensor for Refrigeration Cases | Units | 1,020.00 | 0.0160 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerat ion | CSE0022 | A/C Reduction From Lighting Reduction (20F to 0F) | Watts
 Remo ved | 9,422.00 | 0.0005 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen and Refrigerat ion | CSE0023 | A/C Reduction From Lighting Reduction (0F to 20F) | Watts
 Remo ved | 6,600.00 | 0.0003 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen
 and
 Refrigerat | CSE0024 | A/C Reduction From Lighting Reduction (20F to 40 F) | Watts Remo ved | 9,536.00 | 0.0002 | Master MEMD; Commercial | 0.0000 | No variances |

 | | ion | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | Kitchen
 and
 Refrigerat ion | CSE0026 | Evaporator Fan Control (EC motor) | Units | 33.00 | 0.0342 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Kitchen
 and
 Refrigerat ion | CSE0027 | Reach-In Refrigerated Case Door; Medium Temp - Electric Customers | Linear Feet | 79.00 | 0.1200 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen
 and
 Refrigerat ion | CSE0028 | Electric Dishwasher (High Temp; Under Counter) | Units | 3.00 | 0.2630 | High Efficiency Dishwasher_0118 13.docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | Other | CSE0042 | UPS - Single Normal Mode - VI (P > 10 kW) | kW | 960.00 | 0.0240 | UPS
 Workpaper_03271
 3.docx | 2.4960 | eTracker reported per unit kW = 0.0214 kW ; should be 0.0240 kW |
 | Business Solutions Prescriptive | Kitchen and Refrigerat ion | CSE0078 | Electric Dishwasher (High Temp; Multi Tank) | Units | 1.00 | 1.8004 | High Efficiency Dishwasher_0118 13.docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen
 and
 Refrigerat ion | CSE0079 | Electric Dishwasher (Low Temp; Single Tank) | Units | 1.00 | 0.6984 | High Efficiency Dishwasher_0118 13.docx | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Kitchen
 and
 Refrigerat ion | CSE0080 | Electric Dishwasher (High Temp; Single Tank) | Units | 1.00 | 1.6482 | High Efficiency Dishwasher_0118 13.docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | Kitchen
 and
 Refrigerat ion | CSE0082 | Electric Dishwasher (Low Temp; Door) | Units | 1.00 | 0.8257 | High Efficiency Dishwasher_0118 13.docx | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Kitchen
 and
 Refrigerat ion | CSE0089 | Walk-in EC Motor replacing non-EC Motor | Units | 1,028.00 | 0.1404 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | C\&I
 Waterhea ting | CWE001
 0 | Pipe Wrap - Domestic Hot Water - conditioned space (120F) | Linear Feet | 594.00 | 0.0020 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | C\&I
 Waterhea
 ting | $\begin{aligned} & \text { CWG001 } \\ & 2 \end{aligned}$ | Pipe Wrap - Domestic Hot Water - conditioned space (140F) | Linear Feet | 42.00 | 0.0029 | Master MEMD; Commercial | 0.0000 | No variances |

 | New Construction - Major Renovation 2013 | Compres sed Air | CAE0001 | VSD Air Compressor | HP | 170.00 | 0.1100 | Master MEMD; Commercial | 0.0000 | No variances |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | New Construction - Major Renovation 2013 | Compres sed Air | CAE0002 | Refrigerated Cycling Thermal Mass Air Dryer | SCFM | 1,600.00 | 0.0008 | Master MEMD; Commercial | 0.0000 | No variances |
 | New
 Construction
 - Major
 Renovation
 2013 | Compres sed Air | CAE0009 | Compressed Air
 Pressure Flow Controller | HP | 60.00 | 0.0103 | Master MEMD; Commercial | 0.0000 | No variances |
 | New
 Construction
 - Major
 Renovation
 2013 | Furnaces and Heaters | CHC0010 | Infrared Heaters Combination Customers | $\begin{aligned} & \text { kBtu/ } \\ & \text { h } \end{aligned}$ | 4,685.00 | 0.0060 | WS MEMD | 0.0000 | No variances |
 | New Construction - Major Renovation 2013 | DCV and Economiz ers | CHC0027 | Demand Control Ventilation Combination Customers | Squar
 e
 Feet | 22,798.00 | 0.1354 | WS MEMD | 0.0000 | No variances |
 | New
 Construction
 - Major
 Renovation
 2013 | Unitary/S plit HVAC | CHE0001 | AC < 65,000 Btuh (5.4 tons) | Tons | 98.12 | 0.0616 | WS MEMD | 0.0001 | kW rounding issues |
 | New
 Construction
 - Major
 Renovation
 2013 | Chiller | CHE0012 | Air-cooled Chiller - 1.04 kW/ton IPLV | Tons | 726.50 | 0.0575 | WS MEMD | -0.0257 | For 1 of the 5 projects the perfomance kW calculations in eTracker are incorrect |
 | New Construction - Major Renovation 2013 | DCV and Economiz ers | CHE0027 | Demand Control Ventilation - Electric Customers | Squar
 e
 Feet | 25,170.00 | 0.0533 | WS MEMD | 0.0000 | No variances |
 | New Construction - Major | Unitary/S plit HVAC | CHE0028 | AC Units > 65,000 Btuh (5.4 tons) and < $=120,000$ Btuh (10 | Tons | 95.04 | 0.0669 | WS MEMD | 0.0000 | No variances |

 EMI
 2013 Certification Appendices

 | - Major Renovation 2013 | | | | ved | | | Workpaper 032713.docx | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | New
 Construction
 - Major
 Renovation
 2013 | Other | CSE0042 | UPS - Single Normal Mode - $\mathrm{VI}(\mathrm{P}>10 \mathrm{~kW})$ | kW | 34.74 | 0.0240 | UPS
 Workpaper_03271
 3.docx | 0.0904 | eTracker reported per unit kW = 0.0214 kW ; should be 0.0240 kW |
 | New
 Construction
 - Major
 Renovation
 2013 | Other | CSE0049 | Lighting Power Density (Exterior) | Watts
 Remo
 ved | 213,066.00 | 0.0009 | Lighting Power Density Workpaper 032713.docx | 0.0000 | No variances |
 | New
 Construction
 - Major
 Renovation
 2013 | Kitchen
 and
 Refrigerat ion | CSE0079 | Electric Dishwasher (Low Temp; Single Tank) | Units | 1.00 | 0.6984 | High Efficiency Dishwasher_0118 13.docx | 0.0000 | No variances |
 | TOTAL | | | | | | | | -305.2953 | |

 Table A-3. Business Solutions Program Per-Unit Savings for Natural Gas (Mcf)

 | Program | End Use | Measure Code | Measure Description | Units | Install Quantity | MEMD or Workpaper Per-Unit Mcf Savings | Deemed Source | Effect on Reported Mcf | Variance Description |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | BOC | Other | CSC0042 | BOC (Combo Customer) | Units | 11.00 | 152.0203 | Master MEMD; Commercial | -0.0055 | eTracker reported per unit MCF = 15.0208; should be 15.0203 MCF |
 | BOC | Other | CSG0027 | BOC (Gas Customer) | Units | 8.00 | 152.0203 | Master MEMD; Commercial | -0.0040 | eTracker reported per unit MCF = 15.0208; should be 15.0203 MCF |
 | Business Solutions Custom | Custom | CBG0001 | Custom Gas Program | Units | 19.00 | 0.0000 | Custom calculated | 0.0000 | No variances |
 | Business
 Solutions Custom | Custom | CBG0300 | Smart
 Buildings Gas | Units | 1.00 | 0.0000 | Custom calculated | 0.0000 | No variances |
 | Business
 Solutions Prescriptive | Compressed Air | CAG0006 | Air
 Compressor Waste Heat Recovery | HP | 435.00 | 4.0124 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | BLDG Envelope | CBC0001 | Window Reduction | Square Feet | 1,421.00 | 1.4677 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | BLDG Envelope | CBC0002 | Window Reduction (Gas) | Square Feet | 4,024.00 | 1.3912 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Energy
 Management Systems | CEB0001 | EMS -
 Combination Customers | Square Feet | $\begin{array}{r} 1,911,81 \\ 2.00 \end{array}$ | 29.6349 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Energy
 Management Systems | CEG0001 | EMS (Gas
 Heating)-
 Gas
 Customers | Square Feet | $\begin{array}{r} 2,917,60 \\ 1.00 \end{array}$ | 33.6641 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Furnaces and Heaters | CHC0010 | Infrared
 Heaters Combination Customers | kBtu/h | $\begin{array}{r} 10,802.0 \\ 0 \end{array}$ | 0.4982 | WS MEMD | 0.0000 | No variances |
 | Business Solutions - | HVAC Controls | CHC0011 | Programmabl e Thermostat | Square Feet | $\begin{array}{r} 182,775 . \\ 00 \end{array}$ | 21.5527 | WS MEMD | 0.0000 | No variances |

 | Prescriptive | | | Combination Customers | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business
 Solutions -
 Prescriptive | HVAC
 Controls | CHC0012 | Guestroom Energy
 Management Control -
 Combination Customer | Units | 286.00 | 5.9292 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | HVAC
 Controls | CHC0014 | Critical Zone Supply Air Reset Control (Combo) | Tons | 70.00 | 5.4017 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | HVAC Controls | CHC0015 | Hydronic HVAC Pump (Combo) | Square Feet | $\begin{array}{r} 602,772 . \\ 00 \end{array}$ | 0.0028 | Hydronic HVAC Pump Control Workpaper_0308 11.docx | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | HVAC Controls | CHC0017 | Optimal Start/Stop on Air Handling Units (Combo) | Square Feet | $\begin{array}{r} 890,530 . \\ 00 \end{array}$ | 3.4385 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | HVAC Controls | CHC0018 | Occupancy Sensor Controls on HVAC Units (Combo) | Square Feet | $\begin{array}{r} 123,950 . \\ 00 \end{array}$ | 4.2742 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | DCV and Economizers | CHC0027 | Demand Control Ventilation Combination Customers | Square Feet | $\begin{array}{r} 884,218 . \\ 00 \end{array}$ | 27.8509 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Unitary/Split HVAC | CHC0070 | Occ Sensor For Toilet Rm Exhaust | Units | 2.00 | 9.3000 | CE Work Paper Review- Toilet Exhaust 03082012.docx | 0.0000 | No variances |
 | Business
 Solutions Prescriptive | HVAC
 Controls | CHE0065 | Chilled Water Reset Retrofit (10 degrees) - Electric | Tons | 438.00 | 0.0639 | WS MEMD | -0.4080 | eTracker reported per unit kMCF $=0.0699$ for 1 project; should be 0.0639 MCF. |
 | Business Solutions Prescriptive | Boilers and Boiler Controls | CHG0005 | Boiler Modulating Burner Control 10 to 1 or 5 to 1 | Units | $\begin{array}{r} 61,474.0 \\ 0 \end{array}$ | 0.0943 | WS MEMD | 0.0000 | No variances |

 2013 Certification Appendices

 | | | | $500 \mathrm{kbtu} / \mathrm{h})$ | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | Boilers and Boiler Controls | CHG0024 | Boiler Tuneup Level 2 (>=500 and | Units | 92.00 | 0.0318 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Boilers and Boiler Controls | CHG0025 | Boiler Tuneup Level 3 ($>=1200$ kbtu/h) | Units | 539.00 | 0.0317 | WS MEMD | -0.0001 | MCF rounding issue |
 | Business
 Solutions -
 Prescriptive | Boilers and Boiler Controls | CHG0026 | High
 Efficiency
 Process
 Boiler
 Replacement (Water) | kBtu/h | $\begin{array}{r} 17,680.0 \\ 0 \end{array}$ | 0.1468 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Boilers and Boiler Controls | CHG0028 | Process
 Boilers Tune-
 up $>=1200$
 kbtu/h | Units | 11.00 | 0.0739 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Boilers and Boiler Controls | CHG0029 | Process Boiler Tuneup Level 5 (>=500 and | Units | 8.00 | 0.0739 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Boilers and Boiler Controls | CHG0030 | Process Boiler Tuneup Level 4 (>=300 and | Units | 1.00 | 0.0739 | Master MEMD; Commercial | 0.0000 | No variances |
 | Business Solutions Prescriptive | Heating | CHG0050 | Destratificatio n Fans | Square
 Feet | 6,500.00 | 8.6907 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Boilers and Boiler Controls | CHG0053 | Optimized Boiler Plant Sequencing | MBH | $\begin{array}{r} 109,915 . \\ 00 \end{array}$ | 0.0545 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Boilers and Boiler Controls | CHG0054 | Process Steam Pipe Condensate Insulation Conditioned | Linear
 Feet | 168.00 | 0.1457 | Process Steam Pipe Condensate Insulation_05031 2.docx | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | HVAC Controls | CHG0055 | Optimal Start/Stop on Air Handling Units (Gas) | Square Feet | $\begin{array}{r} 607,999 . \\ 00 \end{array}$ | 3.5781 | WS MEMD | 0.0000 | No variances |
 | Business Solutions - | Furnaces and Heaters | CHG0058 | High Efficiency | MBH | $\begin{array}{r} 65,032.0 \\ 0 \end{array}$ | 0.2084 | WS MEMD | 0.0000 | No variances |

 | Prescriptive | | | Furnace or Unit Heater (92-94\% AFUE) | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Business Solutions Prescriptive | HVAC Controls | CHG0059 | Occupancy Sensor Controls on HVAC Units (Gas) | Square
 Feet | $\begin{array}{r} 39,990.0 \\ 0 \end{array}$ | 4.2526 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | Furnaces and Heaters | CHG0061 | High
 Efficiency
 Furnace or Unit Heater (>94\% AFUE) | MBH | $\begin{array}{r} 15,766.0 \\ 0 \end{array}$ | 0.2542 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Boilers and Boiler Controls | CHG0063 | Linkageless Boiler Controls | MBH | $\begin{array}{r} 10,275.0 \\ 0 \end{array}$ | 0.0569 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Boilers and Boiler Controls | CHG0064 | Modulating Burner Control (GO) | MBH | $\begin{array}{r} 110,682 . \\ 00 \end{array}$ | 0.0546 | WS MEMD | 0.0000 | No variances |
 | Business
 Solutions -
 Prescriptive | HVAC Controls | CHG0065 | Occupancy Sensor for Toilet Room Exhaust Retrofit (GO) | Units | 2.00 | 9.3000 | ToiletExhaustOcc
 Sensor
 workpaper_0520
 11.docx | 0.0000 | No variances |
 | Business Solutions Prescriptive | Boilers and Boiler Controls | CHG0067 | Water Reset Control Retrofit (GO) | MBH | $\begin{array}{r} 99,972.0 \\ 0 \end{array}$ | 0.0564 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Steam Traps | CHG0102 | Leaking
 Steam Trap
 Repair or Replacement -- Special Incentive | Units | 1,370.00 | 28.9655 | Master MEMD; Commercial | -0.1370 | eTracker reported per unit MCF = 29.9656; should be 29.9655 MCF |
 | Business Solutions Prescriptive | Boilers and Boiler Controls | CHG0116 | Boiler Reset Contro | kBtu/h | $\begin{array}{r} 79,990.0 \\ 0 \end{array}$ | 0.0572 | WS MEMD | 0.0000 | No variances |
 | Business Solutions Prescriptive | Boilers and Boiler Controls | CHG0207 | Optimized Boiler Plant Sequencing (Process) | MBH | $\begin{array}{r} 61,946.0 \\ 0 \end{array}$ | 0.0545 | WS MEMD | 235.3948 | eTracker reported per unit MCF $=0.0583$; should be 0.0545 MCF |
 | Business | Boilers and | CHG0208 | Modulating | MBH | 106,616. | 0.1025 | Master MEMD; | 0.0000 | No variances |

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
 \hline \& \& \& \& \& o
 0
 0
 0
 0
 0
 0 \& \& \& \& \& o
 0
 W
 W
 0
 0
 2

 \hline \& $$
 \stackrel{\circ}{\circ}
 $$ \& $$
 \stackrel{\circ}{\circ}
 $$ \& $$
 \stackrel{\circ}{\circ}
 $$ \& $$
 \begin{aligned}
 & \circ \\
 & \hline 0 \\
 & \hline
 \end{aligned}
 $$ \& $$
 \stackrel{8}{0}
 $$ \& $$
 \begin{aligned}
 & \circ \\
 & \hline 0 \\
 & \hline
 \end{aligned}
 $$ \& $$
 \stackrel{\circ}{\circ}
 $$ \& $$
 \stackrel{\circ}{\circ}
 $$ \& $$
 \begin{aligned}
 & \circ \\
 & \hline 0 \\
 & \hline
 \end{aligned}
 $$ \& $$
 \begin{aligned}
 & \circ \\
 & \hline 0 \\
 & \hline
 \end{aligned}
 $$

 \hline \multirow[t]{2}{*}{} \& \& \& \& \[
 \underset{\substack{n

 \sum_{$$
 \begin{subarray}{c}{0} }}^{n}} \\
 {\hline}\end{subarray}
 $$

[^16]: (1) Case No. U-17351, WP-TAY-2 (2) Proration factor developed per customer group share (col. b, lines 1-9) of total (col. b, line 10).
 (3) Customer group surcharge obligation based on customer group share (col. c, lines 1-9) of total obligation (col. d, line 10).
 (4) Case No U-17351, Exhibit A-5 (HWM-5)
 (5) Residential group surcharge on a $\$ / \mathrm{kWh}$ basis, while C\&I customer surcharge on a $\$ /$ customer meter basis.
 (6) Surcharge obligation of $\$ 10,364,556$ per Exhibit A-16 (JPS-1) less 2010 Over-Recovery of $\$ 241,728$ per Exhibit A-3 (KLA-3), pg 2,
 and 2011 Over-Recovery of $\$ 274,859$ per Exhibit A-4 (KLA-4), pg. 2

[^17]: （1）Case No．U－17351，WP－TAY－2
 （2）Proration factor developed per customer group share（col．b，lines 1－3）of total（col．b，line 4）．
 （3）Customer group surcharge obligation based on customer group share（col．c，lines 1－3）of total obligation（col．d，line 4）．
 （4）Case No U－17351，Exhibit A－7（HWM－7）
 （5）Surcharge obligation of $\$ 7,166,544$ per Exhibit A－17（JPS－2）less 2010 Over－Recovery of $\$ 103,658$ per Exhibit A－3（KLA－3），pg 3， and 2011 Over－Recovery of $\$ 333,245$ per Exhibit A－4（KLA－4），pg． 3

[^18]: 1 Customer-level documents were not available due to program design. Instead, Cadmus reviewed weekly sales invoices and MOUs from participating retailers and manufacturers.

[^19]: *Long-life equipment savings multiplier of 1.1 is only applied where the measure life (G) is 10 years or greater

[^20]: documents KW saving, and Table 99 and Table 100 document MCF savings.

[^21]: Consumers Energy: 2013 Energy Optimization Annual Report

[^22]: Consumers Energy: 2013 Energy Optimization Annual Report

[^23]: Notes: Source for the Utility System Resource Cost Test (UCT) results is Exhibit A-11 (BMR-1), Table 4-7. Summary of Electric Programs Benefit-Cost Test Results (2) Source: Exhibit A-11 (BMR-1), Table 4-4. 2013 Porffolio Investment
 (3) Source: Exhibit A-11 (BMR-1), Table 4-5. 2013 Portfolio Savings

[^24]: Notes:
 (1) Source: Exhibit A-11 (BMR-1), Table 4-2. 2013 Electric Results and Table 4-3. 2013 Gas Results.
 (2) Per the September 29, 2009 Commission Order in Case Nos. U-15805/U-15889, as adjusted in U-17138 Order dated January 31, 2013.
 (3) Source: Certification Reports of (4) Source: Exhibit A-16 (JPS-1)

